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Spontaneous facial expression in unscripted social
interactions can be measured automatically
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Abstract Methods to assess individual facial actions have
potential to shed light on important behavioral phenomena
ranging from emotion and social interaction to psycholog-
ical disorders and health. However, manual coding of such
actions is labor intensive and requires extensive training. To
date, establishing reliable automated coding of unscripted
facial actions has been a daunting challenge impeding devel-
opment of psychological theories and applications requiring
facial expression assessment. It is therefore essential that
automated coding systems be developed with enough pre-
cision and robustness to ease the burden of manual coding
in challenging data involving variation in participant gen-
der, ethnicity, head pose, speech, and occlusion. We report
a major advance in automated coding of spontaneous facial
actions during an unscripted social interaction involving
three strangers. For each participant (n = 80, 47 % women,
15 % Nonwhite), 25 facial action units (AUs) were manually
coded from video using the Facial Action Coding System.
Twelve AUs occurred more than 3 % of the time and were
processed using automated FACS coding. Automated cod-
ing showed very strong reliability for the proportion of
time that each AU occurred (mean intraclass correlation =
0.89), and the more stringent criterion of frame-by-frame
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reliability was moderate to strong (mean Matthew’s cor-
relation = 0.61). With few exceptions, differences in AU
detection related to gender, ethnicity, pose, and average
pixel intensity were small. Fewer than 6 % of frames could
be coded manually but not automatically. These findings
suggest automated FACS coding has progressed sufficiently
to be applied to observational research in emotion and
related areas of study.

Keywords Facial expression · FACS · Affective
computing · Automated coding

Introduction

During the past few decades, some of the most strik-
ing findings about affective disorders, schizophrenia,
addiction, developmental psychopathology, and health
have been based on sophisticated coding of facial
expressions. For instance, it has been found that facial
expression coding using the Facial Action Coding
System (FACS), which is the most comprehensive sys-
tem for coding facial behavior (Ekman, Friesen, &
Hager, 2002), identifies which depressed patients are
at greatest risk for reattempting suicide (Archinard,
Haynal-Reymond, & Heller, 2000); constitutes an index
of physical pain with desirable psychometric proper-
ties (Prkachin & Solomon, 2008); distinguishes different
types of adolescent behavior problems (Keltner, Moffitt,
& Stouthamer-Loeber 1995); and distinguishes between
European-American, Japanese, and Chinese infants
(Camras et al., 1998). These findings have offered glimpses
into critical areas of human behavior that were not possible
using existing methods of assessment, often generating
considerable research excitement and media attention.
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As striking as these original findings were, it is just as
striking how little follow-up work has occurred using these
methods. The two primary reasons for this curious state
of affairs are the intensive training required to learn facial
expression coding and the extremely time-consuming nature
of the coding itself. Paul Ekman, one of the creators of
FACS, notes that certification in FACS requires about 6
months of training and that FACS coding a single minute of
video can take over an hour (Ekman, 1982).

FACS (Ekman & Friesen, 1978; Ekman et al., 2002) is an
anatomically based system for measuring nearly all visually
discernible facial movement. FACS describes facial activ-
ities in terms of unique facial action units (AUs), which
correspond to the contraction of one or more facial muscles.
Any facial expression may be represented as a single AU or
a combination of multiple AUs. For example, the Duchenne
smile (i.e., enjoyment smile) is indicated by simultaneous
contraction of the zygomatic major (AU 12) and orbicularis
oculi pars lateralis (AU 6). Although there are alternative
systems for characterizing facial expression (e.g., Izard,
1979; Abrantes & Pereira, 1999), FACS is recognized as
the most comprehensive and objective means for measur-
ing facial movement currently available, and it has become
the standard for facial measurement in behavioral research
(Cohn & Ekman, 2005; Ekman & Rosenberg, 2005).

Given the often-prohibitive time commitment of FACS
coding, there has been great interest in developing computer
vision methods for automating facial expression coding. If
successful, these methods would greatly improve the effi-
ciency and reliability of AU detection, and importantly
make its use feasible in applied settings outside of research.

Although the advantages of automated facial expres-
sion coding are apparent, the challenges of developing such
systems are considerable. While human observers easily
accommodate variations in pose, scale, illumination, occlu-
sion, and individual differences (e.g., gender and ethnicity),
these and other sources of variation represent considerable
challenges for a computer vision system. Further, there is
the machine learning challenge of automatically detecting
actions that require significant training and expertise even
for human coders.

There has been significant effort to develop computer-
vision-based approaches to automated facial expression
analysis. Most of this work has focused on prototypic emo-
tion expressions (e.g., joy and anger) in posed behavior.
Zeng, Pantic, Roisman, and Huang (2009) have reviewed
this literature through 2009. Within the past few years,
studies have progressed to AU detection in actor portray-
als of emotion (Valstar, Bihan, Mehu, Pantic, & Scherer
2011) and the more challenging task of AU detection during
spontaneous facial behavior. Examples of the latter include
AU detection in physical pain (Littlewort, Bartlett, & Lee,
2009; Lucey, Cohn, Howlett, Member, & Sridharan, 2011),

interviews (Bartlett et al., 2006; Girard et al., 2013;
Lucey, Matthews, Ambadar, De la Torre, & Cohn, 2006),
and computer-mediated tasks such as watching a video
clip or filling out a form (Hoque, McDuff, & Picard,
2012; Grafsgaard, Wiggins, Boyer, Wiebe, & Lester, 2013;
Littlewort et al., 2011; Mavadati, Mahoor, Bartlett, Trinh, &
Cohn, 2013; McDuff, El Kaliouby, Kodra, & Picard, 2013).

While much progress has been made, the current state
of the science is limited in several key respects. Stimuli to
elicit spontaneous facial actions have been highly controlled
(e.g., watching pre-selected video clips or replying to struc-
tured interviews) and camera orientation has been frontal
with little or no variation in head pose. Non-frontal pose
matters because the face looks different when viewed from
different orientations and parts of the face may become self-
occluded. Rapid head movement also may be difficult to
automatically track through a video sequence. Head motion
and orientation to the camera are important if AU detec-
tion is to be accomplished in social settings where facial
expressions often co-occur with head motion. For example,
the face and head pitch forward and laterally during social
embarrassment (Keltner et al., 1995; Ambadar, Cohn, &
Reed, 2009). Kraut and Johnston (1979) found that success-
ful bowlers smile only as they turn away from the bowling
lane and toward their friends.

Whether automated methods can detect spontaneous
facial expressions in the presence of head pose variation is
unknown, as too few studies have encountered or reported
on it. Messinger, Mahoor, Chow, and Cohn (2009) encoun-
tered out-of-plane head motion in video of infants, but
neglected to report whether it affected AU detection. Cohn
and Sayette (2010) reported preliminary evidence that AU
detection may be robust to pose variation up to 15 degrees
from frontal. Similarly, we know little about the effects of
gender and ethnicity on AU detection. Face shape and tex-
ture vary between men and women (Bruce & Young 1998),
and may be further altered through the use of cosmet-
ics. Skin color is an additional factor that may affect AU
detection. Accordingly, little is known about the opera-
tional parameters of automated AU detection. For these
reasons, automated FACS coding must prove robust to these
challenges.

The current study evaluates automated FACS coding
using a database that is well suited to testing just how far
automated methods have progressed, and how close we are
to using them to study naturally occurring facial expres-
sions. This investigation focuses on spontaneous facial
expression in a far larger database (over 400,000 video
frames from 80 people) than ever attempted; it includes
men and women, Whites and Nonwhites, and a wide range
of facial AUs that vary in intensity and head orienta-
tion. Because this database contains variation in head pose
and participant gender, as well as moderate variation in
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illumination and participant ethnicity, we can examine their
effect on AU detection. To demonstrate automated AU
detection in such a challenging database would mark a
crucial step toward the goal of establishing fully auto-
mated systems capable of use in varied research and applied
settings.

Methods

Participants

The current study used digital video from 80 participants
(53 % male, 85 % white, average age 22.2 years) who were
participating in a larger study on the impact of alcohol on
group formation processes (for elaboration, see Sayette et
al., 2012). They were randomly assigned to groups of three
unacquainted participants. Whenever possible, all three par-
ticipants in a group were analyzed. Some participants were
not analyzable due to excessive occlusion from hair or head
wear (n = 6) or gum chewing (n = 1). Participants were
randomly assigned to drink isovolumic alcoholic beverages
(n = 31), placebo beverages (n = 21), or nonalcoholic con-
trol beverages (n = 28); all participants in a group drank the
same type of beverage. The majority of participants were
from groups with a mixed gender composition of two males
and one female (n = 32) or two females and one male
(n = 26), although some were from all male (n = 12) or all
female (n = 10) groups. All participants reported that they
had not consumed alcohol or psychoactive drugs (except
nicotine or caffeine) during the 24 hour period leading up to
the observations.

Setting and equipment

All participants were previously unacquainted. They first
met only after entering the observation room where they
were seated approximately equidistantly from each other
around a circular (75 cm diameter) table. They were asked
to consume a beverage consisting of cranberry juice or cran-
berry juice and vodka (a 0.82 g/kg dose of alcohol for males
and a 0.74 g/kg dose of alcohol for females) before engag-
ing in a variety of cognitive tasks. We focus on a portion of
the 36-min unstructured observation period in which partic-
ipants became acquainted with each other (mean duration
2.69 min). Separate wall-mounted cameras faced each per-
son. It was initially explained that the cameras were focused
on their drinks and would be used to monitor their consump-
tion rate from the adjoining room, although participants
later were told of our interest in observing their behav-
ior and a second consent form was signed if participants
were willing. All participants consented to this use of their
data.

The laboratory included a custom-designed video con-
trol system that permitted synchronized video output for
each participant, as well as an overhead shot of the group
(Fig. 1). The individual view for each participant was used
in this report. The video data collected by each camera
had a standard frame rate of 29.97 frames per second and
a resolution of 640×480 pixels. Audio was recorded from
a single microphone. The automated FACS coding system
was processed on a Dell T5600 workstation with 128GB of
RAM and dual Xeon E5 processors. The system also runs
on standard desktop computers.

Manual FACS coding

The FACS manual (Ekman et al., 2002) defines 32 distinct
facial action units. All but 7 were manually coded. Omit-
ted were three “optional” AUs related to eye closure (AUs
43, 45, and 46), three AUs related to mouth opening or clo-
sure (AUs 8, 25, and 26), and one AU that occurs on the
neck rather than the face (AU 21). The remaining 25 AUs
were manually coded from onset (start) to offset (stop) by
one of two certified and highly experienced FACS coders
using Observer XT software (Noldus Information Technol-
ogy, 2013). AU onsets were annotated when they reached
slight or B level intensity according to FACS; the corre-
sponding offsets were annotated when they fell below B
level intensity. AU of lower intensity (i.e., A level inten-
sity) are ambiguous and difficult to detect for both manual
and automated coders. The original FACS manual (Ekman
& Friesen, 1978) did not code A level intensity (referred to
there as “trace.”). All AUs were annotated during speech.

Because highly skewed class distributions severely atten-
uate measures of classifier performance (Jeni, Cohn, & De
la Torre, 2013), AUs that occurred less than about 3 % of
the time were excluded from analysis. Thirteen AUs were
omitted on this account. Five of them either never occurred
or occurred less than 1 % of the time. Manual coding of

Fig. 1 Examples of video frames with facial landmark tracking
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these five AUs was suspended after the first 56 subjects.
Visual inspection of Fig. 2 reveals that there was a large
gap between the AUs that occurred approximately 10 % or
more of the time and those that occurred approximately 3 %
or less of the time. The class distributions of the excluded
AUs were at least three times more skewed than those of the
included AUs. In all, 12 AUs met base-rate criteria and were
included for automatic FACS coding.

To assess inter-observer reliability, video from 17 par-
ticipants was annotated by both coders. Mean frame-level
reliability was quantified with the Matthews Correlation
Coefficient (MCC), which is robust to agreement due to
chance as described below. The average MCC was 0.80,
ranging from 0.69 for AU 24 to 0.88 for AU 12; according
to convention, these numbers can be considered strong to
very strong reliability (Chung, 2007). This high degree of
inter-observer reliability is likely due to extensive training
and supervision of the coders.

Automatic FACS coding

Figure 3 shows an overview of the AU detection pipeline.
The face is detected automatically and facial landmarks are
detected and tracked. The face images and landmarks are
normalized to control for variation in size and orientation,
and appearance features are extracted. The features then are
input to classification algorithms, as described below. Please
note that the mentioned procedures do not provide incre-
mental results; all the procedures are required to perform
classification and calculate an inter-system reliability score.

Landmark registration

The first step in automatically detecting AUs was to locate
the face and facial landmarks. Landmarks refer to points
that define the shape of permanent facial features, such
as the eyes and lips. This step was accomplished using
the LiveDriver SDK (Image Metrics, 2013), which is a
generic tracker that requires no individualized training to

Fig. 2 Base rates of all the coded facial action units from a subset of
the data (n = 56)

Fig. 3 Automated FACS Coding Pipeline. Example shown is for AU
6+12

track facial landmarks of persons it has never seen before.
It locates the two-dimensional coordinates of 64 facial
landmarks in each image. These landmarks correspond to
important facial points such as the eye and mouth corners,
the tip of the nose, and the eyebrows (Fig. 1). LiveDriver
SDK also tracks head pose in three dimensions for each
video frame: pitch (i.e., vertical motion such as nodding),
yaw (i.e., horizontal motion such as shaking the head), and
roll (i.e., lateral motion such as tipping the head sideways).

Shape and texture information can only be used to iden-
tify facial expressions if the confounding influence of head
motion is controlled (De la Torre & Cohn, 2011). Because
participants exhibited a great deal of rigid head motion dur-
ing the group formation task, the second step was to remove
the influence of such motion on each image. Many tech-
niques for alignment and registration are possible (Zeng
et al., 2009); we chose the widely used similarity transfor-
mation (Szeliski, 2011) to warp the facial images to the
average pose and a size of 128×128 pixels, thereby creat-
ing a common space in which to compare them. In this way,
variation in head size and orientation would not confound
the measurement of facial actions.

Feature extraction

Once the facial landmarks had been located and normalized,
the third step was to measure the deformation of the face
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caused by expression. This was accomplished by extract-
ing scale-invariant feature transform (SIFT) descriptors
(Lowe, 1999) in localized regions surrounding each facial
landmark. SIFT applies a geometric descriptor to an image
region and measures features that correspond to changes in
facial texture and orientation (e.g., facial wrinkles, folds,
and bulges). It is robust to changes in illumination and
shares properties with neurons responsible for object recog-
nition in primate vision (Serre et al., 2005). SIFT feature
extraction was implemented using the VLFeat open-source
library (Vedali & Fulkerson, 2008). The diameter of the
SIFT descriptor was set to 24 pixels, as illustrated above the
left lip corner in Fig. 3.

Classifier training

The final step in automatically detecting AUs was to train a
classifier to detect each AU using SIFT features. By provid-
ing each classifier multiple examples of an AU’s presence
and absence, it was able to learn a mapping of SIFT features
to that AU. The classifier then extrapolated from the exam-
ples to predict whether the AU was present in new images.
This process is called supervised learning and was accom-
plished using support vector machine (SVM) classifiers
(Vapnik, 1995). SVM classifiers extrapolate from examples
by fitting a hyperplane of maximum margin into the trans-
formed, high dimensional feature space. SVM classifica-
tion was implemented using the LIBLINEAR open-source
library (Fan, Wang, & Lin, 2008).

The performance of a classifier is evaluated by testing
the accuracy of its predictions. To ensure generalizabil-
ity of the classifiers, they must be tested on examples
from people they have not seen previously. This is accom-
plished by cross-validation, which involves multiple rounds
of training and testing on separate data. Stratified k-fold
cross-validation (Geisser, 1993) was used to partition par-
ticipants into 10 folds with roughly equal AU base rates.
On each round of cross-validation, a classifier was trained
using data (i.e., features and labels) from eight of the ten
folds. The classifier’s cost parameter was optimized using
one of the two remaining folds through a “grid-search” pro-
cedure (Hsu, Chang, & Lin, 2003). The predictions of the
optimized classifier were then tested through extrapolation
to the final fold. This process was repeated so that each
fold was used once for testing and parameter optimization;
classifier performance was averaged over these 10 itera-
tions. In this way, training and testing of the classifiers was
independent.

Inter-system reliability

The performance of the automated FACS coding system was
measured in two ways. Following the example of Girard

et al. (2013), we measured both session-level and frame-
level reliability. Session-level reliability asks whether the
expert coder and the automated system are consistent in
their estimates of the proportion of frames that include a
given AU. Frame-level reliability represents the extent to
which the expert coder and the automated system make the
same judgments on a frame-by-frame basis. That is, for any
given frame, do both detect the same AU? For many pur-
poses, such as comparing the proportion of positive and
negative expressions in relation to severity of depression,
session-level reliability of measurement is what matters.
Session-level reliability was assessed using intraclass corre-
lation (ICC) (Shrout & Fleiss, 1979). Frame-level reliability
was quantified using the Matthews Correlation Coefficient
(MCC) (Powers, 2007).

ICC(1, 1) = BMS − WMS

BMS + (k − 1)WMS
(1)

MCC = T P × T N − FP × FN√
(T P + FP )(T P + FN)(T N + FP )(T N + FN)

(2)

The intraclass correlation coefficient (ICC) is a mea-
sure of how much the units in a group resemble one
another (Shrout & Fleiss, 1979). It is similar to the Pear-
son correlation coefficient, except that for ICC the data
are centered and scaled using a pooled mean and stan-
dard deviation rather than each variable being centered and
scaled using its own mean and standard deviation. This
is appropriate when the same measure is being applied to
two sources of data (e.g., two manual coders or a man-
ual coder and an automated AU detector), and prevents an
undesired handicap from being introduced by invariance to
linear transformation. For example, an automated system
that always detected a base rate twice as large as that of
the human coder would have a perfect Pearson correlation
coefficient, but a poor ICC. For this reason, the behavior
of ICC is more rigorous than that of the Pearson corre-
lation coefficient when applied to continuous values. We
used the one-way, random effects model ICC described in
Eq. 1.

The Matthews correlation coefficient (MCC), also known
as the phi coefficient, can be used as a measure of the qual-
ity of a binary classifier (Powers, 2007). It is equivalent to
a Pearson correlation coefficient computed for two binary
measures and can be interpreted in the same way: an MCC
of 1 indicates perfect correlation between methods, while an
MCC of 0 indicates no correlation (or chance agreement).
MCC is related to the chi-squared statistic for a 2×2 con-
tingency table, and is the geometric mean of Informedness
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(DeltaP) and Markedness (DeltaP’). Using Eq. 2, MCC can
be calculated directly from a confusion matrix. Although
there is no perfect way to represent a confusion matrix in a
single number, MCC is preferable to alternatives (e.g., the
F-measure or Kappa) because it makes fewer assumptions
about the distributions of the data set and the underlying
populations (Powers 2012).

Because ICC and MCC are both correlation coefficients,
they can be evaluated using the same heuristic, such as the
one proposed by Chung (2007): that coefficients between
0.0 and 0.2 represent very weak reliability, coefficients
between 0.2 and 0.4 represent weak reliability, coefficients
between 0.4 and 0.6 represent moderate reliability, coef-
ficients between 0.6 and 0.8 represent strong reliability,
and coefficients between 0.8 and 1.0 represent very strong
reliability.

Error analysis

We considered a variety of factors that could potentially
influence automatic AU detection. These were participant
gender, ethnicity, mean pixel intensity of the face, seating
location, and variation in head pose. Mean pixel intensity is
a composite of several factors that include skin color, ori-
entation to overhead lighting, and head pose. Orientation
to overhead lighting could differ depending on participants’
location at the table. Because faces look different when
viewed from different angles, pose for each frame was
considered.

The influence of ethnicity, sex, average pixel intensity,
seating position, and pose on classification performance
was evaluated using hierarchical linear modeling (HLM;
Raudenbush & Bryk, 2002). HLM is a powerful statistical
tool for modeling data with a “nested” or interdependent
structure. In the current study, repeated observations were
nested within participants. By creating sub-models (i.e.,
partitioning the variance and covariance) for each level,

HLM accounted for the fact that observations from the same
participant are likely to be more similar than observations
from different participants.

Classifier predictions for each video frame were assigned
a value of 1 if they matched the manual coder’s annota-
tion and a value of 0 otherwise. These values were entered
into a two-level HLM model as its outcome variable; a
logit-link function was used to transform the binomial val-
ues into continuous log-odds. Four frame-level predictor
variables were added to the first level of the HLM: z-
scores of each frame’s head pose (yaw, pitch, and roll) and
mean pixel intensity. Two participant-level predictor vari-
ables were added to the second level of the HLM: dummy
codes for participant gender (0 = male, 1 = female) and
ethnicity (0 = White, 1 = Nonwhite). A sigmoid function
was used to transform log-odds to probabilities for ease of
interpretation.

Results

Descriptive statistics

Using manual FACS coding, the mean base rate for AUs was
27.3 % with a relatively wide range. AU 1 and AU 15 were
least frequent, with each occurring in only 9.2 % of frames;
AU 12 and AU 14 occurred most often, in 34.3 % and
63.9 % of frames, respectively (Table 1). Occlusion, defined
as partial obstruction of the view of the face, occurred in
18.8 % of all video frames.

Base rates for two AUs differed between men and
women. Women displayed significantly more AU 10 than
men, t (78) = 2.79, p < .01, and significantly more AU
15 than men, t (78) = 3.05, p < .01. No other significant
differences between men and women emerged, and no
significant differences in base rates between Whites and
Nonwhites emerged.

Table 1 Action unit base rates from manual FACS coding (% of frames)
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Approximately 5.6 % of total frames could be coded
manually but not automatically. 9.7 % of total frames could
be coded neither automatically nor manually. Occlusion
was responsible for manual coding failures. Tracking failure
most likely due to occlusion was responsible for automatic
coding failures.

Head pose was variable, with most of that variation
occurring within the interval of 0 to 20◦ from frontal view.
(Here and following, absolute values are reported for head
pose.) Mean pose was 7.6◦ for pitch, 6.9◦ for yaw, and 6.1◦
for roll. The 95th percentiles were 20.1◦ for pitch, 15.7◦ for
yaw, and 15.7◦ for roll.

Although illumination was relatively consistent in the
observation room, the average pixel intensity of faces did
vary. Mean pixel intensity was 40.3 % with a standard devi-
ation of 9.0 %. Three potential sources of variation were
considered: ethnicity, seating location, and head pose. Mean
pixel intensity was lower for Nonwhites than for Whites,
t (78) = 4.87, p < 0.001. Effects of seating location were
also significant, with participants sitting in one of the chairs
showing significantly lower mean pixel intensity than par-
ticipants sitting in the other chairs, F(79) = 5.71, p < .01.
Head pose was uncorrelated with pixel intensity: for yaw,
pitch, and roll, r = −0.09, −0.07, and −0.04, respectively.

Inter-system reliability

The mean session-level reliability (i.e., ICC) for AUs was
very strong at 0.89, ranging from 0.80 for AU 17 to 0.95 for
AU 12 and AU 7 (Fig. 4). The mean ICC was 0.91 for male
participants and 0.79 for female participants. The mean ICC

was 0.86 for participants self-identifying as White and 0.91
for participants self-identifying as Nonwhite.

The mean frame-level reliability (i.e., MCC) for AUs was
strong at 0.60, ranging from 0.44 for AU 15 to 0.79 for
AU 12 (Fig. 4). The mean MCC was 0.61 for male partici-
pants and 0.59 for female participants. The mean MCC was
0.59 for participants self-identifying as White and 0.63 for
participants self-identifying as Nonwhite.

Error analysis

HLM found that a number of participant- and frame-level
factors affected the likelihood that the automated system
would make classification errors for specific AUs (Table 2).
For several AUs, participant gender and self-reported eth-
nicity affected performance. Errors were 3.45 % more likely
in female than male participants for AU 6 (p < .05), 2.91 %
more likely in female than male participants for AU 15
(p < .01), and 5.15 % more likely in White than Non-
white participants for AU 17 (p < .05). For many AUs,
frame-level head pose and mean pixel intensity affected per-
formance. For every one standard deviation increase in the
absolute value of head yaw, the probability of making an
error increased by 0.79 % for AU 2 (p < .05), by 0.15 %
for AU 11 (p < .05), by 1.24 % for AU 12 (p < .01),
by 1.39 % for AU 23 (p < .05), and by 0.77 % for AU
24 (p < .05). For every one standard deviation increase
in the absolute value of head pitch, the probability of mak-
ing an error increased by 1.24 % for AU 15 (p < .05). No
significant effects were found for deviations in head roll.
Finally, for every one standard deviation increase in mean

Fig. 4 Mean inter-system reliability for twelve FACS action units
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pixel intensity, the probability of making an error increased
by 2.21 % for AU 14 (p < .05).

Discussion

The major finding of the present study was that spontaneous
facial expression during a three person, unscripted social
interaction can be reliably coded using automated methods.
This represents a significant breakthrough in the field of
affective computing and offers exciting new opportunities
for both basic and applied psychological research.

We evaluated the readiness of automated FACS coding
for research use in two ways. One was to assess session-
level reliability: whether manual and automated measure-
ment yield consistent estimates of the proportion of time
that different AUs occur. The other, more-demanding metric
was frame-level reliability: whether manual and automated
measurement agree on a frame-by-frame basis. When aver-
age rates of actions are of interest, session-level reliability is
the critical measure (e.g., Sayette & Hufford, 1995, Girard
et al., 2013). When it is important to know when partic-
ular actions occur in the stream of behavior, for instance
to define particular combinations of AUs, frame-level reli-
ability is what matters (e.g., Ekman & Heider, 1988; Reed,
Sayette, & Cohn, 2007). For AUs that occurred as little
as 3 % of the time, we found evidence of very strong
session-level reliability and moderate to strong frame-level
reliability. AUs occurring less than 3 % of the time were not
analyzed.

Session-level reliability (i.e., ICC) averaged 0.89, which
can be considered very strong. The individual coefficients
were especially strong for AUs associated with positive
affect (AU 6 and AU 12), which is of particular interest
in studies of group formation (Fairbairn, Sayette, Levine,
Cohn, & Creswell, 2013; Sayette et al., 2012) as well as

emotion and social interaction more broadly (Ekman &
Rosenberg, 2005). Session-level reliability for AUs related
to brow actions and smile controls, which counteract the
upward pull of the zygomatic major (Ambadar et al., 2009;
Keltner, 1995), were only somewhat lower. Smile con-
trols have been related to embarrassment, efforts to down-
regulate positive affect, deception, and social distancing
(Ekman & Heider, 1988; Girard, Cohn, Mahoor, Mavadati,
& Rosenwald, 2013; Keltner & Buswell, 1997; Reed
et al., 2007).

The more demanding frame-level reliability (i.e., MCC)
averaged 0.60, which can be considered strong. Similar to
the session-level reliability results, actions associated with
positive affect had the highest frame-level reliability (0.76
for AU 6 and 0.79 for AU 12). MCC for smile controls was
more variable. For AU 14 (i.e., dimpler), which is associated
with contempt and anxiety (Fairbairn et al., 2013), and AU
10, which is associated with disgust (Ekman, 2003), reliabil-
ity was strong (MCC = 0.60 and 0.72, respectively). MCC
for some others was lower (e.g., 0.44 for AU 15). When
frame-by-frame detection is required, reliability is strong for
some AUs but only moderate for others. Further research
is indicated to improve detection of the more difficult AUs
(e.g., AU 11 and AU 15).

Our findings from a demanding group formation task
with frequent changes in head pose, speech, and intensity
are highly consistent with what has been found previously
in more constrained settings. In psychiatric interview, for
instance, we found that automated coding was highly con-
sistent with manual coding and revealed the same pattern
of state-related changes in depression severity over time
(Girard et al., 2013).

Results from error analysis revealed that several
participant-level factors influenced the probability of mis-
classification. Errors were more common for female than
male participants for AU 6 and AU 15, which may be

Table 2 Standardized regression coefficients predicting the likelihood of correct automated annotation
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due to gender differences in facial shape, texture, or
cosmetics-usage. AU 15 was also more than twice as fre-
quent in female than male participants, which may have
led to false negatives for females. With this caveat in
mind, the overall findings strongly support use of auto-
mated FACS coding in samples with both genders. Regard-
ing participant ethnicity, errors were more common in
White than Nonwhite participants for AU 17. This find-
ing may suggest that the facial texture changes caused
by AU 17 are easier to detect on darker skin. Replica-
tion of this finding, however, would be important as the
number of Nonwhite participants was small relative to
the number of White participants (i.e., 12 Nonwhite vs.
68 White).

Several frame-level factors also influenced the probabil-
ity of misclassification. In the group formation task, most
head pose variation was within plus or minus 20◦ of frontal
and illumination was relatively consistent. Five AUs showed
sensitivity to horizontal change in head pose (i.e., yaw):
the probability of errors increased for AU 2, AU 11, AU
12, AU 23, and AU 24 as participants turned left or right
and away from frontal. Only one AU showed sensitivity
to vertical change in head pose (i.e., pitch): the probabil-
ity of errors increased for AU 15 as participants turned up
or down and away from frontal. No AUs showed sensitiv-
ity to rotational change in head pose (i.e., roll). Finally,
only one AU showed sensitivity to change in illumination:
the probability of errors increased for AU 14 as mean pixel
intensity increased. These findings suggest that horizon-
tal motion is more of a concern than vertical or rotational
motion. However, the overall reliability results suggest that
automated FACS coding is suitable for use in databases
with the amount of head motion that can be expected in the
context of a spontaneous social interaction. For contexts in
which larger pose variation is likely, pose-dependent train-
ing may be needed (Guney, Arar, Fischer, & Ekenel, 2013).
Although the effects of mean pixel intensity were modest,
further research is needed in databases with more variation
in illumination.

Using only a few minutes of manual FACS coding each
from 80 participants, we were able to train classifiers that
repeatedly generalized (during iterative cross-validation) to
unseen portions of the data set, including unseen partici-
pants. This suggests that the un-coded portions of the data
set—over 30 min of video from 720 participants—could
be automatically coded via extrapolation with no additional
manual coding. Given that it can take over an hour to
manually code a single minute of video, this represents a
substantial savings of time and opens new frontiers in facial
expression research.

A variety of approaches to AU detection using appear-
ance features have been pursued in the literature. One is

static modeling; another is temporal modeling. In static
modeling, each video frame is evaluated independently. For
this reason, it is invariant to head motion. Static modeling
is the approach we used. Early work used neural networks
for static modeling (Tian, Kanade, & Cohn, 2001). More
recently, support vector machine classifiers such as we used
have predominated (De la Torre & Cohn, 2011). Boosting,
an iterative approach, has been used to a lesser extent for
classification as well as for feature selection (Littlewort,
Bartlett, Fasel, Susskind, & Movellan, 2006; Zhu, De la
Torre, Cohn, & Zhang, 2011). Others have explored rule-
based systems (Pantic & Rothkrantz, 2000) for static mod-
eling. In all, static modeling has been the most prominent
approach.

In temporal modeling, recent work has focused on incor-
porating motion features to improve performance. A pop-
ular strategy is to use hidden Markov models (HMM) to
temporally segment actions by establishing a correspon-
dence between AU onset, peak, and offset and an underlying
latent state. Valstar and Pantic (2007) used a combination
of SVM and HMM to temporally segment and recognize
AUs. In several papers, Qiang and his colleagues (Li, Chen,
Zhao, & Ji, 2013; Tong, Chen, & Ji, 2010; Tong, Liao, &
Ji, 2007) used what are referred to as dynamic Bayesian
networks (DBN) to detect facial action units. DBN exploits
the known correlation between AU. For instance, some
AUs are mutually exclusive. AU 26 (mouth open) cannot
co-occur with AU 24 (lips pressed). Others are mutually
“excitatory.” AU 6 and AU 12 frequently co-occur dur-
ing social interaction with friends. These “dependencies”
can be used to reduce uncertainty about whether an AU
is present. While they risk false positives (e.g., detect-
ing a Duchenne smile when only AU 12 is present), they
are a promising approach that may become more common
(Valstar & Pantic, 2007).

The current study is, to our knowledge, the first
to perform a detailed and statistically controlled error
analysis of an automated FACS coding system. Future
research would benefit from evaluating additional factors
that might influence classification, such as speech and
AU intensity. The specific influence of speech could not
be evaluated because audio was recorded using a sin-
gle microphone and it was not feasible to code speech
and non-speech separately for each participant. The cur-
rent study also focused on AU detection and ignored AU
intensity.

Action units can vary in intensity across a wide range
from subtle, or trace, to very intense. The intensity of facial
expressions is linked to both the intensity of emotional expe-
rience and social context (Ekman, Friesen, & Ancoli, 1980;
Hess, Banse, & Kappas, 1995; Fridlund, 1991), and is
essential to the modeling of expression dynamics over time.
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In an earlier study using automated tracking of facial land-
marks, we found marked differences between posed and
spontaneous facial actions. In the former, amplitude and
velocity of smile onsets were strongly correlated consis-
tent with ballistic timing (Cohn & Schmidt, 2004). For
posed smiles, the two were uncorrelated. In related work,
Messinger et al. (2009) found strong covariation in the tim-
ing of mother and infant smile intensity. While the present
data provide compelling evidence that automated coding
systems now can code the occurrence of spontaneous facial
actions, future research is necessary to test the ability to
automatically code change in AU intensity.

Some investigators have sought to measure AU inten-
sity using a probability or distance estimate from a binary
classifier. Recall that for an SVM, each video frame can
be located with respect to its distance from a hyper-plane
that separates positive and null instances of AU. When the
value exceeds a threshold, a binary classifier declares the
AU is present. When the value falls short of the thresh-
old, the binary classifier rules otherwise. As a proxy for
intensity, Bartlett and others have proposed using either the
distance measure or a pseudo-probability based on that dis-
tance measure. This method worked well for posed facial
actions but not for spontaneous ones (Bartlett et al., 2006;
Girard, 2014; Yang, Qingshan, & Metaxas, 2009). To auto-
matically measure intensity of spontaneous facial actions,
we found that it is necessary to train classifiers on man-
ually coded AU intensity (Girard, 2014). In two separate
data sets, we found that classifiers trained in this way
consistently out-performed those that relied on distance
measures. Behavioral researchers are cautioned to be wary
of approaches that use distance measures in such a way.

Because classifier models may be sensitive to differences
in appearance, behavior, context, and recording environ-
ment (e.g., cameras and lighting), generalizability of AU
detection systems from one data set to another cannot be
assumed. A promising approach is to personalize classifiers
by exploiting similarities between test and training sub-
jects (Chu, De la Torre, & Cohn, 2013; Chen, Liu, Tu, &
Aragones, 2013; Sebe, 2014). For instance, some subjects
in the test set may have similar face shape, texture, or light-
ing to subsets of subjects in the training. These similarities
could be used to optimize classifier generalizability between
data sets. Preliminary work of this type has been encour-
aging. Using an approach referred to as a selective transfer
machine, Chu et al. (2013) achieved improved generaliz-
ability between different data sets of spontaneous facial
behavior.

In summary, we found that automated AU detection
can be achieved in an unscripted social context involv-
ing spontaneous expression, speech, variation in head pose,
and individual differences. Overall, we found very strong
session-level reliability and moderate to strong frame-level

reliability. The system was able to detect AUs in participants
it had never seen previously. We conclude that automated
FACS coding is ready for use in research and applied set-
tings, where it can alleviate the burden of manual coding and
enable more ambitious coding endeavors than ever before
possible. Such a system could replicate and extend the excit-
ing findings of seminal facial expression analysis studies as
well as open up entirely new avenues of research.
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analysis of humans, (pp. 377–410). New York: Springer.

Ekman, P. (1982). Methods for measuring facial action. In K. R.
Scherer, & P. Ekman (Eds.) Handbook of methods in nonverbal
behavior research, (pp. 45–90). Cambridge: Cambridge Univer-
sity Press.



Behav Res

Ekman, P. (2003). Darwin, deception, and facial expression. Annals of
the New York Academy of Sciences, 1000(1), 205–221.

Ekman, P., & Friesen, W.V̇. (1978). Facial action coding system: A
technique for the measurement of facial movement. Palo Alto:
Consulting Psychologists Press.

Ekman, P., Friesen, W. V., Ancoli, S. (1980). Facial signs of emotional
experience. Journal of Personality and Social Psychology, 39(6),
1125–1134.

Ekman, P., Friesen, W. V., Hager, J. (2002). Facial action coding sys-
tem: A technique for the measurement of facial movement. Salt
Lake City, UT: Research Nexus.

Ekman, P., & Heider, K. G. (1988). The universality of a con-
tempt expression: A replication. Motivation and Emotion, 12(3),
303–308.

Ekman, P., & Rosenberg, E. L. (2005). What the face reveals: Basic
and applied studies of spontaneous expression using the facial
action coding system (FACS), 2nd edn. New York: Oxford Univer-
sity Press.

Fairbairn, C. E., Sayette, M. A., Levine, J. M., Cohn, J. F., Creswell,
K. G. (2013). The effects of alcohol on the emotional displays of
whites in interracial groups. Emotion, 13(3), 468–477.

Fan, R.-e., Wang, X.-r., Lin, C.-j. (2008). LIBLINEAR: A library for
large linear classification. Journal of Machine Learning Research,
9, 1871–1874.

Fridlund, A. J. (1991). Sociality of solitary smiling: Potentiation by an
implicit audience. Journal of Personality and Social Psychology,
60(2), 12.

Geisser, S. (1993). Predictive inference. New York: Chapman and
Hall.

Girard, J.M. (2014). Automatic detection and intensity estima-
tion of spontaneous smiles (Master’s thesis). Retrieved from
http://d-scholarship.pitt.edu/19274/

Girard, J. M., Cohn, J. F., Mahoor, M. H., Mavadati, S. M.,
Hammal, Z., Rosenwald, D. P. (2013). Nonverbal social with-
drawal in depression: Evidence from manual and automatic
analyses. Image and Vision Computing. Retrieved from
doi:10.1016/j.imavis.2013.12.007

Girard, J. M., Cohn, J. F., Mahoor, M. H., Mavadati, S. M., Rosenwald,
D. P. (2013). Social risk and depression: Evidence from man-
ual and automatic facial expression analysis. IEEE International
Conference on Automatic Face & Gesture Recognition, 1–8.

Grafsgaard, J. F., Wiggins, J. B., Boyer, K. E., Wiebe, E. N., Lester,
J. C. (2013). Automatically recognizing facial expression: Pre-
dicting engagement and frustration. International Conference on
Educational Data Mining.

Guney, F., Arar, N. M., Fischer, M., Ekenel, H. K. (2013). Cross-pose
facial expression recognition. IEEE International Conference and
Workshops on Automatic Face & Gesture Recognition, 1–6.

Hess, U., Banse, R., Kappas, A. (1995). The intensity of facial
expression is determined by underlying affective state and social
situation. Journal of Personality and Social Psychology, 69(2),
280–288.

Hoque, M. E., McDuff, D. J., Picard, R. W. (2012). Exploring tempo-
ral patterns in classifying frustrated and delighted smiles. IEEE
Transactions on Affective Computing, 3(3), 323–334.

Hsu, C.-W., Chang, C.-C., Lin, C.-J. (2003). A practical guide to
support vector classification (Tech. Rep.)

Image Metrics. (2013). LiveDriver SDK. Manchester: Image Metrics.
Izard, C. E. (1979). The maximally discriminative facial movement

coding system (Max). Newark: University of Delaware, Instruc-
tional Resources Center.

Jeni, L. A., Cohn, J. F., De la Torre, F. (2013). Facing imbalanced
data: Recommendations for the use of performance metrics. In
International conference on affective computing and intelligent
interaction.

Keltner, D. (1995). Signs of appeasement: Evidence for the distinct
displays of embarrassment, amusement, and shame. Journal of
Personality and Social Psychology, 68(3), 441.

Keltner, D., & Buswell, B. N. (1997). Embarrassment: Its distinct form
and appeasement functions. Psychological Bulletin, 122(3), 250.

Keltner, D., Moffitt, T. E., Stouthamer-Loeber, M. (1995). Facial
expressions of emotion and psychopathology in adolescent boys.
Journal of Abnormal Psychology, 104(4), 644–52.

Kraut, R. E., & Johnston, R. E. (1979). Social and emotional messages
of smiling: An ethological approach. Journal of Personality and
Social Psychology, 37(9), 1539.

Li, Y., Chen, J., Zhao, Y., Ji, Q. (2013). Data-free prior model for
facial action unit recognition. IEEE Transactions on Affective
Computing, 4(2), 127–141.

Littlewort, G., Bartlett, M. S., Fasel, I. R., Susskind, J., Movellan, J. R.
(2006). Dynamics of facial expression extracted automatically
from video. Image and Vision Computing, 24(6), 615–625.

Littlewort, G., Whitehill, J., Tingfan, W., Fasel, I. R., Frank, M. G.,
Movellan, J. R., Bartlett, M. S. (2011). The computer expression
recognition toolbox (CERT). IEEE International Conference on
Automatic Face & Gesture Recognition and Workshops, 298–305.

Littlewort, G. C., Bartlett, M. S., Lee, K. (2009). Automatic coding of
facial expressions displayed during posed and genuine pain. Image
and Vision Computing, 27(12), 1797–1803.

Lowe, D. G. (1999). Object recognition from local scale-invariant
features. IEEE International Conference on Computer Vision,
1150–1157.

Lucey, P., Cohn, J. F., Howlett, J., Member, S. L., Sridharan, S. (2011).
Recognizing emotion with head pose variation: Identifying pain
segments in video. IEEE Transactions on Systems, Man, and
Cybernetics.

Lucey, S., Matthews, I., Ambadar, Z., De la Torre, F., Cohn, J. F.
(2006). AAM derived face representations for robust facial action
recognition. IEEE International Conference on Automatic Face &
Gesture Recognition, 155–162.

Mavadati, S. M., Mahoor, M. H., Bartlett, K., Trinh, P., Cohn, J. F.
(2013). DISFA: A spontaneous facial action intensity database.
IEEE Transactions on Affective Computing.

McDuff, D., El Kaliouby, R., Kodra, E., Picard, R. (2013). Measur-
ing voter’s candidate preference based on affective responses to
election debates. HUMAINE Association Conference on Affective
Computing and Intelligent Interaction, 369–374.

Messinger, D. S., Mahoor, M. H., Chow, S.-M., Cohn, J. F. (2009).
Automated measurement of facial expression in infant-mother
interaction: A pilot study. Infancy, 14(3), 285–305.

Noldus Information Technology. (2013). The Observer XT. Wagenin-
gen: The Netherlands.

Pantic, M., & Rothkrantz, L. J. M. (2000). Expert system for auto-
matic analysis of facial expressions. Image and Vision Computing,
18(11), 881–905.

Powers, D. M. (2007). Evaluation: From precision, recall and F-factor
to ROC, informedness, markedness & correlation (Tech. Rep.).
Adelaide, Australia.

Powers, D. M. W. (2012). The problem with kappa. Conference of the
European Chapter of the Association for Computational Linguis-
tics, 345–355.

Prkachin, K. M., & Solomon, P. E. (2008). The structure, reliability and
validity of pain expression: Evidence from patients with shoulder
pain. Pain, 139(2), 267–274.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models:
Applications and data analysis methods, 2nd edn. Thousand Oaks:
Sage.

Reed, L. I., Sayette, M. A., Cohn, J. F. (2007). Impact of depression on
response to comedy: A dynamic facial coding analysis. Journal of
Abnormal Psychology, 116(4), 804–809.

http://d-scholarship.pitt.edu/19274/
http://dx.doi.org/10.1016/j.imavis.2013.12.007


Behav Res

Sayette, M. A., Creswell, K. G., Dimoff, J. D., Fairbairn, C. E., Cohn,
J. F., Heckman, B. W., Moreland, R. L. (2012). Alcohol and group
formation: A multimodal investigation of the effects of alcohol
on emotion and social bonding. Psychological Science, 23(8),
869–878.

Sayette, M. A., & Hufford, M. R. (1995). Urge and affect: A facial cod-
ing analysis of smokers. Experimental and Clinical Psychophar-
macology, 3(4), 417–423.

Sebe, N. (2014). We are not all equal: Personalizing models for facial
expression analysis with transductive parameter transfer. In Pro-
ceedings of the ACM international conference on multimedia.
Orlando, FL.

Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G.,
Poggio, T. (2005). A theory of object recognition: Com-
putations and circuits in the feedforward path of the ven-
tral stream in primate visual cortex. Artificial Intelligence,
1–130.

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses
in assessing rater reliability. Psychological Bulletin, 86
(2), 420.

Szeliski, R. (2011). Computer vision: Algorithms and applications.
London: Springer London.

Tian, Y.-l., Kanade, T., Cohn, J. F. (2001). Recognizing action units for
facial expression analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(2), 97–115.

Tong, Y., Chen, J., Ji, Q. (2010). A unified probabilistic framework
for spontaneous facial action modeling and understanding. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(2),
258–273.

Tong, Y., Liao, W., Ji, Q. (2007). Facial action unit recognition by
exploiting their dynamic and semantic relationships. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 29(10),
1683–1699.

Valstar, M.F., Bihan, J., Mehu, M., Pantic, M., Scherer, K.R. (2011).
The first facial expression recognition and analysis challenge.
IEEE International Conference on Automatic Face & Gesture
Recognition and Workshops, 921–926.

Valstar, M. F., & Pantic, M. (2007). Combined support vector
machines and hidden Markov models for modeling facial action
temporal dynamics. In IEEE international workshop on human-
computer interaction (pp. 118–127). Rio de Janeiro, Brazil:
Springer-Verlag.

Vapnik, V. (1995). The nature of statistical learning theory. New York,
NY: Springer.

Vedali, A., & Fulkerson, B. (2008). VLFeat: An open and portable
library of computer vision algorithms.

Yang, P., Qingshan, L., Metaxas, D. N. (2009). RankBoost with l1 reg-
ularization for facial expression recognition and intensity estima-
tion. IEEE International Conference on Computer Vision, 1018–
1025.

Zeng, Z., Pantic, M., Roisman, G. I., Huang, T. S. (2009). A sur-
vey of affect recognition methods: audio, visual, and spontaneous
expressions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(1), 39–58.

Zhu, Y., De la Torre, F., Cohn, J. F., Zhang, Y.-J. (2011). Dynamic
cascades with bidirectional bootstrapping for action unit detection
in spontaneous facial behavior. IEEE Transactions on Affective
Computing, 2(2), 79–91.


	Spontaneous facial expression in unscripted social interactions can be measured automatically
	Abstract
	Introduction
	Methods
	Participants
	Setting and equipment
	Manual FACS coding
	Automatic FACS coding
	Landmark registration
	Feature extraction
	Classifier training

	Inter-system reliability
	Error analysis

	Results
	Descriptive statistics
	Inter-system reliability
	Error analysis

	Discussion
	Acknowledgments
	References


