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Inferotemporal (IT) neurons are known to exhibit persistent, stimulus-selective activity during the delay period of object-based working mem-
ory tasks. Frontal eye field (FEF) neurons show robust, spatially selective delay period activity during memory-guided saccade tasks. We present
a copula regression paradigm to examine neural interaction of these two types of signals between areas IT and FEF of the monkey during a
working memory task. This paradigm is based on copula models that can account for both marginal distribution over spiking activity of
individual neurons within each area and joint distribution over ensemble activity of neurons between areas. Considering the popular GLMs as
marginal models, we developed a general and flexible likelihood framework that uses the copula to integrate separate GLMs into a joint regres-
sion analysis. Such joint analysis essentially leads to a multivariate analog of the marginal GLM theory and hence efficient model estimation. In
addition, we show that Granger causality between spike trains can be readily assessed via the likelihood ratio statistic. The performance of this
method is validated by extensive simulations, and compared favorably to the widely used GLMs. When applied to spiking activity of simultane-
ously recorded FEF and IT neurons during working memory task, we observed significant Granger causality influence from FEF to IT, but not in
the opposite direction, suggesting the role of the FEF in the selection and retention of visual information during working memory. The copula
model has the potential to provide unique neurophysiological insights about network properties of the brain.
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Introduction
The frontal eye field (FEF), an area within the prefrontal cortex
that is involved in visual spatial selection and attention control
(Squire et al., 2013), has long been known to exhibit persistent
delay period activity during memory-guided saccade tasks (Bruce
and Goldberg, 1985). Recently, it has been shown that this per-
sistent spatial signal may contribute to object-selective memory
maintenance (Treisman and Zhang, 2006; Fougnie and Marois,
2009; Wood, 2011; Clark et al., 2012). In contrast, the inferotem-
poral cortex (IT), an end stage of the ventral “what” visual pro-
cessing stream (Mishkin et al., 1983), is believed to be directly
involved in object recognition (Logothetis and Sheinberg, 1996).
IT neurons are known to exhibit persistent, stimulus-selective
activity during the delay period of object-based working memory
tasks (Chelazzi et al., 1993, 1998). Since neurons in FEF and IT,

respectively, exhibit spatial-selective and object-selective delay
activity, joint analysis of concurrent activity recorded in FEF and
IT is crucial for understanding how the spatial signals in FEF
interact with object information in IT during an object-based
working memory task.

Standard approach for analyzing spike train interaction is per-
formed either in the time domain or in the frequency domain (for
review see Brown et al., 2004). Although these methods have
played an important role in the analysis of spike trains, they are
generally limited to a pair of neurons, lack of directionality of neural
connectivity, and cannot be directly applied to the neural point pro-
cess itself, i.e., sequences of spike times, but only to the smoothed
versions of the spike trains or spike counts within some time bins,
which would distort the properties of spike trains and introduce
spurious effects. Other approaches include GLMs (Brillinger, 1988;
Kass et al., 2014) and their variants where a spike train can be re-
garded as generated by a model in which the explanatory variables
are either observed (the marginal GLM) or unobserved (the latent or
state space). However, these methods present difficulties too. For
example, the marginal GLM cannot model simultaneous occur-
rences of spike events, whereas the state-space model provides no
principled way of choosing the number of latent dimensions. In
addition, common methods for performing inference in state-space
models with nonlinear and non-Gaussian observations rely on cer-
tain approximations that are not always accurate.

Received Dec. 11, 2014; revised April 12, 2015; accepted April 19, 2015.
Author contributions: M.H., K.L.C., B.N., T.M., and H.L. designed research; M.H. and K.L.C. performed research;

X.G., M.L., and T.M. contributed unpublished reagents/analytic tools; M.H., X.G., and B.N. analyzed data; M.H., B.N.,
M.L., T.M., and H.L. wrote the paper.

This work was supported by National Institutes of Health Grant EY014924 (to T.M.).
The authors declare no competing financial interests.
Correspondence should be addressed to Hualou Liang, PhD, School of Biomedical Engineering, Science & Health

Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104. E-mail: hualou.liang@drexel.edu.
DOI:10.1523/JNEUROSCI.5041-14.2015

Copyright © 2015 the authors 0270-6474/15/358745-13$15.00/0

The Journal of Neuroscience, June 10, 2015 • 35(23):8745– 8757 • 8745



We develop a general and flexible likelihood framework that
uses the copula to join marginal GLMs and handle the above
challenges. To join marginal GLMs, a copula (Joe, 1997; Nelsen,
2006) is invoked as the link model, which naturally results in the
copula GLMs. This paper demonstrates how the copula GLM
attends to both sequential dependencies and shared influences on
spiking activity. Additionally, this paper offers an approach akin
to Granger causality measure for statistically identifying direc-
tional influence between spike trains. This method was tested on
simulated data, compared favorably to the widely used GLMs,
and finally applied to neural spike data collected simultaneously
from the FEF and IT of a monkey while performing an object-
based short-term memory task.

Materials and Methods
Experimental methods
General and surgical methods
Data were obtained from a male rhesus monkey (Macaca mulatta, 11 kg).
The animal was surgically implanted with a titanium head post and a
scleral eye coil. Surgery was conducted using aseptic techniques under
general anesthesia (isoflurane), and analgesics were provided during
postsurgical recovery. Structural magnetic resonance imaging was per-
formed to locate the arcuate sulcus in the monkey for the placement of a
recording chamber in a subsequent surgery. A craniotomy was per-
formed on the animal, allowing access to the FEF on the anterior bank of
the arcuate sulcus. All experimental procedures were in accordance with
the National Institutes of Health Guide for the Care and Use of Labora-
tory Animals, the Society for Neuroscience Guidelines and Policies, and
Stanford University Animal Care and Use Committee. General surgical
procedures have been described previously (Armstrong et al., 2006).

Visual stimuli and behavior
Throughout the experimental session, the monkey was seated in a pri-
mate chair and eye position was monitored with a scleral search coil with
a spatial resolution of �0.1° (Armstrong et al., 2006) and was digitized at
100 –200 Hz. The monkey was trained to fixate within a 1.5–3° diameter
error window surrounding a central spot (0.4° diameter). Delayed
match-to-sample (DMS) task is depicted in Figure 8A. At 250 –750 ms
after fixation, a colored photo image (5° diameter) was presented for 300
ms (sample period). A delay period of 1000 ms followed the sample offset
(delay period), after which two potential target images appeared on
screen (target period), and the monkey had to saccade directly to the
repeated image to obtain a juice reward. The monkey was required to
maintain fixation throughout the sample presentation and delay; breaks
in fixation before the trial was completed were considered aborted trials
and were not included in the data analysis. Three images were used in
each experimental session, and all three images appeared with equal
frequency as samples and nonmatching distractors in the target array.
The location of the matching target was randomized with respect to
sample location. Target array configuration (aligned with sample loca-
tions vs orthogonal to sample locations) was held constant for 250 – 400
trials, then switched for the remainder of an experimental session; initial
target array position for each session was selected at random. All sample
location, sample identity, and nonmatch target identity conditions were
pseudorandomly interleaved and were controlled by the Cortex system
for data acquisition and behavioral control. During each experiment, the
two sample positions were selected so that one stimulus was positioned
inside the response field (RF) of the FEF neuron being recorded, based on
the endpoints of saccades evoked with microstimulation (7–13° visual
angle). The monkey was initially trained exclusively on the orthogonal-
targets version of the task, and only learned the aligned-targets version
after reaching criterion (70%) performance with the orthogonal targets.
All visual stimuli were displayed on a liquid crystal display monitor (52
cm vertical � 87 cm horizontal) positioned 57 cm in front of the monkey,
with a refresh rate of 60 Hz. Stimulus presentation was controlled and
recorded by Cortex.

FEF and IT neuronal recordings
Single-neuron recordings in awake monkey were made through a surgi-
cally implanted cylindrical titanium chamber (20 mm diameter) overlay-
ing the arcuate sulcus. Electrodes were lowered into the cortex using a
hydraulic microdrive (Narishige). Activity was recorded extracellularly
with varnish-coated tungsten microelectrodes (FHC) of 0.2–1.0 M� im-
pedance (measured at 1 kHz). Extracellular waveforms were digitized
and classified as single neurons off-line using both template-matching
and window-discrimination techniques (FHC, Plexon).

During each experiment, a recording site in the FEF was first localized
by the ability to evoke fixed-vector, saccadic eye movements with stim-
ulation at currents of �50 �A (Bruce et al., 1985). Electrical microstimu-
lation consisted of a 100 ms train of biphasic current pulses (0.25 ms, 200
Hz) delivered with a Grass stimulator (S88) and two Grass stimulation
isolation units (PSIU-6; Grass Instruments). Current amplitude was
measured via the voltage drop across a 1 k� resistor in series with the
return lead of the current source. During each experimental session, we
mapped the saccade vector elicited via microstimulation at the cortical
site under study with a separate behavioral paradigm (Moore and Fallah,
2001). In this paradigm, the monkey was required to fixate on a visual
stimulus (0.48° diameter circle) for 500 ms, after which time a 100 ms
stimulation train was delivered on half the trials. Evoked saccades had
vectors with lengths ranging from 4 to 15° visual angle and angles of �60
to 270° theta. After mapping the saccade vector, we recorded the response
of any neuron that could be isolated by advancing the electrode within
0 –250 �m of the stimulation site (average distance from stimulation site
was �100 �m) while monkeys performed the DMS task.

Single-neuron recordings in IT were made through the same surgically
implanted cylindrical titanium chamber (20 mm diameter) used for FEF
recordings. Targeting of IF area TE was based on structural MRI data
acquired before well placement, the pattern of gray and white matter
encountered when advancing the electrode, and the response properties
of neural recordings. A 32 gauge (235 mm outer diameter) guide tube
was advanced �15 mm through the brain (at a rate of �0.75 mm/min)
by a custom-modified, electronic motor-driven microdrive, stopping at
or just above the upper bank of the superior temporal sulcus. An elec-
trode (75–100 �m diameter) was then advanced another 5–12 mm using
a hydraulic microdrive (Narishige). Neural spikes were obtained via off-
line sorting (FHC, Plexon), and saved at the sampling rate of 1 kHz.

After isolating a unit within IT, the cell was screened for selective visual
responses using Rapid Serial Visual Presentation (RSVP) of a bank of 40
color object images. During the RSVP paradigm the monkey fixated
while a series of object images appeared at the fovea behind the fixation
point. Each image was displayed for 150 ms, followed by a 100 ms gap
before the next image appeared; 10 images appeared in series on each
trial, with the order of their appearance randomized from trial to trial.
Spikes were collected and counted on-line in Cortex for a 150 ms bin
beginning 100 ms after image onset. After a minimum of five presenta-
tions of each image, responses were evaluated for selective visual re-
sponse to one or more of the objects; if no selectivity was apparent after
�20 trials of each type, the electrode was advanced in search of a new
isolation. For selective units, at least one good and one poor stimulus was
chosen to serve as stimuli in the DMS task for that day. Depending on
isolation quality, the preparation was often allowed to “settle” for 15–30
min following this RSVP assessment of visual selectivity. For this reason,
and because separate units were sometimes identified from a single re-
cording with subsequent off-line spike sorting, and because the strength
of visual responses sometimes changed when the stimuli were moved to
the periphery for the DMS task, selectivity of IT units was reassessed
using responses during the DMS task itself. Only cells with significant
visual response and selectivity during the DMS task (assigning preference
based on a subset of trials excluded from further analysis and assessing
significance in the remaining trials) were included in analysis.

Statistical methods
In this section, we introduce the statistical theory underlying our ap-
proach. First, we provide a brief review of the copula theory. Second, we
present the copula-based joint GLM for multiple spike train data analy-
sis. Third, we derive a simultaneous, maximum likelihood estimation
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procedure that is implemented by a Gauss–Newton type algorithm. Fi-
nally, we describe a Granger causality measure based on the likelihood
ratio statistic for the analysis of neural spike trains. The C and MATLAB
codes implementing this algorithm can be provided to interested readers
upon request.

Copula
Extensive treatment of copula models can be found in the literature (Joe,
1997; Nelsen, 2006). Here we summarize the main elements needed for
this work.

In probability theory, a copula is a function that links (couples) the
univariate marginal distributions to a multivariate joint distribution.
With copula, one can dissociate the marginal distributions from their
joint density distribution and, therefore, focus on only statistical depen-
dence between variables. Sklar’s Theorem (Sklar, 1973) is central to sta-
tistical theory of copula, stating that any multivariate distribution can be
expressed as the copula function evaluated at each of the marginal distri-
butions. Formally, let X � �x1, …, xN� be a vector random variable with
corresponding cumulative probability distribution (CDF) F defined on
RN. The copula associated with F is a distribution function C: [0, 1] N ¡
[0, 1] that satisfies F�X� � C�F1� x1�, …, FN� xN��, X � RN. If F is a
continuous distribution on RN with univariate marginals F1, …, FN,
then C�u� � F�F1

�1�u1�, …, FN
�1�uN�� is unique. Assuming that F

has Nth order partial derivatives, its probability density function
(PDF) can be obtained from the distribution function via differen-

tiation: f�X� �
�NF�X�

�x1…�xN
. The PDF can be rewritten in terms of derivatives

of copulas: f�X� �
�NF�X�

�x1…�xN
�

�NC�u�

�u1…�uN
	i
1

N
�ui

�xi
� c�u�	i
1

N fi�xi�,

where c�u� �
�NC�u�

�u1…�uN
is referred to as copula density function, and

fi�xi� refers to the individual marginal probability density function.
The main advantage of copulas is that they allow us to model the

marginal distributions separately from the multivariate dependence
structure (copula) that links them together into the multivariate model
of study. Copulas are thus building blocks for multivariate distributions.
It is common practice to assume a parametric model for the estimation of
the copula functions that allow for different dependence structures and
often have quite simple functional forms. As such, we use the Gaussian
copula in this work due to its scalability and its flexible dependence
structure (Nelsen, 2006). Note that independent copula is the simplest
example with constant density of 1, i.e., c(u) 
 1.

Copula-based joint GLM for neural spike trains
Model description. Our approach is built upon the popular marginal
GLM and the copula theory to model multivariate point process of spike
trains. The marginal GLM (Brillinger, 1988; Chornoboy et al., 1988;
Brown et al., 2003; Okatan et al., 2005; Truccolo et al., 2005; Pillow et al.,
2008; Stevenson et al., 2008) only assumes that the neuron’s spike is
influenced by such factors as its own spiking history and the concurrent
ensemble history of other neurons, without considering their joint re-
sponse dependency (i.e., simultaneous occurrences of spikes from mul-
tiple neurons). In contrast, the copula-based method that we previously
developed (Li et al., 2006; Song et al., 2009; He et al., 2012) only considers
the joint dependency of the variables as specified by some copula, without
modeling the time-lagged history information of dependent variables. As
such, our model is an extension of our previous work by incorporating the
temporal dependence information between the variables into the copula
models. The proposed approach, to our knowledge for the first time, repre-
sents the time-lagged information in the copula models.

To formulate the point process representation of spike trains, we start
with conditional intensity function (CIF) of point process (Daley and
Vere-Jones, 2003), which is the key to approximating the neuron’s spik-
ing probability in the well-developed GLM framework. Let 0 � t1

m

� … � tJm

m � T be a set of Jm spike times observed in the time interval
(0, T) for m � 1, …, M recorded neurons, and let Nj(t) denote the
number of spikes for neuron j in the time interval (0, t) for t � �0,T�. A
point process model of a spike train for a neuron j can be completely
characterized by its conditional intensity function, �j�t�Hj�t��, which is

defined as follows: �j�t�Hj�t�� �
lim

�¡0
P�Nj�t � �� 	 Nj�t� � 1�Hj�t�


�
,

where P�.�.
 is a conditional probability, and Hj(t) refers to the ensemble
spiking history up to time t. The probability that neuron j fires a single
spike at a small interval from t to t � � can be approximated as
�j�t�Hj�t���, which is affected by such covariates as its own spiking his-
tory, the concurrent ensemble history of other neurons, and the activity
of some external variables. The CIF of a neuron j, �j�t�Hj�t��, as defined
above, is modeled via GLM by including all covariates of interest:

g�� j�t�
 j, Hj�t�, Zj�t��� � 
 j,0 � �
k
1

K �
l
1

L


 j,k,lHk,l�t� � �
s
1

S


 j,sZs�t�,

(1)

where g is an appropriate link function, which is the logit for the Bernoulli
model or the log for the Poisson model; both are equivalent for small
enough � when applied to neural spike trains (Truccolo et al., 2005). The
first term 
j,0 denotes the baseline firing activity of neuron j. The second
term captures the effect of ensemble spiking history on neuron j, with
the coefficient 
 j,k,l indicating the magnitude of effect of spiking his-
tory Hk,l�t� for neuron k at the time lag l. The last term models the
effect of some external variables, with 
 j,s denoting the dependency of
neuron j on the external covariates Zs. Let Qj(t) denote the information
set for neuron j up to time t, consisting of all ensemble spiking history
Hk,l�t� and extrinsic covariates Zs�t�, Qj�t� � �H1,1, H1,2, …, HK,L,
Z1, Z2, …, ZS�. The parameter vector 
j for neuron j is given as follows:

j � �
j,0, 
j,1,1, 
j,1,2, … 
j,K,L, 
j,1, 
j,2, …, 
j,S}.

To ease the construction of the model estimation, a discrete time rep-
resentation of the point process can be obtained via partitioning the
observation interval (0, T) into k � 1, …, K subintervals �tk�1, tk�, each
of length � � TK�1 such that at most one spike per subinterval is
observed. Typically, K is chosen to make � as 1 ms due to the refractory
period of neurons. In discrete time representation, we use Nj�k
 for
Nj�tk�, Qj�k
 for Qj�tk�, and the parametric form of the conditional inten-
sity function becomes �j�tk�
j, Qj�k
�. Having obtained explicit the para-
metric model of the conditional intensity function for each neuron, next
we show how to use the copula to integrate marginal regression models of
spike trains into a joint analysis.

To analyze neural spike trains within a given time period, assume
Xj, j � 1, …, M to be M binary random variables with the probability of
spike firing pj. The CDF of Xj can be written as below:

Fj� xj� � � 0, xj � 0
1 	 pj, 0 � xj � 1

1, xj � 1
.

Consider a simple case of two spike trains, X1 and X2, with M 
 2, the
bivariate joint probability mass function follows the two-increasing
property (Nelsen, 2006):

P�X1 � x1, X2 � x2� � C�u1, u2� 	 C�u1, v2� 	 C�v1, u2�

� C�v1, v2�, (2)

where uj � Fj�xj� and vj � Fj�xj 	 1�. Here C can be the bivariate
Gaussian copula: C�u, v�r� � �2��

�1�u�, ��1�v��r�, where �2 is the
CDF of a bivariate Gaussian with marginal variances equal to one and
correlation r, and ��1 is the normal score or quantile function of the
standard Gaussian distribution. The joint distribution function between
X1 and X2 has four elements:

P�X1 � 0, X2 � 0� � C�1 	 p1, 1 	 p2�
P�X1 � 0, X2 � 1� � 1 	 p1 	 C�1 	 p1, 1 	 p2�
P�X1 � 1, X2 � 0� � 1 	 p2 	 C�1 	 p1, 1 	 p2�
P�X1 � 1, X2 � 1� � p1 � p2 � C�1 	 p1, 1 	 p2� 	 1

.

(3)

To obtain the spiking probability of a neuron, pj, in the above equation,
we consider the generalized linear point-process model described in
Equation 1 as the marginal distributions, where the logit, or the inverse of
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logistic function, is used as the link function, resulting in the well known
logistic regression model. The conditional intensity function
�j�tk�
j, Qj�k
� of Equation 1 represents the firing rate of neuron j at time
t in the kth bin/subinterval given its covariates Qj�k
, which can then be
used to approximate the spiking probability of a neuron, pj, in Equation
3. When a copula instead of Gaussian copula is used, the joint probability
is different. Therefore, based on the joint distribution in Equation 3, we
can perform maximum likelihood inference to estimate all the model
parameters. This leads to our bivariate copula GLM model.

To generalize the joint probability mass function for two neurons in
Equation 2 to multiple neurons, we obtain a multivariate joint probabil-
ity mass function as follows (Song, 2007):

f� x� � P�X1 � x1, …, XM � xM�

� �
j1

2

… �
jM

2

�	1� j1�…�jM

� C�u1, j1
, …, um, jM�, (4)

where uj,1 � Fj�xj� and uj,2 � Fj�xj 	 �. Here Fj�xj 	 � is the left-hand
limit of Fj at xj, which is equal to Fj�xj 	 1� when the support of Fj takes
integer values as for the Bernoulli or Poisson distributions.

The joint probability of our model depends on the copula correlation
parameter r and the regression parameters 
 �
j, j � 1, …, M, where M
is the number of neurons). For Gaussian copula, a consistent and asymp-
totically normally distributed estimator of the parameters can be ob-
tained through maximum likelihood. Assuming multiple spike trains of
certain observations, the overall likelihood is simply the product of the
likelihoods across all the observations. Akaike information criterion
(AIC; Akaike, 1974) can be used to determine the model order.

Parameter estimation by maximum likelihood. In this section, our pri-
mary task is to establish a simultaneous maximum likelihood estimation
for the model parameters 
 � �
, r�. Let ��
� denote the log-likelihood
function of the model. Then the maximum likelihood estimation of 
 is
obtained by 
̂ � arg max ���
��. In this case, the popular Newton–
Raphson or the Fisher scoring algorithms are not suitable, because in
most of situations the second-order derivatives of the log-likelihood are
not available. As such, we instead make use of the Gauss–Newton type
algorithm (Ruppert, 2005; Li et al., 2006; Song et al., 2009; He et al.,
2012), which only requires the first derivatives of the log-likelihood func-
tion. The parameters are updated by step-halving to ensure that the
likelihood increases progressively over iterations. Specifically, the (k �
1)th iteration updates the parameters 
 by the following:


k�1 � 
k � ��Bn�
k���1
���
k�

�

,

where Bn �
1

n
�i
1

n ����
�

�
 � ����
�

�
 ��

and � is the step-halving term

that starts from 1 and halves until ��
k�1� � ��
k� at iteration k. The
algorithm stops when the increase in the likelihood is no longer possible
or the difference between two consecutive updates is smaller than a pre-
defined precision level. We initialize the parameters 
 with Gaussian
random numbers and the correlation parameter r with the Pearson cor-
relation between spike trains. We use the unconstrained nonlinear optimi-
zation algorithm (the MATLAB function fminunc) to search for the values of

 that minimize the negative log-likelihood of the full set of observed spikes.
The fminunc can supply numerical Hessian matrix, which can be used to
evaluate the variances of the estimated parameters. Following the model
fitting, we assess the goodness-of-fit (GOF) of the estimated model with the
Kolmogorov–Smirnov (KS) plots (Brown et al., 2002).

Granger causality measure for point process. Identifying the causal rela-
tionship between spike trains is an important, yet challenging, problem
in computational neuroscience. Granger causality has proven to be an
effective method for the analysis of the directional interactions between
continuous-valued time series in many applications (for review, see Ka-
minski and Liang, 2005 and the references therein). It is, however, not
directly applicable to spike train data due to their discrete nature. Al-
though a few attempts have been made to tackle the problems (Nedun-

gadi et al., 2009; Krumin and Shoham, 2010), they all require the spike
train data to be second-order stationary. Recently, a point process
method incorporating the full conditional intensity function for measur-
ing Granger causality between neurons was proposed (Kim et al., 2011).
This method is based on the marginal GLM where Granger causality is
assessed via the likelihood ratio statistic, which measures the extent to
which the likelihood of one neuron is reduced by excluding one of its
covariates compared with the likelihood obtained using all of its covari-
ates. As our copula-based joint GLM method is a multivariate extension
of the marginal GLM, it is straightforward to adopt a similar strategy to
assess Granger causality for spike trains data while retaining all the de-
sired properties of the marginal GLM, but with better model estimation,
as demonstrated by both simulations and actual neural data in Results.

To introduce the key idea, assume we have two spike trains X and Y. We
first establish a full model for these spike trains with the copula-based joint
GLM, in which the spiking histories of neurons X and Y as the covariates are
considered. For instance, the marginal GLMs of X and Y of model order P,
with logit link function in Equation 1, can be specified as follows:

� X: logit��x,t� � 
x,0 � �
i
1

P


xx,iXt�i � �
j
1

P


xy, jYt�j

Y: logit��y,t� � 
y,0 ��
i
1

P


yx,iXt�i � �
j
1

P


yy, jYt�j

,

where 
 refers to the unknown parameter vector, and � refers to the
probability of spike firing represented by the CIF. The marginal GLMs of
X and Y are joined by a copula model of a copula parameter r, with the
joint distribution function given in Equation 4. The model parameters

 � �
, r� can then be estimated by our maximum likelihood procedure
as described above, and the likelihood of the full model can be obtained as
Lfull.

The reduced model representing potential causal influence from neu-
ron Y to neuron X is then separately established by excluding the spiking
history of neuron Y in the regression function of X, i.e.,

� X: logit��x,t� � 
x,0 � �
i
1

P


xx,iXt�i

Y: logit��y,t� � 
y,0 ��
i
1

P


yx,iXt�i � �
j
1

P


yy, jYt�j

.

Following the same estimation procedure as the full model, we obtain the
likelihood of the reduced model (Lreduced

Y¡X ). Granger causality of Y¡X can
thus be assessed by the log-likelihood ratio of the full model and reduced
model:

GCY¡X � log
Lfull

Lreduced
Y¡X . (5)

Granger causality of X¡Y can be calculated in a similar way. Since the
likelihood of the full model is always greater than or equal to the
likelihood of the reduced model, the log-likelihood ratio (and hence
Granger causality) is greater than or equal to zero. Granger causality mea-
sure given by Equation 5 provides an indication of the extent to which the
neuron Y affects the neuron X by considering both the influence of the spike
history and the influence of the simultaneous spike occurrences. This proce-
dure leads to the bivariate Granger causality for point processes.

For multivariate point-process time series, bivariate Granger causality
is often insufficient to distinguish the direct causality from indirect cau-
sality, thus resulting in the misleading inference. Conditional Granger
causality can be used to address this issue (Ding et al., 2006). Our ap-
proach is readily extended to multivariate time series simply by including
the time-lagged history information of other variables into the regres-
sion. The statistical significance of the estimated Granger causality can be
assessed parametrically with an asymptotic � 2 distribution described
previously (Kim et al., 2011). We instead use the nonparametric permu-
tation procedure, in which a Granger causality distribution expected by
chance can be obtained via independently shuffling trial order for each
pair of spike trains.
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Results
Copula regression analysis of simulated spike train data
We designed a series of simulations to investigate the performance of
our copula GLM for the analysis of spike train data. The first simu-
lation is to evaluate the performance gain of our copula-based joint
GLM analysis in improving estimation accuracy and the robustness

of our model to simultaneous occurrences
of spike events as compared with the mar-
ginal GLM. The second simulation is to as-
sess the ability of our copula model in
detecting synchrony in the presence of si-
multaneous occurrence of spike events and
compare it with recent methods (Kass et al.,
2011; Kelly and Kass, 2012) in addition to
the marginal GLM. The third and fourth
simulations, respectively, examine the effect
of the trial number and spiking rate on the
performance of our algorithm. The final
simulation illustrates the utility of the
Granger causality measure in the analysis of
spike train data. To avoid confusion in ter-
minology, we denote our proposed copula-
based joint GLM method as the copula
GLM, and the popular point-process GLM
method as the marginal GLM.

Methodology assessment
We simulated a simple recursive model
for a pair of binary-dependent variables (X1,
X2), in which the probabilities of events
(p1, p2) are described by logit margins:

� X1: logit�p1� � 
1 � 
2X1,t�1 � 
3X2,t�1 � 
4Z1 � 
9X2,t

X2: logit�p2� � 
5 � 
6X1,t�1 � 
7X2,t�1 � 
8Z2
, where

Z
1

and Z2 follow a normal distribution N(0, 1), representing the
extrinsic covariates such as stimuli or behavior. The contempo-
raneous dependence due to shared inputs and network interac-
tions for (X1, X2) is modeled via the Gaussian copula with a

Figure 1. Maximum log-likelihood estimation by the marginal GLM (blue) and the proposed copula GLM (red) for various
simulated datasets that were generated with the same marginal parameters 
 but different correlation parameter r. Clearly,
compared with the marginal GLM, the copula GLM is able to capture the different dependence structures in the data.

Figure 2. Parameter estimation via the copula GLM (red circles) compared with the marginal GLM (blue crosses) for datasets with the different correlation parameters r. In each part, the left y-axis
corresponds to the average of a given parameter estimated over 200 trials by the two methods as a function of the correlation parameter, with its true value labeled on the y-axis (dotted horizontal
lines), whereas the right y-axis denotes the percentage of the estimation variance reduced by using the copula GLM as compared with the marginal GLM (black dashed curves with filled circles). We
see the general agreement on the average parameter estimated by the two methods, but the copula GLM provides a more accurate estimation of smaller variance than the marginal GLM, particularly
for the datasets with increased correlation parameters.
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correlation parameter r. We set 
1 
 �1,

2 
 �0.5, 
3 
 �0.3, 
4 
 0.4,

5 
 �1, 
6 
 �1, 
7 
 �0.2, 
8 
 0.6,
and 
9 
 0, unless otherwise specified.
This model is designed to include not only
the time-lagged effect, which is reflected
by the model coefficients (
2, 
3, 
6, 
7,),
but also the synchronous spiking, i.e., si-
multaneous occurrences of spike events,
which is reflected by the model coeffi-
cients (
9), in addition to the extrinsic co-
variate effects (
4, 
8) due to network
activity such as the slow-wave activity
(Kelly et al., 2010; Kelly and Kass, 2012).

We systematically vary the correlation
parameter r from �1 to 1 with the incre-
ment of 0.2. For each r, we generate a da-
taset consisting of 200 trials of randomly
synthesized pairs with 1000 sample
points. Accordingly, we apply the copula
GLM and the marginal GLM models to fit
each dataset, respectively. We compared
the performances of the two models in
terms of the resultant maximum likeli-
hoods and estimated parameters. Figure 1
shows the averages of maximum log-
likelihoods of the data with different cor-
relation parameters obtained through the
copula GLM (red) and the marginal GLM
(blue) models. As expected, the log-
likelihood profile exhibits symmetry for
positive and negative correlation. Impor-
tantly, as reflected in the maximum log-
likelihoods, our method is able to capture
the different dependence structures of
varying correlations between point pro-
cesses, whereas the marginal GLM only
provides comparable log-likelihoods
across different datasets, unable to distin-
guish the different dependence structures
contained in the data.

To compare the accuracy of parameter
estimation between two models, we show
the results in Figure 2 where only positive
correlation is presented due to the sym-
metry in correlation and for the sake of
clarity. Based on the average of estimated
parameters obtained by the copula GLM
and the marginal GLM (Fig. 2, left, y-axis,
circles and crosses, respectively), we can
see that both methods show general agree-
ment on the parameter estimation. How-
ever, as the correlation increases, we find
that the copula GLM model in general
produces smaller variance in the estimated parameters than the
marginal GLM, as shown by the percentage reduction of the vari-
ance estimated by the copula GLM relative to the marginal GLM
(Fig. 2, right, y-axis). In addition, the marginal GLM model is not
able to estimate the correlation parameter r, yet the copula GLM
provides accurate estimation. These results indicate that the mar-
ginal GLM can only describe the lagged dependence. With the
presence of the instantaneous dependence between spike trains
the parameters estimated by the marginal GLM become inaccu-

rate, resulting in larger variance. We note that both common
inputs and additive noise may give rise to instantaneous depen-
dence that can strongly affect model estimation, but they are
fundamentally different: the effect of common inputs via shared
sources can be accounted for by explicit modeling (Ba et al., 2014)
or by some unobserved hidden states in the state-space GLM
(Paninski et al., 2010), whereas additive noise is much difficult to
model as it only affects current, but not future, observations. Our
copula GLM can account for both effect of common inputs and

Figure 3. Comparison of the average parameters estimated by the copula GLM (red) and the marginal GLM (blue) for the
analysis of the simulated spike train data. It is clear that the copula GLM provides more accurate parameter estimation than the
marginal GLM, as compared with the true values (black). Note that the copula GLM, but not the marginal GLM, is able to estimate
the correlation parameter.

Figure 4. Comparison of the relative errors of synchrony detection among the copula GLM (red), marginal GLM (blue), and the
Kass method (black). The results show that the marginal GLM performs poorly when the simultaneous term is not explicitly
modeled, yet the copula GLM still maintains very low relative error, even when the copula correlation parameter becomes large. In
addition, our copula GLM has comparable performance with the Kass et al. (2011).
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additive noise, with the additive noise explained by the copula
parameter.

To further validate the above results, we explicitly induce the
zero-lag, instantaneous influence into the model by setting 
9 

0.5 while keeping all other parameters unchanged. Note that an
instantaneous covariate X2 is now included in the regression of X1

to produce the zero-lag effect. We generate the simulated spike
train data based on the model with the copula correlation param-
eter r 
 0.5. We then repeat the same analysis procedure as above,
with Figure 3 showing the results of parameter estimation. It is
evident from Figure 3 that our copula GLM method still recovers

all the model parameters very well,
whereas the marginal GLM fails to pro-
vide the correct model estimation.

Performance comparison for
detecting synchrony
Simultaneous occurrence of spikes from
multiple neurons is a hallmark of neuro-
nal synchrony. In practice, it is not always
known in advance whether there is an in-
stantaneous effect in a given dataset.
Therefore, it is important to assess to what
extent our copula GLM can still account
for such instantaneous influence without
explicitly modeling the zero-lag effect,
and how our model is compared with the
other approaches such as Kass et al. (2011)
and Kelly and Kass (2012). As such, we use
the same model above to generate spikes
with different instantaneous influence by
varying copula correlation parameter r
from 0 to 1 with a step size of 0.1. In gen-
eral, we observe a monotonically increas-
ing relationship between the values of
copula correlation parameter r and the in-
crease in synchrony rate relative to r 
 0.
For example, when r 
 0.1, 0.5, and 0.9,
the relative increased rates are, respec-
tively, 17, 83, and 180%. We note that the
copula correlation parameter is different
from the commonly used correlation that
should be interpreted with caution, par-
ticularly for measuring synchrony (Brody,
1999a, b). First, it detects only linear rela-
tionship, whereas dependence in copulas
is nonlinear in general. Second, and relat-
edly, it is not invariant to transformation
of the marginal distributions.

To facilitate the comparison between
different models, we quantify the perfor-
mance of synchrony detection as the rela-
tive error, which is the difference between
the detected and the true probability of
synchronous events relative to the true
probability of synchronous events. For
the simulated data, we perform both the
copula GLM and the marginal GLM with-
out the instantaneous term X2 included as
the predictor in the regression of X1 and
compare with the Kass method (Kass et
al., 2011; Kelly and Kass, 2012). Figure 4
shows the comparison of the relative er-
rors among three methods. We can see

that, even when the simultaneous term X2 is not explicitly mod-
eled, our copula GLM still provides better synchrony detection,
in fact very close to the actual spiking events, than the marginal
GLM. As expected, the marginal GLM does not perform well,
particularly when the copula correlation parameter is high. Inter-
estingly, both the copula GLM and Kass method show compara-
ble performance, although the former gives slight edge over the
latter when the copula parameter becomes large. The robust-
ness of our method can be attributed to the use of copula to
model the joint dependency to account for simultaneous oc-

Figure 5. The effect of trial number on the model performance. We can see that the relative error of parameter estimation
decreases as the number of trials increases. With as few as 30 trials, the relative error can be controlled within 5%. Error bars denote
SEM.

5 10 15 20 25

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Spike rate (Hz)

S
uc

ce
ss

 r
at

e

 

 

r = 0.1
r = 0.5
r = 0.9

Figure 6. Success rate analysis of our copula GLM model. The horizontal dashed line denotes the 95% success rate for the
estimation of model parameters. The results depict the dependence of the success rate of model estimation on different spiking
rates and the copula correlation parameters.
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currences of spike events. Therefore, although the zero-lag,
instantaneous influence is not explicitly modeled in the re-
gression process, such information is still captured by the cop-
ula parameter. This is a major advantage over the marginal
GLM.

Effect of trial number on model performance
In this simulation, we evaluate the performance of our model in
terms of different numbers of trials (10, 20, 30, 40, 50, 100, 150,

and 200). We generate the data according to the model in the first
simulation with the spiking rates close to real neural data below.
The model performance is computed as the relative error of the
estimated parameters, which measures the deviation of estimated
value from true value of model parameter relative to the true
model parameter. For a given trial number, we repeat the same
model-fitting procedure for many times (1000 in the simulation)
to obtain the error bar. Figure 5 shows the result, where we can see
that all relative errors of parameter estimation are �10%, and
when the trial number is �30, the relative error is controlled
within 5%.

Effect of spiking rate on model performance
We conduct the performance analysis of our algorithm to different
neural firing rates and copula correlation parameters. We choose a
simple bivariate point process (X1, X2) with the logit marginal de-
scriptions: �X1, X2�, with the logit marginal descriptions:

� X1: logit �p1� � 
1 � 
2Z1

X2: logit �p2� � 
3 � 
4Z2
. Here, Z1 and Z2 follow a normal

Figure 7. True causal network structure (left), the causal network estimated by the bivariate
Granger causality (middle), and the causal network estimated by conditional Granger causality
(right).
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Figure 8. Experimental task and the activity of FEF and IT neurons during the object-based delayed match-to-sample task. A, Schematic of the object-based DMS task: the monkey fixates at the
small central spot. A sample image appears on either inside of or opposite the FEF RF for 300 ms (sample period). The monkey maintains fixation throughout 1 s (delay period), during which only the
fixation spot remained on the screen. The match and nonmatch images appear at positions inside and opposite the RF, and the monkey saccades to the match to receive a reward (target
period). The location of the match is randomized with respect to the sample image position. B, The locations of the sample images presented inside (Ain and Bin, left column) or outside
(Aout and Bout, right column) the FEF RF. The dashed-line circles indicate hypothetical RFs for FEF site. C, The response of FEF neurons is spatially selective when sample appeared inside
the FEF RF (Ain and Bin) versus outside the FEF RF (Aout and Bout), regardless of the sample type. D, The response of IT neurons is object selective for one type of sample (Ain and Aout) versus
another type of sample (Bin and Bout), regardless of its location. E, The response of FEF neurons occurs earlier than that of IT neurons when sample object appeared inside the FEF RF and
was preferred for the IT neurons.
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distribution N(0, 1). The joint dependency of (X1, X2) is modeled
via a Gaussian copula with the correlation parameter r. For
each given parameter r (0.1, 0.5, and 0.9), we generate datasets
with the different firing rates ranging from 4 to 25 Hz (i.e., 4,
6, 8, 10, 15, and 25 Hz) by changing the model parameters 
.
For each combination of r and the firing rate 
, we have a
dataset consisting of 400 trials, each of 1000 sample points, on
which the copula GLM is applied. We estimate the model
parameters 
 � �
, �� for each trial. We use the Fisher infor-
mation I�
� to construct the approximate confidence intervals of
estimated parameters. It has been shown that the bias of an estimated
parameter away from its true value follows a normal distribution:
	n�
 	 
̂� 
 N �0, I�1�
�� under regularity conditions, where n
is the number of sampling points (Serfling, 1980). If any of the
estimated parameters is out of the confidence interval at a certain
significant level � (e.g., 0.05), this estimation is rendered unsuc-
cessful. We conduct the performance analysis of our copula
framework by examining the rate of success at various parameter

settings. Figure 6 shows the results of per-
formance analysis, where the success rates
of our copula GLM model change as a
function of spiking rate at different corre-
lation parameters, r. We observed from
Figure 6 that (1) the larger r facilitates the
estimation of model parameters, espe-
cially in the low firing rate region (� 15
Hz) and (2) the spike firing rate of �15 Hz
is required for the model to achieve the
parameter estimation at the 95% success
rate (the horizontal dashed line in the
figure).

Granger causality analysis of simulated
spike train data
We use this simulation to illustrate the
utility of the Granger causality measure in
the analysis of spike train data. Here we
consider a four-variable model as follows:

�
x1�t� � 0.2x1�t 	 1� � �1

x2�t� � 0.3x2�t 	 1� � 0.5x1�t 	 2� � �2

x3�t� � 0.2x3�t 	 1� � 0.6x1�t 	 1� � �3

x4�t� � 0.3x4�t 	 1� � 0.6x3�t 	 1� � �4

,

where ��1, �2, �3, �4� 
 N�0, ��, with � of the 4 � 4 identity ma-
trix. In this model, both direct and indirect causal relationships
are presented. For the indirect causal relationships, two typical
dependencies are manifested in our synthetic data: (1) two signals
are commonly driven by another signal, but at the different time
lags (e.g., x2 and x3 in this simulation) and (2) the indirect causal
relationship exists between two signals through another interme-
diate signal (e.g., x1 is related to x4 via x3 in this simulation).

Based on this continuous model, we simulate the correlated
point processes using the technique in Gutnisky and Josiæ
(2010). We generate 100 trials of four-variable point processes, to
which both the bivariate Granger causality and conditional
Granger causality methods are applied. The statistical signifi-
cance of the estimated Granger causality is assessed at p � 0.05 by
the permutation procedure described in Materials and Methods.
Figure 7, left, shows the true causal connectivity, where the dark
block indicates the existence of causality. Figure 7, middle, shows
the result obtained by bivariate Granger causality method, in
which indirect causality (from x1 to x4 and from x3 to x2) were
falsely identified (gray block), whereas conditional Granger cau-
sality successfully resolved this problem (Fig. 7, right) by cor-
rectly recovering the true causal connectivity.

Copula regression analysis of spike trains from FEF and IT
To illustrate the application of the proposed copula GLM in the
analysis of real spike train data, neural spike trains were simulta-
neously collected from the FEF area and IT cortex of a monkey
while performing an object-based short-term memory task,
namely DMS task (Fig. 8A). We analyzed spiking activity re-
corded simultaneously from the FEF and IT during this task,
specifically from neurons with overlapping RFs. Neural spikes
were obtained via off-line sorting, and saved at the sampling rate
of 1 kHz. In the following analysis, the bin size of 1 ms was used.
The sample stimulus could appear either inside or 180 degrees
away from the center of the FEF RF, but was usually within the IT
RF. Depending on the IT neuron’s responses, the sample object
was identified as a preferred target or a nonpreferred target. The
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Figure 9. Comparison of Granger causality obtained via the copula GLM model between conditions (Inside vs Outside) in the direction
of FEF¡IT (left) and IT¡FEF (right), where the sample image is always preferred for IT neurons. Note that data are standardized by the
sample period to compare the causal influence in different conditions. Error bars denote the SEM. It is clearly seen that the Granger causality
in FEF¡IT shows a clear separation between two conditions, but not for the opposite direction in IT¡FEF.
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Figure 10. ANOVA test for the interaction between directionality (FEF¡IT vs IT¡FEF) and
experimental conditions (Inside vs Outside), *p � 0.05. The asterisk on the left denotes signif-
icantly different ( p 
 0.0232) Granger causalities between conditions in the direction of FE-
F¡IT, whereas the asterisk on the right denotes that the experimental effect is significantly
different ( p 
 0.0390) in two directions (FEF¡IT vs IT¡FEF).
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combination of the RF location (Inside RF
vs Outside RF) for FEF neurons and the
preference (Preferred vs Nonpreferred)
for the IT neurons results in four condi-
tions: (1) the sample inside RF of FEF neu-
rons and preferred for IT neurons, (2) the
sample outside RF of FEF neurons and
preferred for IT neurons, (3) the sample
inside RF of FEF neurons and nonpre-
ferred for IT neurons, and (4) the sample
outside RF of FEF neurons and nonpre-
ferred for IT neurons. The analysis de-
scribed here focuses on the spiking
activity during the delay period of
object-based working memory task.

We first verified that the FEF neuron
maintains the spatially selective and the IT
neuron preserves the stimulus-selective
persistent activity during the delay. Figure
8, C and D, shows the responses of a pair of simultaneously re-
corded FEF and IT neurons, respectively, during the DMS task.
Consistent with previous findings (Chelazzi et al., 1993, 1998;
Clark et al., 2012), the FEF neuron is spatially selective to the
stimulus location, whereas the IT neuron is selective to its pre-
ferred object appearing in either location.

We next examined the causal influence between the FEF and
IT, measured by the Granger causality, to assess the functional
role of the FEF in the selection and retention of visual informa-
tion in working memory. When we fitted the model to the spikes
with the bin size of 1 ms, the model order of 6, as determined by
AIC, was selected for both the copula GLM and marginal GLM.
We have analyzed 26 pairs of neurons between FEF and the pre-
ferred IT, and 22 pairs of neurons between FEF and the nonpre-
ferred IT. For each pair, we had 30 trials in average, and then
performed statistic tests across pairs. In total, we had �1200 trials
analyzed. Our first set of analysis was to compare conditions (1)
with (2), where the sample object was always preferred for the IT
neurons. Granger causality analysis was performed on the spike
trains from FEF and IT for each trial. A 400 ms long sliding
window with a step of 50 ms was used to monitor the dynamic
functional interactions during the memory task. As shown in
Figure 9, left, there exists significant Granger causality in FE-
F¡IT direction starting �100 ms following the delay (p � 0.05,
one-tail t test) when compared with the neurons inside RF to
those outside RF. However, the opposite direction in IT¡FEF
(Fig. 9, right) does not reveal significant Granger causality. Our
statistical test can be further strengthened (p 
 0.0064) by com-
bining multiple time windows using the test statistic of the max-
imum mean discrepancy (Gretton et al., 2012). A two-way
ANOVA (directionality and RF location) was subsequently per-
formed, which showed the significant difference in directionality
(p � 0.05) during the time period from 100 to 400 ms following
the delay. We note that, when determining the mode order, there
is no clear “elbow” in the AIC curve for the neural data; selecting
a model order slightly different from 6 does not change the con-
clusions. We also note the use of the 400 ms long window during
which it assumed that the neuron fires at a constant back-
ground rate. Given the low firing rate of baseline in our data
(e.g., Fig. 8E), such an assumption seems to be a plausible
approximation. However, in the presence of strong nonsta-
tionarity in spike trains, methods to account for time-varying
trial-to-trial variation should be considered to improve the esti-
mation and inference (Ventura et al., 2005; Kelly and Kass, 2012).

Figure 10 provides an example to show the ANOVA test result
at the time of the 200 ms. It is evident that the Granger causality in
the direction of FEF¡IT has significant difference between two
conditions (inside RF vs outside RF), and the effect is significantly
larger than that in the opposite direction of IT¡FEF. These re-
sults indicate that spatial selection in FEF precedes object identi-
fication in IT during memory task. The findings are further
supported by directly comparing the response of FEF neurons to
that of IT neurons when a sample object appears inside the FEF
RF and is preferred for the IT neurons (Fig. 8E), where the FEF
neurons fire earlier than the IT neurons.

In comparison, we also applied the marginal GLM to the same
data. The results are shown in Figure 11, where we observed that
the Granger causality derived from the marginal GLM yields a
similar trend to our method, but does not reveal significant causal
influence in both directions and conditions.

To assess the GOF of the estimated model (Brown et al., 2002),
we performed the KS plots. Specifically, we used the time-
rescaling theorem to transform neural spike train data to a con-
tinuous measure suitable for a GOF assessment (Brown et al.,
2002). With the estimated CIF, we can compute the rescaled
times. Under the assumption of model correctness (i.e., the esti-
mated CIF provides a good approximation to the true condi-
tional intensity of the spike trains), these rescaled times should
follow the uniform distribution on the interval (0, 1]. We can
visualize the result with the KS plot by sorting the rescaled times
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Figure 11. Comparison of Granger causality obtained via the marginal GLM model. We see that the marginal GLM fails to reveal
significant causal influence in the direction of FEF¡IT. Data are presented as in Figure 9.

Figure 12. Comparison of the KS plots between the copula GLM model (red) and the mar-
ginal GLM model (blue) for an FEF neuron (left) and an IT neuron (right). The 45 degree blue line
denotes exact agreement between the model and spike train data, with the 95% confidence
bounds indicated by the flanking dashed lines.
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against the quantiles of the cumulative distribution function of the
uniform distribution on (0, 1]. A 45 degree line in the KS plot rep-
resents exact agreement between the model and spike train data. We
can use the distribution of the KS statistic to build the 95% confi-
dence bounds for the degree of agreement between the model and
the data. This procedure was done for all the neurons in the study.
Most KS plots (23/26) were almost within the confidence intervals,
indicating overall a good fit to the data. Fig. 12 shows examples of the
KS plots obtained using the proposed copula GLM model (red) and
the marginal GLM model (blue) for an FEF neuron (left) and an IT
neuron (right). It is clear that our copula-based approach has a better
GOF than the marginal GLM model.

Similar to the above analysis procedure, we conducted our sec-
ond set of analysis by comparing conditions (3) with (4), where the
sample object is always nonpreferred for the IT neurons. The results
are shown in Figure 13, where no significant causal influence was
observed in either direction. This result is not unexpected
because the IT neurons under such experimental conditions
become less active due to the nonpreferred object. As such,
there is no significant information transfer observed between
FEF and IT during the delay period of the memory task.

Our copula GLM can attend to both
sequential dependence and shared influ-
ences on spike activity. Thus far, we have
demonstrated that the time-lagged de-
pendence can be measured by Granger
causality influence with our model. We
show next that the synchronous spiking
can be assessed by the Gaussian copula pa-
rameter r. This can be achieved via com-
puting the Kendall’s tau (Song, 2007),
which is a common metrics for measuring
the degree of the dependence as it can be
related to different parameters in various
copulas. To make it interpretable, we nor-
malize the Kendall’s tau against the base-
line to indicate the deviation of cofiring
from independence. Figure 14 shows an
example of the relative changes in joint
firing between FEF and IT neurons, where
the FEF neurons inside RF are compared
with those outside RF, but for the IT neu-
rons the sample object is always preferred
(Fig. 9, left). We observe from Figure 14,
left, that the synchronous spiking for FEF
neurons inside RF is significantly larger
than neurons outside RF starting 100 ms
(p � 0.05) following the delay. In com-
parison, we also compute the synchro-
nous spiking for the nonpreferred IT
neurons (Fig. 13, left). It is intriguing
that a similar effect is observed for the
nonpreferred IT neurons (Fig. 14,
right). While these results clearly indi-
cate that FEF and IT neurons tend to fire
more synchronously after the delay on-
set, the synchronous spiking might not
be sensitive to distinguish whether the
IT neurons are preferred or not.

Discussion
In this paper, we have introduced a flexible,

statistically accurate, and copula-based joint GLM framework to
model a multivariate point process capable of capturing not only the
lagged dependence of spiking activity from individual neurons but
also the contemporaneous dependence among multiple neurons.
Utilizing the likelihood method, we developed (1) a maximum like-
lihood parameter estimation procedure that was implemented by a
Gauss–Newton type algorithm and (2) a Granger causality measure
for the analysis of neural spike trains. Our method was validated by
extensive simulations, and compared favorably to the widely used
marginal GLMs. We also demonstrated the effectiveness of our
method in the analysis of spike train data simultaneously collected
from both FEF and IT neurons of a monkey performing an object-
based working memory task.

Compared with the popular marginal GLMs (Truccolo et al.,
2005), our joint regression analysis has several advantages. First,
it is a general method that can capture both history dependency
and joint dependency of neural responses, which is unique for
our method to explicitly model simultaneous occurrences of
spike events with a copula. Second, it is flexible to handle differ-
ent dependence structures specified by different copulas, thus
allowing better description of neural dependencies. Third, the
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joint analysis results in more accurate estimation of regression
coefficients than the marginal GLMs. Finally, it is straightforward
to show that Granger causality between neural spike trains can be
readily assessed via the likelihood ratio statistic.

So far, there have been only a few applications of the copula to
neural data analysis. In the analysis of spike train data, the distri-
bution of the first-spike latency has been used to estimate the
conditional entropy of neural responses (Jenison and Reale,
2004). The neural dependencies have been characterized by cop-
ula models based on the distribution of either the spike counts
(Berkes et al., 2009) or the interspike intervals (Sacerdote et al.,
2012; Hu et al., 2015). A recent study has shown that the synchro-
nous spiking among multiple neurons can be detected using the
copula model, whereby the parameters in the model can be esti-
mated within a semiparametric Bayesian framework (Shahbaba
et al., 2014). Recently, a copula-based Granger causality measure
has been developed for a continuous time series of field potentials
to capture nonlinear and high-order moment causality in the
neural data (Hu and Liang, 2014). We note that our proposed
copula-based joint GLM is directly applied to the neural point
process itself, i.e., sequences of spike times, rather than the spike
counts, which otherwise would distort the properties of spike
trains and introduce spurious effects.

In the process of developing our copula-based joint GLM
method, we have mainly used the Gaussian copula due to its scalabil-
ity and its flexible dependence structure (Song, 2007). In practice,
the dependence structures underlying the data are usually unknown
and sometimes can be even complicated, and other copulas than the
Gaussian copula may be preferred. In this case, the model selection
procedure has to be invoked to choose the copula that best fits
the data. In general, it is easy to work with bivariate copulas;
yet it is rather difficult to estimate copula, particularly in
higher dimensions. The Gaussian copula is an exception
(Nelsen, 2006) due to its tractability analytically. The ability of
estimating the Gaussian copula in higher dimensions renders
our copula GLM computationally feasible for multiple neu-
rons, which allows us to examine the potential multi-neuron
dependence due to shared inputs and network activity (Kelly
et al., 2010; Kelly and Kass, 2012). We note, however, that it is
usually not common to observe both the time-lagged effect
and synchronous firing among more than three neurons.

In our copula-based joint GLMs, we derive a simultaneous max-
imum likelihood procedure for parameter estimation. There are a
couple of options to evaluate the uncertainty of the maximum like-
lihood estimator. The classical approach is to approximate the
variances of the estimated parameters by the observed Fisher infor-
mation. Under standard regularity conditions, the maximum likeli-
hood estimator will be consistent and asymptotically normal with
the covariance matrix given by the Fisher information, which is the
negative of the second derivative (the Hessian matrix, H�
�
� �2��
�) of the log-likelihood function. A more robust approach
that has been spurred by the increasing presence of multidimen-
sional data that potentially exhibit non-normal features such as
heavy tails and multimodality is to consider the possible misspecifi-
cations of the model, where the asymptotic variance can be esti-
mated by the inverse of the Godambe information (Godambe,
1991), also known as the robust sandwich-type estimate (Song,
2007), I(
) � H�1(
)Bn(
)H�1(
). Moreover, the widespread BFGS
optimization algorithm (or quasi-Newton algorithm) returns an ap-
proximation of the Hessian matrix that is obtained via numerical
derivatives. In our implementation, we use the unconstrained non-
linear optimization algorithm (the MATLAB function fminunc) for
parameter optimization, which also provides a numerical Hessian

that is used to evaluate the variances of the estimated parameters. We
use multiple random starts to mitigate the problem of local solu-
tions. In addition, we assess the goodness-of-fit of the estimated
model with the KS plots to check the agreement between a statistical
model and the spike train data.

For continuous random variables, a copula is unique as per
Sklar’s Theorem. This, however, is no longer valid for discrete ran-
dom variables, where the copula is only uniquely identified on the
ranges of the marginals. Therefore, when the marginals are discrete,
extra care is needed in making statistical inference for copula models
(Genest and Neslehova, 2007). When marginal models are discrete,
we adopt an approach suggested by Song (2007) where a multivari-
ate probability mass function is obtained by taking Radon–Nikodym
derivatives. We note the interpretations can be different for contin-
uous and discrete data. For continuous marginals, the off-diagonal
elements of the correlation matrix represent their linear correlation.
For discrete marginals such as spike timing, it can be interpreted as
the tetrachoric correlation (Dorn and Ringach, 2003).

Previous studies (Clark et al., 2012) provided evidence that
FEF neurons preserve a spatially tuned persistent activity during
the delay period of the DMS task, which requires maintenance of
object but not spatial information. In contrast, IT neurons ex-
hibit persistent activity that is selective for the sample identity,
but not location, during DMS tasks (Chelazzi et al., 1993, 1998),
but the interactions between the spatial signals in FEF and object
information in IT during an object-based DMS task are not yet
well understood. Our approach offers a more sensitive measure
than the marginal GLM to assess directional influence between
spike trains. As demonstrated by the analysis of the spiking activity
simultaneously collected from FEF and IT areas during the delay
period of the object-based DMS task, we found significant Granger
causality influence of FEF on IT when comparing the neurons inside
RF with those outside RF, and the effect is significantly larger than
that in the opposite direction of IT¡FEF; this result is consistent
with the idea that spatial selection in FEF precedes object identifica-
tion in IT during memory task. The analysis of the same data by the
marginal GLM did not reveal any significant causal influence in both
directions and RF conditions. These results demonstrate that our
joint regression model offers a more powerful inference than sepa-
rate, marginal GLM analysis.

Several extensions and improvements of this work are envi-
sioned. First, as the number of neurons grows, efficient algorithms
are needed to remain tractable for maximum-likelihood estimation.
Second, the model assumes that all the neurons under consideration
have the same marginal distribution, i.e., all neurons follow either
the Bernoulli or Poisson distribution; thus, the model can be im-
proved to handle different marginal distributions. Third, when an-
alyzing spiking activity of multiple neurons, our current approach is
to model each pair of neurons (one to one) by incorporating the
time-lagged history information of other variables into the regres-
sion. Although this method works well in our examples, a fully high-
dimensional copula model is to be developed for one-to-many,
many-to-one, and many-to-many neural interactions. Finally, it is
encouraging that our copula model is able to separate the depen-
dence of neurons into two distinct parts: a lagged dependence, which
measures how neurons are connected to each other, and a contem-
poraneous dependence, which is shared among all neurons in the
network. Our proposed model, as an extension of previous work, is
focused on partitioning dependence structures by including the
spike-feedback terms in a generalized linear point-process model.
We are therefore enthusiastic that our proposed framework will
prove itself of general value in the field of neural data analysis.
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