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In its search for neural codes, the field of visual
neuroscience has uncovered neural representations that
reflect the structure of stimuli of variable complexity
from simple features to object categories. However,
accumulating evidence suggests an adaptive neural code
that is dynamically shaped by experience to support
flexible and efficient perceptual decisions. Here, we
review work showing that experience plays a critical role
in molding midlevel visual representations for perceptual
decisions. Combining behavioral and brain imaging
measurements, we demonstrate that learning optimizes
feature binding for object recognition in cluttered
scenes, and tunes the neural representations of
informative image parts to support efficient categorical
judgements. Our findings indicate that similar learning
mechanisms may mediate long-term optimization
through development, tune the visual system to
fundamental principles of feature binding, and optimize
feature templates for perceptual decisions.

Introduction

Evolution and development have been proposed to
shape the organization of the visual system and result
in structural neural codes that support visual recogni-
tion (Gilbert, Sigman, & Crist, 2001; Simoncelli &
Olshausen, 2001). However, long-term experience is not
the only means by which sensory processing becomes
optimized. Learning through everyday experiences in
adulthood has been shown to be a key facilitator for a
range of tasks, from simple feature discrimination to
object recognition (Fine & Jacobs, 2002; Goldstone,
1998; Schyns, Goldstone, & Thibaut, 1998). Here, we
review how long-term experience and short-term
training may interact to shape the optimization of
visual recognition processes. While long-term experi-
ence hones the principles of organization that mediate

feature grouping for object recognition, short-term
training may establish new principles for the interpre-
tation of natural scenes. Here, we summarize our recent
work combining behavioral and brain imaging mea-
surements to investigate the role of experience in
optimizing neural coding for perceptual decisions. In
particular, we focus on the role of learning in
perceptual judgements under sensory uncertainty, such
as when detecting stimuli presented in cluttered
backgrounds or discriminating between highly similar
stimuli. We ask: what are the learning mechanisms that
mediate our ability to detect targets in cluttered scenes
and assign new objects to meaningful categories?

Learning-dependent mechanisms
for visual recognition in cluttered
scenes

Recognizing meaningful objects entails integrating
information at different levels of visual complexity
from local contours to complex features independent of
image changes (e.g., changes in position, size, pose, or
background clutter). To achieve this challenging task,
the brain is thought to exploit a network of connections
that support the integration of object features based on
image regularities that occur frequently in natural
scenes (e.g., orientation similarity between neighboring
elements; Geisler, 2008; Sigman, Cecchi, Gilbert, &
Magnasco, 2001). For example, long-term experience
with the high prevalence of collinear edges in natural
environments (Geisler, 2008; Sigman et al., 2001) has
been shown to result in enhanced sensitivity for the
detection of collinear contours in clutter. However,
recent work highlights the role of shorter term training
in feature binding and visual recognition in clutter. For
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example, observers have been shown to learn distinctive
target features by exploiting regularities in natural
scenes and suppressing background noise (Brady &
Kersten, 2003; Dosher & Lu, 1998; Eckstein, Abbey,
Pham, & Shimozaki, 2004; Gold, Bennett, & Sekuler,
1999; Li, Levi, & Klein, 2004). In particular, learning
has been suggested to enhance the correlations between
neurons responding to the features of target patterns
while decorrelating neural responses to target and
background patterns. As a result, redundancy in the
physical input is reduced and target salience is
enhanced (Jagadeesh, Chelazzi, Mishkin, & Desimone,
2001) supporting efficient detection and identification
of objects in cluttered scenes (Barlow, 1990).

Further, our recent behavioral studies show that
short-term experience in adulthood may modify the
behavioral relevance (i.e., utility) of atypical contour
statistics for the interpretation of natural scenes
(Schwarzkopf & Kourtzi, 2008). Although collinearity
is a prevalent principle for perceptual integration in
natural scenes, we demonstrated that the brain can
learn to exploit other image regularities for contour
linking (Schwarzkopf & Kourtzi, 2008). In particular,
observers learned to use discontinuities typically
associated with surface boundaries (e.g., orthogonal or
acute alignments) for contour linking and detection.
Observers were trained with or without feedback to
judge which of the two stimuli presented successively in
a trial contained contours rather than only random
elements (two-interval forced-choice task). Behavioral
performance (i.e., detection accuracy) improved for the
trained contours, and this improvement was main-
tained for a prolonged period (i.e., testing 6 to 8
months after training), suggesting optimization of
perceptual integration processes through experience
rather than simply transient changes in visual sensitiv-
ity. Thus, these findings provide evidence that short-
term experience boosts the observers’ ability to detect
camouflaged targets by shaping the behavioral rele-
vance of image statistics.

Our recent studies combining behavioral and brain
imaging measurements (Zhang & Kourtzi, 2010)
indicate two routes to visual learning in clutter with
distinct signatures of brain plasticity (Figure 1). We
show that long-term experience with statistical regu-
larities (i.e., collinearity) may facilitate opportunistic
learning (i.e., learning to exploit image cues), while
learning to integrate discontinuities (i.e., elements
orthogonal to contour paths) entails bootstrap-based
training (i.e., learning new features) for the detection of
contours in clutter. In particular, observers were
trained on contour detection (two-interval forced-
choice task) with auditory error feedback, or simply
exposed to contour stimuli while performing a contrast-
discrimination task (i.e., judging stimulus contrast)
unrelated to contour detection. Learning to integrate

collinear contours was shown to occur through
frequent exposure, generalize across untrained stimulus
features, and shape processing in higher occipitotem-
poral regions implicated in the representation of global
forms. In contrast, learning to integrate discontinuities
(i.e., elements orthogonal to contour paths) required
task-specific training (bootstrap-based learning), was
stimulus-dependent, and enhanced processing in intra-
parietal regions implicated in attention-gated learning.
This is consistent with neuroimaging studies showing
that a ventral cortex region becomes specialized
through experience and development for letter inte-
gration and word recognition (Dehaene, Cohen, Sig-
man, & Vinckier, 2005), while parietal regions are
recruited for recognizing words presented in unfamiliar
formats (Cohen, Dehaene, Vinckier, Jobert, & Mon-
tavont, 2008). Taken together, these findings suggest
that opportunistic learning of statistical regularities
shapes bottom-up object processing in occipitotempo-
ral areas, while learning new features and rules for
perceptual integration recruits parietal regions involved
in the attentional gating of recognition processes.

Learning-dependent changes for
shape categorization

Assigning novel objects into meaningful categories is
critical for successful interactions in complex environ-
ments (Miller & Cohen, 2001). Extensive behavioral
work on visual categorization (Goldstone, Lippa, &
Shiffrin, 2001; Nosofsky, 1986; Schyns et al., 1998)
suggests that the brain solves this challenging task by
representing the relevance of visual feature for cate-
gorical decisions rather than simply the physical
similarity between objects. Neuroimaging studies have
identified a large network of cortical and subcortical
areas in the human brain that are involved in visual
categorization (Ashby & Maddox, 2005; Keri, 2003)
and have revealed a distributed pattern of activations
for object categories in the temporal cortex (Hanson,
Matsuka, & Haxby, 2004; Haxby et al., 2001; O’Toole,
Jiang, Abdi, & Haxby, 2005; Williams, Dang, &
Kanwisher, 2007).

Yet, using fMRI to isolate the neural code for flexible
category learning is fraught with complexity. First,
learning-dependent changes measured by BOLD may
reflect different underlying changes in neural selectivity
(i.e., sharpening of neuronal tuning to a visual stimulus):
There may be enhanced responses to the preferred
stimulus, decreased responses to nonpreferred stimuli, or
a combination of the two. A number of studies have
shown that learning changes the overall responsiveness
(i.e., increased or decreased fMRI responses) of visual
areas to trained stimuli (Kourtzi, Betts, Sarkheil, &
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Welchman, 2005; Mukai et al., 2007; Op de Beeck,
Baker, DiCarlo, & Kanwisher, 2006; Sigman et al., 2005;
Yotsumoto, Watanabe, & Sasaki, 2008). However,
considering only the overall magnitude (i.e., univariate),

fMRI signal does not allow us to discern whether
learning-dependent changes in fMRI relate to changes in
the overall magnitude of neural responses or changes in
the selectivity of neural populations. Second, to quantify

Figure 1. Learning to detect contours in cluttered scenes. (A) Examples of stimuli: Collinear contours in which elements are aligned

along the contour path and orthogonal contours in which elements are oriented at 908 to the contour path. For demonstration

purposes only, two rectangles illustrate the position of the two contour paths in each stimulus. (B) Average behavioral performance

across subjects (percent correct) before and after training for collinear and orthogonal contours presented at trained and untrained

orientations. (C) fMRI responses for observers trained with orthogonal versus collinear contours. fMRI data (percent signal change for

contour minus random stimuli) are shown for trained contour orientations before and after training on orthogonal versus collinear

contours. Adapted with permission from Zhang and Kourtzi (2010).
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changes in (a) perceptual performance and (b) brain
responses due to learning, it is useful to vary stimuli
parametrically and test changing levels of performance.
However, simple univariate fMRI measures may be
insufficient to reveal subtle changes in neuronal
responses and the links between perceptual and neuronal
states. Here, we discuss recent work using multivoxel
pattern classification methods that take into account
activity across patterns of voxels to investigate the link
between learning-dependent changes in neural repre-
sentations and behavior.

In a first set of studies (Zhang, Meeson, Welchman,
& Kourtzi, 2010), we tested the mechanisms that

mediate our ability to learn visual shape categories by
combining behavioral judgments with high-resolution
imaging (i.e., smaller voxels for finer grained measure-
ments) and multivoxel pattern classification analysis
tools (Haynes & Rees, 2005; Kamitani & Tong, 2005).
To gain insight into the way in which visual form
representations change with training, we employed a
parametric stimulus space in which we could morph
systematically between two different stimulus classes
(concentric vs. radial glass patterns; Figure 2A). By
adding external noise to the displays, and using fine-
scale variations in the morphing space, we were able to
characterize observers’ behavioral discrimination per-

Figure 2. Learning to discriminate global shapes. (A) Stimuli: Low- and high-signal Glass pattern stimuli. (B) Behavioral performance

(average data across observers) across stimuli in the morphing space (as indicated by spiral angle) during scanning. The curves

indicate the best fit of the cumulative Gaussian function for high-signal stimuli and low-signal stimuli before and after training. Error

bars indicate the standard error of the mean. (C) fMRI pattern-based tuning functions for V1, LO, and V3B/KO: The proportion of

predictions made to each stimulus condition in terms of the difference in spiral angle between the viewed stimulus and the

prediction. Symbols indicate average data across observers; solid lines indicate the best fit of a Gaussian to the data from 1,000

bootstrap samples. Adapted with permission from Zhang et al. (2010).
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formance before and after training (Figure 2B).
Participants were trained to discriminate concentric
from radial patterns with feedback in three training
sessions, and were scanned on the same task (without
feedback) before and after training. Based on fMRI
measurements concurrent with stimulus presentation,
we were able to evaluate the ability of the machine-
learning algorithm to decode the presented stimuli. We
were particularly interested in the choices of the pattern
classifier in predicting each of the presented stimuli.
Using the distribution of choices for each stimulus we
generated fMRI-based voxel tuning functions that
described the distribution of choices made by the
classifier when given data measured in different visual
areas (Figure 2C). Thereby we sought to link learning-
based changes in behavioral responses and fMRI
responses by comparing psychometric functions and
fMRI pattern-based tuning functions before and after
training.

Comparing the performance of human observers and
classifiers demonstrated that learning altered the
observers’ sensitivity to visual forms and the tuning of
fMRI activation patterns in visual areas selective for
task-relevant features. For high signal stimuli (i.e., 80%
of the dots in the display were aligned to the stimulus
shape, while 20% were randomly positioned), we
observed a tuned response across visual areas, that is,
the classifiers mispredicted similar stimuli more fre-
quently than dissimilar ones. Consistent with the
behavioral results, these tuning functions had higher
amplitude for high-signal stimuli than low-signal
stimuli (i.e., only 45% of the dots in the display were
aligned to the stimulus shape) before training in higher
visual areas. However, training on low-signal stimuli
enhanced the amplitude while it reduced the width of
pattern-based tuning functions in higher dorsal and
ventral visual areas (Figure 2C). Increased amplitude
after training indicates higher stimulus discriminability
that may relate to enhanced neural responses for the
preferred stimulus category at the level of large neural
populations. Reduced tuning width after training
indicates fewer classification mispredictions, suggesting
that learning decreases neural responses to nonpre-
ferred stimuli. Thus, these findings suggest that learning
of visual patterns is implemented in the human visual
cortex by enhancing the response to the preferred
stimulus category, while reducing the response to
nonpreferred stimuli.

Learning-dependent changes for
optimal decisions

Learning is known to optimize mental templates of
object features that are critical for efficient performance

in perceptual tasks (e.g., categorical discrimination;
Dobres & Seitz, 2010; Dupuis-Roy & Gosselin, 2007;
Gold et al., 1999; Li et al., 2004). In recent work (Kuai,
Levi, & Kourtzi, 2013), we investigated the mechanisms
that the brain uses to optimize templates for perceptual
decisions through experience. Observers were trained
(three training sessions with feedback) to discriminate
visual forms (two classes of polygons) that were
randomly perturbed by noise (Figure 3A) and were
scanned on the same task (without feedback) before
and after training. To identify the specific stimulus
components that determine the observer’s choice (i.e.,
the discriminative features), we reverse-correlated
behavioral choices and fMRI signals with noisy
stimulus trials. This approach has been widely used in
psychophysics (for reviews see Abbey & Eckstein, 2002;
Eckstein & Ahumada, 2002); however, its application
to neuroimaging has been limited by noisy single-trial
fMRI signals and the small number of samples that can
be acquired during fMRI scans (Schyns, Gosselin, &
Smith, 2009; Smith et al., 2008). To overcome these
limitations, we used reverse correlation in conjunction
with multivoxel pattern analysis. We calculated deci-
sion templates based on the choices made by a linear
support vector machine (SVM) classifier that decodes
the stimulus class from the fMRI data measured on
individual stimulus trials. By reverse correlating be-
havioral and multivoxel pattern responses with noisy
stimulus trials, we identified the critical image parts
that determine the observer’s choice.

Our findings showed that observers learned to
integrate information across locations and weight the
discriminative image parts. Classification images based
on the observers’ performance after training showed
marked differences between image parts associated
with the two stimulus classes (Figure 3B). In contrast,
we did not observe any consistent image parts
associated with the two stimulus classes before training,
ensuring that the classification images reflected the
perceived differences between classes rather than local
image differences between stimuli.

Having characterized the behavioral decision tem-
plate, we used fMRI to determine where in the visual
cortex this template is implemented. Our results show
that classification images in the lateral occipital (LO)
area, but not in early visual areas, revealed image parts
that were perceptually distinct between the two
stimulus classes (Figure 3B). Importantly, there was
little information about this perceptual template before
training, ensuring that fMRI classification templates
reflect the perceived classes rather than stimulus
examples. Comparing classification images derived
from behavioral and fMRI data showed that similar
image parts became more discriminable between the
two stimulus classes after training, suggesting corre-
spondence between behavioral and fMRI templates.
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Figure 3. Learning optimizes decision templates. (A) Sample pentagon-like stimuli comprising 30 equally spaced Gaussian dots with

0.18 SD. Two classes of shapes were generated by varying the location of the pentagon lines that differed in their length. The top

panel shows the stimulus space generated by linear morphing between Class I and Class II polygons (stimuli are shown as a function

of percent Class II). The bottom panel shows example stimuli with position noise, as presented in the experiment. (B) Behavioral

classification images before and after training, averaged across participants. (C) fMRI classification images for V1 and LO before and

after training, averaged across participants. Red indicates image locations associated with a Class I decision, while blue indicates

image locations associated with a Class II decision. Adapted with permission from Kuai et al. (2013).
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Further, we found that these templates were also
tolerant of stimulus size changes. In particular, after
training, we tested observers’ performance for stimuli
that were presented at different sizes (1.5 or 2 times
larger) from the trained stimuli. Our findings showed
that behavioral and fMRI classification images for
stimuli of trained and untrained size were highly
similar, suggesting that learning tunes representations
of discriminative image parts in higher ventral cortex
that are tolerant to image changes rather than specific
local image positions.

Summary

Understanding the midlevel representations that
support shape perception remains a challenge in
cognitive neuroscience and computer vision. Compu-
tational and experimental approaches (Marr, 1982;
Pasupathy & Connor, 2002; Wilson &Wilkinson, 2014)
are converging in uncovering how object structure is
encoded in the human visual cortex. Yet, object
representations are surprisingly adaptive to changes in
environmental statistics, implying that learning
through evolution, development, but also shorter-term
experience during adulthood, may shape the object
code. Here we propose that adaptive shape coding in
the visual cortex is at the core of flexible decision
making. We demonstrate that learning optimizes
feature binding for object recognition in cluttered
scenes, and tunes the neural representations of infor-
mative image parts for efficient categorical judgements.
Thus, understanding the brain dynamics (i.e., interac-
tions between large-scale networks and local cortical
circuits) that support adaptive neural processing in the
human brain emerges as the next key challenge in visual
neuroscience.

Keywords: perceptual learning, object recognition,
categorization
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