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It is clear that early visual processing provides an image-
based representation of the visual scene: Neurons in
Striate cortex (V1) encode nothing about the meaning of
a scene, but they do provide a great deal of information
about the image features within it. The mechanisms of
these ‘‘low-level’’ visual processes are relatively well
understood. We can construct plausible models for how
neurons, up to and including those in V1, build their
representations from preceding inputs down to the level
of photoreceptors. It is also clear that at some point we
have a semantic, ‘‘high-level’’ representation of the
visual scene because we can describe verbally the
objects that we are viewing and their meaning to us. A
huge number of studies are examining these ‘‘high-level’’
visual processes each year. Less well studied are the
processes of ‘‘mid-level’’ vision, which presumably
provide the bridge between these ‘‘low-level’’
representations of edges, colors, and lights and the
‘‘high-level’’ semantic representations of objects, faces,
and scenes. This article and the special issue of papers in
which it is published consider the nature of ‘‘mid-level’’
visual processing and some of the reasons why we might
not have made as much progress in this domain as we
would like.

On the need to study mid-level
vision

It seems very clear that, at the earliest levels of visual
processing, we have a number of image-based repre-
sentations of the visual scene. For example, at the level
of photoreceptors we have a representation of the
distribution of light across the retina. At the level of
retinal ganglion cells we have a representation of the
changes in light (spatiotemporal contrast) across the
retina due to combinations of excitatory and inhibitory
inputs (Hartline, 1938; Kuffler, 1953). In these repre-
sentations the responses of individual units (e.g.,
photoreceptors, ganglion cells) are driven largely by the
pattern of light in the visual scene, with little
dependence on what in the physical world gave rise to
that pattern of light. We know a great deal about these

early stages of visual processing: how the light is
detected; how contrast, orientation, spatial frequency,
and color are represented; and how neurons change
their responses over time (for a primer see Lennie,
2003). We can also use models constructed from one
type of stimulus, such as gratings, to explain a fair
amount of variance in responses to completely different
stimuli, such as naturalistic movies (Mante, Bonin, &
Carandini, 2008). By the level of the primary visual
cortex, this image-based representation provides all the
information needed for the visual system to identify
simple visual features, such as edges, and encode the
characteristics of those simple features.

It is also clear that at some point we must also have
some form of semantic representation. Human ob-
servers can trivially describe the semantic content of an
image; they know that this contains a face or a chair
and can describe the characteristics of the objects while
ignoring the attributes of the image per se. This higher
level semantic representation of the scene is not as well
understood as low-level visual processing—we do not
have physiologically based computer models of face
recognition, for instance—but these representations
have certainly received a great deal of attention that has
informed us of their general characteristics. We know,
for instance, that a region in the fusiform gyrus
responds significantly more strongly to the presentation
of face stimuli than to others (Kanwisher, McDermott,
& Chun, 1997; McCarthy, Puce, Gore, & Allison, 1997)
and that this representation is sensitive to the
orientation of the face (Kanwisher, Tong, & Nakaya-
ma, 1998) but is relatively insensitive to its retinal
location (Andrews & Ewbank, 2004).

We know very little about the intervening processes.
Indeed, it is not necessarily the case that any
intervening levels of processing exist. All of the
information required to build the high-level semantic
representation must already exist in the image-based
representation of Striate cortex (V1) (or earlier); from
these representations no new information is added—
only transformed. It might be, therefore, that the
information used in a high-level semantic representa-
tion is retrieved directly from V1 and/or earlier areas.
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However, it might be that there are one or more
intervening stages with increasingly complex represen-
tations of the visual scene, continuing in the manner
seen in the early stages of visual processing.

As well as there being, potentially, several stages of
visual processing that we have not uncovered, there are
several anatomical regions whose contribution to visual
processing we have largely failed to understand.
Comparatively few laboratories so far have grappled
with cortical areas V2, V3, and V4. One suggestion for
V2 is that it might be involved in detecting contours in
the absence of net change in chromaticity or luminance
(von der Heydt, Peterhans, & Baumgartner, 1984),
although this might occur as early as V1 (Grosof,
Shapley, & Hawken, 1993). It has also been suggested
that this area is sensitive to border ownership (e.g.,
Zhou, Friedman, & von der Heydt, 2000). Most
recently, V2 has been found to be sensitive to higher
order statistics in visual patterns (Freeman, Ziemba,
Heeger, Simoncelli, & Movshon, 2013).

V4 was originally proposed as a center for the coding
of color (e.g., Zeki, 1973), although subsequent studies
have questioned its special role in that domain (e.g.,
Krüger & Gouras, 1980; Schein, Marrocco, & de
Monasterio, 1982). More recently it has been associated
with curvature perception (e.g., Pasupathy & Connor,
1999, 2002; Yau, Pasupathy, Brincat, & Connor, 2013).
For V2 and V4, then, it is not that there have been no
studies at all, but rather very few have been conducted
compared with the number of laboratories studying
low-level areas, such as V1 (see Table 1), or those
involved in high-level processing, such as fusiform face
area. The rate of progress in understanding V2 and V4
is, naturally, slowed by this paucity of laboratories
trying to understand them.

There are multiple visual cortical areas about which
we know relatively little compared with low- and high-
level visual regions, and there is a transform from an
image-based representation of edges to a semantic
representation of objects that we have yet to under-

stand. Understanding these is surely one of the holy
grails in understanding visual processing—at least, in
understanding visual form perception (the ventral
pathway of Goodale & Milner, 1992; Ungerleider &
Mishkin, 1982). So why are so few vision scientists
trying to understand the intermediate representations
of visual processing?

While presenting my laboratory’s studies to the
vision science community, the objections I have heard
have fallen into three categories, and I think that these
are likely to be more generally about mid-level vision
than about my attempts to study it. The first broad
camp of opposition is that these intermediate repre-
sentations obviously exist and therefore they are not
worth studying. The second camp of vision scientists
says that these intermediate representations could not
possibly exist and so we should not try to study them.
The third form of opposition is that intermediate
representations probably do exist but we could never
understand them, or at least describe them, so they
probably are not worth studying. It seems that the
community is, at least, in agreement that the mecha-
nisms are not worth studying, but let us consider more
closely the reasoning why.

Let us consider the possibility of mid-level detectors
with respect to a putative mechanism for encoding
curvature. Is it obvious that intermediate mechanisms
for a curvature detector must exist? Their existence is
certainly assumed, or implicit, to many theories and
studies. To some computational models they are
explicit (e.g., Riesenhuber & Poggio, 1999; Serre, Oliva,
& Poggio, 2007; Wilson, Wilkinson, & Asaad, 1997).
However, all the information required to construct a
representation of curvature is actually available from
the preceding (established) representation of orienta-
tion and space. There is technically no need for
curvature ever to be formally represented as an entity.
High-level processing mechanisms could potentially
retrieve that information directly from the preceding
level and skip the intervening step. Therefore, it does
not seem a certainty that intermediate representations
exist.

The main reason for the second objection—that
intermediate representations obviously could not ex-
ist—is that simply combining signals from each layer to
make more complex representations would require far
too many computational units (e.g., neurons). For
instance, if we were to combine in a pairwise fashion
the outputs of all V1 neurons in area V2, then V2
would need to contain the square of the number of
neurons in V1, which it clearly does not. Similarly, the
next stage would need some factorial combination of
the cells in V2, and we quickly find a combinatorial
explosion of entities that need to be encoded. This is
clearly a problem that needs to be considered and
addressed, but maybe not a reason to discard the entire

Search term Articles (N)

(V1 [Title] or striate [Title] or primary

visual cortex [Title]) and visual

2,725

V2 [Title] and visual 238

V3 [Title] and visual 37

V4 [Title] and visual 229

Table 1. Comparison of National Center for Biotechnology
Information PubMed searches for studies studying primarily one
or more retinotopic visual cortices (retrieved March 2015).
Notes: For each search, the name of the visual area was
required in the title and the word visual was required
somewhere in the document (because the terms V1 and V2 are
often used to refer to version numbers). This search is meant to
be illustrative rather than exhaustive.

Journal of Vision (2015) 15(7):5, 1–9 Peirce 2



endeavor. The circuits leading up to the primary visual
cortex certainly are taking essentially this approach.
The representation of spatiotemporal contrast found in
ganglion and lateral geniculate nucleus (LGN) cells is
constructed by a center-surround organization of
excitatory and inhibitory inputs from photoreceptors
via a complex intermediate circuit involving horizontal,
bipolar, and amacrine cells (Dowling & Boycott, 1966).
Similarly, by combining the outputs of these units we
could create oriented receptive fields with inhibitory
and excitatory regions, as found in V1 simple cells
(Hubel & Wiesel, 1962). People do not seem to have
raised the combinatorial explosion issue for these steps;
there is not a claim that there are too many possible
combinations for V1 to represent combined LGN
outputs. Possibly, that is because V1 has more neurons
than the LGN, but note that V1 contains approxi-
mately 140 million neurons (Wandell, 1995) compared
with the approximately 1.5 million retinal ganglion cells
(Hecht, 2001), an increase that is insufficient to handle
the sort of exponential increase implied by the
combinatorial explosion. Furthermore, the step from
photoreceptor to ganglion cell constitutes a reduction
of processing units from approximately 4.6 million
(Curcio, Sloan, Kalina, & Hendrickson, 1990) to
approximately 1.5 million retinal ganglion cells (Hecht,
2001). It seems curious, then, that we are willing to
accept that LGN outputs are combined by V1 to make
a new, more complex representation but unwilling to
accept that some similar process occurs beyond that.
Indeed, given that neurons work by combining, with a
mixture of excitation and inhibition, the outputs of the
preceding layer (and potentially feedback from higher
layers), it seems that some form of combination of
outputs must occur. The problem, then, is ‘‘simply’’ to
understand what form of combination that takes: what
the representation looks like, how many units’ signals
are combined in any one step, and how the combina-
torial explosion is averted.

The third objection that I have encountered is that,
although some form of signal combination might
occur, we could never understand or express its
representation using our human intuition and lan-
guage. If the brain represents the content of a visual
scene not by individual neurons’ encoding dimensions
that we understand but by the state of its networks,
then the combinatorial problem disappears. A simpli-
fied model network with only 100 neurons and 10 levels
of available response for each neuron obviously has
10100 available states, which means it can represent a
phenomenal number of things. This is true, however,
only if we expect any individual unit’s response to be
essentially arbitrary, not conforming to our human
preconceptions of what might be ‘‘meaningful.’’ As we
impose meaning (i.e., constraints) on the responses of
individual units (e.g., requiring that neighboring

processing units respond to neighboring parts of visual
space or that contrast response curves are smooth
functions), the number of valid unique states decreases.

In multilayer artificial neural nets, trained to
discriminate between a range of stimuli, it is common
to have an input layer, and output layer, and at least one
hidden layer (see Rosenblatt, 1962, for a detailed
introduction to multilayer networks). After training,
our artificial neural net might well perform successful
discriminations—the hidden layer may have created
representations of the input that can be classified by the
output layer—but the responses of the hidden layer are
not necessarily meaningful or understandable to us
when we inspect them. The responses of individual
units in this layer have no reason to find the features
that we, as humans, intuitively appreciate in the stimuli.

If the units are not responding to features of the
world that appear to us to have meaning, then the
search for intermediate representations might be
extremely difficult. Indeed, that might explain why we
have made relatively little progress in this area of visual
processing. However, the strong form of the hypoth-
esis—that there is no meaning to the responses of a
single unit in the intermediate network layers—is
certainly incorrect. The fact that the visual cortices are
retinotopically organized, for instance, means that the
responses of a neuron in, say, V3 are not entirely
arbitrary because they are based on a relatively
localized area of the visual scene. The fact that
neighboring neurons relate to neighboring regions of
space is a sign that there is organization to the visual
code in these cortices and that the scene is not encoded
as an arbitrary distributed code as the hidden layers of
an artificial neural network might be.

It seems clear, then, that intermediate mechanisms
might exist and that understanding the code of these
mechanisms might be a useful endeavor. This special
issue of Journal of Vision considers a number of ways in
which the mechanisms might be investigated using a
variety of methods from the neuroscientist’s toolkit,
such as psychophysics (Loffler, 2015; Wilson & Wilkin-
son, 2015) and neuroimaging (Andrews, Watson, Rice,
& Hartley, 2015; Kourtzi & Welchman, 2015). The aim
of the articles, and of the Vision Science Society
Symposium on which they were based (Andrews, 2014;
Kourtzi, 2014; Loffler, 2014; Pasupathy, 2014; Peirce,
2014; Wilson, 2014), is to highlight the range of ways in
which we can address this most complex of problems.

Selective mechanisms for simple
conjunctions: Plaids

For the remainder of this article we consider the
potential units that my laboratory has been investi-
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gating, representing simple combinations of gratings
that form plaid patterns and simple, short, curved
contours. Studying these seemed to be a natural
extension of the logic by which encoding appeared to
progress in earlier levels of processing. From selective
combinations (both excitatory and inhibitory) of
signals from photoreceptors, we can see how the
receptive fields of retinal ganglion cells (and lateral
geniculate nucleus neurons) might operate (Dowling &
Boycott, 1966). From selective combinations of those,
again in an excitatory and inhibitory fashion, we can
create plausible models of how a V1 simple cell might
work (Hubel & Wiesel, 1962), and we can use
combinations of those to produce a spatiotemporal
energy model (Adelson & Bergen, 1985) to simulate
complex cells. Indeed, the nature of neurons is that they
essentially add and subtract signals from a set of inputs,
albeit in variously nonlinear ways. That being the case,
we might wonder what the next form of combination
might be given the well-understood spatiotemporal
receptive fields of V1 neurons.

This leads us to a testable hypothesis; we could
search for evidence of neural and perceptual mecha-
nisms responding selectively to particular combinations
of sinusoidal gratings. My laboratory has concentrated
on the particular combinations that form plaid patterns
(i.e., a pair of oriented components with substantial
spatial overlap and dissimilar orientations) and curved
contours (with minimal spatial overlap and similar
orientations). These are not the only forms of
conjunction, of course; they are merely simple combi-
nations of pairs of gratings.

There is some reason to think that there might be
special mechanisms for plaid patterns from the fact that
some plaids, but not all, appear perceptually as
coherent patterns (Adelson &Movshon, 1982; Meese &
Freeman, 1995). When high-contrast orthogonal grat-
ings are combined to form a plaid pattern and are then
drifted behind an aperture, the percept is that of a
single surface moving in one direction. On the other
hand, if the gratings differ in spatial frequency or
contrast patterns or if the angle between the compo-
nents is very oblique, then we perceive two semitrans-
parent surfaces moving past each other (Adelson &
Movshon, 1982). Similarly, static plaids can be
perceived as coherent, unitary checkerboard patterns or
as two perceptually distinct gratings (Meese & Free-
man, 1995). In Figure 1, for example, in the upper row
the plaid patterns all look like checkerboards and one
struggles to perceive the gratings from which they are
constructed. In the lower row there is an increasing
difference in spatial frequencies, causing the percept of
a coherent plaid gradually to break. In the lower right
pattern the spatial frequency (SF) of one component is
four times greater than that of the other, and the
percept is clearly of two separate gratings.

In an attempt to identify selective mechanisms for
plaids more directly, we conducted a number of studies
measuring the selective contrast adaptation to a plaid
pattern—the extent to which the perceived contrast of a
plaid decreases after prolonged exposure. This was
compared with the degree of adaptation to the same
grating components combined into other plaid patterns
(Peirce & Taylor, 2006) or presented for equivalent
adaptation periods as single component gratings
(Hancock, McGovern, & Peirce, 2010; McGovern,
Hancock, & Peirce, 2011; McGovern & Peirce, 2010).
The results showed consistently greater adaptation to
the plaids than predicted by adaptation to the gratings
alone, provided that the contrast of the probe stimuli
was reasonably high (McGovern & Peirce, 2010) and,
as with the perceptual reports above, that the SFs of the
gratings were similar (Hancock et al., 2010). The
findings are consistent with a mechanism responding
selectively to the presence of a plaid pattern, which we
conceive as a unit performing a logical AND operation
on the outputs of two SF channels.

We are not the only group to have suggested such
mechanisms. Robinson and MacLeod (2011) also used
adaptation with compound gratings to show a version
of the McCollough effect with plaid patterns. Nam,
Solomon, Morgan, Wright, and Chubb (2009) showed
pop-out effects for plaids in a visual search task, which
they put down to a preattentive mechanism for which
the whole is greater than the sum of the parts. In their
study the relative SFs of the components were also
manipulated and, again, the finding was that the effect
of visual pop-out was reduced if the SFs were dissimilar
(Nam et al., 2009).

Selective mechanisms for simple
conjunctions: Curvature

Plaids are obviously only one form of conjunction
that we can create with a pair of sinusoidal gratings.
We also considered whether signals of small groups of
‘‘edges’’ would be combined by similar selective
mechanisms for curvature. Previous groups have
studied the sensitivity of trained observers in detecting
patterns of Gabor elements in paths in a contour
integration task (Field, Hayes, & Hess, 1993). Elements
can be detected in either the snake or the ladder
configuration of the contour in which the elements are
aligned to, or orthogonal with, the orientation of the
path (Bex, Simmers, & Dakin, 2001; Field et al., 1993;
Ledgeway, Hess, & Geisler, 2005). A variety of
association field models have been developed to model
the conditions where we are more and less sensitive to
the presence of contours in these and radial frequency
patterns (quasicircular patterns that are typically
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distinguished from truly circular patterns). Similarly,
measurements of our sensitivity to the global form of
arrays of elements (reviewed in this issue by Wilson &
Wilkinson, 2015) and our sensitivity to radial frequency
patterns (reviewed in this issue by Loffler, 2015; Wilson
& Wilkinson, 2015) have all suggested specific percep-
tual mechanisms for the processing of curvature in
form perception.

As with the plaid studies, we might also use
adaptation to try to identify the extent to measure and
characterize mechanisms sensitive to conjunctions. We
reasoned that we might be able to design a method of
compound adaptation for curvature similar to the
method we used in plaid adaptation (Hancock &
Peirce, 2008). We extended the idea of the tilt
aftereffect (Gibson & Radner, 1937) to a curvature
aftereffect by adapting subjects to a pair of Gabor
patches with slight overlap and slightly different
orientations that combine perceptually to form a
curved contour (or chevron, if the orientation
difference is substantial). As in the plaid adaptation
experiments, we were careful to equate the local tilt
aftereffects caused by the components by having a

second field in which the same components were
presented as adapters for the same period of time but
alternated with each other so that the curved contour
itself was not present. In both the component-adapted
field and the compound-adapted field a straight
contour then appears to curve in the opposite
direction, but, notably, a greater repulsion from the
adapting stimulus is found in the compound-adapted
field (Hancock & Peirce, 2008), as expected if we have
adapting curvature-selective visual mechanisms. Sim-
ilar conclusions come from the findings of shape-
frequency and shape-amplitude aftereffects by
Gheorghiu and Kingdom (2006, 2007, 2008), although
the complexity of this effect means that many more
factors need to be controlled (Gheorghiu & Kingdom,
2008).

Another form of more global adaptation was
discovered recently that might also be taken as evidence
for perceptual mechanisms for curvature: adaptation to
the tilt of an edge that is implied by a context. If
participants are adapted to a circular pattern with a
missing section then, when a standard linear grating is
used as a probe in the missing section, it shows a form

Figure 1. When high-contrast orthogonal gratings matched in SF are combined, the percept is always of a single checkerboard pattern

(top row) rather than two gratings. As SFs become increasingly disparate (bottom row component SFs differ by two, three, and four

times, respectively), it becomes easy to identify the two component gratings, and the percept is less clearly a plaid pattern.
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of tilt aftereffect (Roach & Webb, 2013; Roach, Webb,
& McGraw, 2008). Unlike the tilt aftereffect, however,
this effect is untuned to SF differences between adapter
and probe (Roach et al., 2008) and its effects are
maintained over large spatial separations between them
(Roach & Webb, 2013). Furthermore, it works only for
radial and concentric inducers; a traditional linear
grating adapter does not generate an implied tilt effect
in the same way (Roach et al., 2008).

Selective mechanisms for simple
conjunctions: The parameter
explosion

If the mechanisms suggested here were truly to exist,
we would need to find a solution for the problem of
parameter explosion described earlier. The visual
system cannot simply represent all possible combina-
tions of gratings in a pairwise (or worse) manner.

There are two basic ways to get around this problem:
increasing selectivity about which components you
combine, and increasing invariance to parameters that
are no longer of interest at the new level of
representation. We have seen evidence of the former
strategy in the fact that plaids are perceived as such
only if the components are similar in SF or other
parameters (Adelson &Movshon, 1982; Hancock et al.,
2010; Meese & Freeman, 1995). Why that would be the
case is unclear at this point; we do not know why
certain combinations of gratings are perceived as a
unitary pattern while others are not. We might
speculate that some have greater prevalence or
relevance in natural scenes. We found the same
selectivity effect for the curvature aftereffect (Hancock
et al., 2010), and in this case the reason seems obvious:
If the SFs of the components are dissimilar, then they
probably do not form a contour originating from a
single visual object.

Introducing invariance to a particular stimulus
dimension seems the more potent method of reducing
the space that an encoding mechanism needs to
capture. The only test for invariance that we carried
out in the plaid and curvature compound adaptation
studies was using SF and, for that, we found no sign of
invariance. When the adapter and probe differed from
each other in SF (but with components that were
matched), the selective adaptation disappeared, which
does not seem indicative of SF-invariant tuning of
either mechanism (Hancock et al., 2010). Of course,
there are other dimensions over which gratings can
vary that we did not test, mostly for practical reasons.
For example, we briefly investigated using chromatic
gratings and combinations in which the chromaticity

varied between components, which also prevents
binding of the components into a coherent contour.
When this did not yield significant selective adapta-
tion, we could not be certain that the reason was a lack
of conjunction processing or simply weaker adapta-
tion to the components (chromatic gratings necessar-
ily have a lower effective contrast on standard
displays).

Unlike the curvature aftereffect that we found, the
implied tilt effect of Roach et al. (2008) does appear to
be untuned to SF. Presumably, the mechanism that
supports this is at a later stage of processing than the
mechanism for the simple curvature aftereffect that
Hancock and Peirce (2008) measured.

Summary

Many vision scientists consider mid-level mecha-
nisms for coding of conjunctions to be so obvious that
we should not study them. Others consider these
mechanisms so obviously implausible that we should
not study them. Of the remaining vision scientists,
several consider these mechanisms so hard to study that
we should not study them. However, an increasing
number of us are trying to find ways to expose the
mechanisms falling between low-level edge detection
and high-level object perception. Given the rich variety
of techniques available to modern vision science, all of
which will be needed for this seminal question, this
seems an ideal time to try to understand the represen-
tations of mid-level vision.

Keywords: mid-level vision, plaids, curvature, hierar-
chy, V2, V3, V4
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