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Constructing lncRNA functional 
similarity network based on 
lncRNA-disease associations and 
disease semantic similarity
Xing Chen1,2,*, Chenggang Clarence Yan3,*, Cai Luo3, Wen Ji4, Yongdong Zhang5 & 
Qionghai Dai3

Increasing evidence has indicated that plenty of lncRNAs play important roles in many critical 
biological processes. Developing powerful computational models to construct lncRNA functional 
similarity network based on heterogeneous biological datasets is one of the most important and 
popular topics in the fields of both lncRNAs and complex diseases. Functional similarity network 
consturction could benefit the model development for both lncRNA function inference and lncRNA-
disease association identification. However, little effort has been attempted to analysis and calculate 
lncRNA functional similarity on a large scale. In this study, based on the assumption that functionally 
similar lncRNAs tend to be associated with similar diseases, we developed two novel lncRNA 
functional similarity calculation models (LNCSIM). LNCSIM was evaluated by introducing similarity 
scores into the model of Laplacian Regularized Least Squares for LncRNA–Disease Association 
(LRLSLDA) for lncRNA-disease association prediction. As a result, new predictive models improved 
the performance of LRLSLDA in the leave-one-out cross validation of various known lncRNA-disease 
associations datasets. Furthermore, some of the predictive results for colorectal cancer and lung 
cancer were verified by independent biological experimental studies. It is anticipated that LNCSIM 
could be a useful and important biological tool for human disease diagnosis, treatment, and 
prevention.

There are estimated 20,000 protein-coding genes in the human genome, which account for only approx-
imately 1.5% of the whole genome1–9. Therefore, more than 98% of the human genome does not encode 
protein sequences. Furthermore, plenty of evidences have demonstrated the critical regulative roles of 
noncoding RNAs (ncRNAs) in a broad range of fundamental and important biological processes10, which 
challenge the traditional view that RNA is just transcriptional noise and intermediary between gene and 
protein11,12. Especially, Taft et al. observed that the proportion of non-protein-coding sequence corre-
spondingly increases with increased complexity of organisms13. Based on transcript lengths, ncRNAs can 
be divided into small ncRNAs and long ncRNAs. Long noncoding RNAs (lncRNAs) are defined as a class 
of important heterogeneous ncRNAs with the length more than 200 nucleotides6,14–19, which make up 
the largest fraction of the mammalian noncoding transcriptome10,14. Based on traditional gene mapping 
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approaches, H19 and Xist were discovered in the early 1990 s20–23. However, these two lncRNAs were 
considered to be rare exceptions to the central dogma of molecular biology at that time. Guttman et al. 
used chromatin-state maps to develop a new genome wide approach for lncRNAs discovery and identi-
fied 1,600 large intervening non-coding RNAs (lincRNAs) across four mouse cell types24. Furthermore, a 
functional genomic approach has been developed to assign putative functions to each lincRNA, showing 
these lincRNAs has played various roles in fundamental and important biological processes24. Based on 
chromatin marks and RNA-sequencing (RNA-seq) data, Cabili et al. presented an integrative approach 
to generate the human lincRNA catalog, which included more than 8000 lincRNAs across 24 different 
human cell types and tissues25. These lincRNAs have also been characterized by a panorama of more than 
30 properties, such as sequence, structural, transcriptional, and orthology features25. Nowadays, a lot of 
lncRNAs have been identified in eukaryotic organisms ranging from nematodes to humans, which bene-
fits from the rapid development of both experimental technology and computational algorithms18,24,26–29. 
In comparison with protein-coding genes, lncRNAs tend to show a relatively lower expression level but 
much more tissue-specific pattern12,16,27,30–36. Furthermore, lncRNAs tend to be less conserved across 
species and have longer, but fewer, exons18,23,25.

Because of the low cross-species conservation, low expression levels and high tissue specificity of lncR-
NAs, people often argued against the functionality of lncRNAs in the past12,37. Increasing number of exper-
imental studies in recent years have shown that plenty of lncRNAs are not transcriptional noise but play 
important roles in many critical biological processes, including transcriptional and post-transcriptional 
regulation, epigenetic regulation, organ or tissue development, cell differentiation, cell cycle control, cel-
lular transport, metabolic processes, chromosome dynamics and so on7–9,11,14,15,24,29,38–46. Compared with 
the huge number of lncRNAs annotated by GENCODE16,18, only a few lncRNAs have been extensively 
studied, which have shed light on their possible functions and the underlying molecular mechanism of 
their functions23,46. Elucidating the functions of lncRNAs is a big challenge for both experimental studies 
and computational biology23. Considering the important roles of lncRNAs in various biological processes, 
it is no surprise that mutations and dysregulations of lncRNAs have been linked to the development and 
progression of a broad range of complex human diseases8,12,14,15,47–50, such as breast cancer51–54, hepatocel-
lular cancer55–60, prostate cancer61–65, colon cancer66, bladder cancer67, thyroid cancer68, lung cancer69,70, 
ovarian cancer54, leukemia71,72, Alzheimer’s diseases73, diabetes74,75, and HIV76. lncRNA PCA3 has about 
60 times expression levels in prostate tumors compared with normal tissues, therefore PCA3 has been 
treated as a well-known example of potential cancer diagnostic biomarker38,47,64. Another well-known 
example is HOTAIR, which is overexpressed from hundreds to nearly two-thousand-fold in breast can-
cer metastases based on quantitative PCR53. Furthermore, HOTAIR is also an independent prognostic 
marker of hepatocellular cancer recurrence for the patients after liver transplantation59. lncRNAs can be 
used as both potential biomarkers in disease diagnosis, treatment, prognosis and potential drug targets 
in drug discovery and clinical treatment47. So far, although plenty of biological datasets about lncRNA 
sequence and expression have been generated and stored in some publicly available databases, such as 
NRED77, lncRNAdb28, NONCODE29, the number of lncRNAs reported to be associated with diseases is 
still very limited.

Calculating lncRNA functional similarity could benefit the construction of computational model 
for lncRNA function inference and lncRNA-disease association identification based on the assumption 
that similar lncRNAs have similar functions and relevance with similar diseases78. In this way, poten-
tial lncRNA functions and lncRNA-disease associations could be verified based on further experimen-
tal validation. Therefore, the time and cost of biological experiments could be significantly reduced. 
Furthermore, it is well known that lncRNA function inference and disease-lncRNA association iden-
tification could benefit lncRNA functions understanding, biomarker identification and drug discovery 
for human disease diagnosis, treatment, prognosis and prevention. Computational methods have played 
important roles in ncRNA investigation in plenty of previous successful studies79–88. Therefore, develop-
ing powerful computational models based on heterogeneous biological datasets for lncRNA functional 
similarity calculation and functional network construction is one of the most important and popular 
topics in the fields of both lncRNAs and complex diseases.

In our previous work, we calculated the lncRNA functional similarity by integrating lncRNA expres-
sion similarity based on the Spearman correlation coefficient between the expression profiles of each 
lncRNA pair and lncRNA Gaussian interaction profile kernel similarity based on the assumption that 
similar lncRNAs tend to show a similar interaction and non-interaction pattern with the diseases78. 
Based on calculated lncRNA similarity, we further developed Laplacian Regularized Least Squares for 
LncRNA–Disease Association (LRLSLDA) in the semi-supervised learning framework78.

It is well known that genes with similar functions tend to be associated with similar diseases and vice 
versa89. In the recent researches about non-coding RNAs, similar conclusions have been obtained11,78,82,90. 
Based on the logical extension of the basic assumption in the previous disease genes identification, Chen 
et al. and Lu et al. proposed and validated the following basic assumption for disease-related lncRNAs 
and miRNAs prediction: similar diseases tend to be associated with functionally similar lncRNAs and 
miRNAs and vice versa78,90, respectively. Therefore, the conclusion can be obtained that the functional 
similarity between two lncRNAs can be calculated by quantitatively measuring the similarity of diseases 
associated with these two lncRNAs. In this article, we developed two novel lncRNA functional similarity 
calculation models (LNCSIM) based on above conclusion. LNCSIM consists of the following two steps. 
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Firstly, we developed two methods to calculate the semantic similarity between different diseases based 
on the structure of directed acyclic graph (DAG) which represents the relationships among different dis-
eases. Secondly, the functional similarity of two lncRNAs was calculated by measuring the semantic sim-
ilarity of their associated two groups of diseases. To validate the performance of LNCSIM, we introduced 
lncRNA functional similarity into the model of LRLSLDA for lncRNA-disease associations prediction 
developed in the previous work78. As a result, the reliable AUCs of 0.8130 and 0.8198 are obtained in 
the leave-one-out cross validation (LOOCV) of known experimentally confirmed lncRNA-disease asso-
ciation in the LncRNADisease for two versions of lncRNA similarity scores, increasing AUCs of 0.037 
and 0.0438 than previous LRLSLDA, respectively. We also applied LRLSLDA with lncRNA functional 
similarity (LRLSLDAS) to Colorectal cancer and Lung cancer and further implemented global prediction 
for all the diseases simultaneously. Some of potential lncRNA-disease associations have been confirmed 
by recent biological experiments. Specially, 80% and 66.67% of top 15 potential associations based on 
global prediction have been confirmed, respectively, demonstrating the potential value of LNCSIM for 
disease-related lncRNA prediction and biomarker detection for human disease diagnosis, treatment, 
prognosis and prevention. Furthermore, when we applied LNCSIM to another lncRNA-disease associa-
tion dataset in MNDR and integrated dataset consisting of lncRNA-disease associations obtained from 
LncRNADisease database and MNDR, significant performance improvement has also been demonstrated 
in the framework of LOOCV.

Results
lncRNA functional similarity.  LNSCIM was applied to all the lncRNAs investigated in 
LncRNADisease database (See Fig. 1). Considering the fact that lncRNA functional similarity was cal-
culated by measuring the semantic similarity of their associated disease groups in the current version 
of LNCSIM (See Fig. 1 and Methods section), LNCSIM can’t be applied to those lncRNAs without any 

Figure 1.  Flowchart of LNCSIM, demonstrating the basic ideas of calculating functional similarity 
between two lncRNAs. The following three steps have been included: (a) identified diseases associated with 
lncRNA u and v and constructed their disease DAGs; (b) calculated semantic similarity between diseases 
in the disease groups associated with lncRNA u and v; (c) obtained functional similarity between lncRNA 
u and v by calculating the similarity between corresponding disease group associated with each lncRNA. 
DAG: directed acyclic graph; LN: Liver Neoplasms; BN: Breast Neoplasms; PN: Pancreatic Neoplasms; D(u) 
and D(v): the disease groups associated with lncRNA u and v; SS(LN,PN): disease semantic similarity matrix 
between disease LN and PN; S(LN, D(v)): the similarity between LN and the disease groups associated with 
lncRNA v: FS(u,v): the functional similarity between lncRNA u and v.
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known associated diseases. Therefore, we selected those lncRNAs with associated diseases in our dataset 
to implement LNCSIM. Therefore, we obtained the pairwise functional similarity among 104 lncRNAs 
(see Supplementary Table 1 and 2, respectively). Furthermore, the lncRNA functional network was con-
structed by setting up a functional similarity threshold and connecting lncRNA pairs with functional 
similarity greater than or equal to the threshold in the lncRNA functional network (see Fig.  2 and 
Supplementary Figure 1, respectively).

Performance evaluation.  The effectiveness of LNCSIM was validated by applying the functional 
similarity results into lncRNA-disease associations prediction based on the model of LRLSLDA devel-
oped in our previous work78. The aim is to confirm whether the performance of LRLSLDA can be 
further improved by introducing the information of functional similarity. In the previous version of 
LRLSLDA, disease similarity and lncRNA similarity scores were derived from Gaussian interaction pro-
file kernel similarity and lncRNA expression similarity. Here, we combined new disease similarity from 
LNCSIM and disease Gaussian interaction profile kernel similarity into the integrated similarity by a 
simple mean operation. Furthermore, integrated lncRNA similarity is calculated based on the average 
of new lncRNA similarity from LNCSIM, lncRNA Gaussian interaction profile kernel similarity, and 
lncRNA expression similarity. New LRLSLDA models based on two different LNCSIM models were 
named LRLSLDA-LNCSIM1 and LRLSLDA-LNCSIM2, respectively.

LOOCV was implemented on the known experimentally verified lncRNA-disease associations in 
the LncRNADisease database to compare the performance of LRLSLDA, LRLSLDA-LNCSIM1, and 
LRLSLDA-LNCSIM2. As a result, LRLSLDA, LRLSLDA-LNCSIM1, and LRLSLDA-LNCSIM2 achieved 

Figure 2.  lncRNA functional network was constructed by the model of LNCSIM based on disease 
semantic similarity model 1, where each node represents one lncRNA and the links was connected if 
lncRNA pair has a functional similarity equal to or greater than the similarity cutoff (here the cutoff 
is 0.3 considering the fact that known lncRNA-disease associations is seriously incomplete currently). 
The size of a node is proportional to the degree of the node. The network is visualized by cytoscape (http://
cytoscape.github.io/).
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AUCs of 0.7760, 0.8130, and 0.8198, respectively (see Fig. 3). New predictive methods increased AUCs 
of 0.037 and 0.0438, respectively. Therefore, we can reach the conclusion that predictive accuracy has 
been improved by introducing new disease similarity and lncRNA functional similarity calculated from 
LNCSIM. In spite of less than two related lncRNAs for each disease on average in the known golden 
standard dataset, excellent predictive ability of LRLSLDA-LNCSIM1 and LRLSLDA-LNCSIM2 have been 
demonstrated.

According to Fig. 2, LRLSLDA-LNCSIM1 and LRLSLDA-LNCSIM2 showed similar predictive accu-
racy. Therefore, we wanted to know whether the similarity results based on LNCSIM1 and LNCSIM2 are 
complementary. Here, we used the mean, maximum, and minimum of the functional similarity calcu-
lated based on LNCSIM1 and LNCSIM2 as integrated functional similarity, respectively. Integrated func-
tional similarity was introduced into the model of LRLSLDA to see whether the predictive performance 
could be further improved. New LRLSLDA models based on these three kinds of integrated similarity 
were named LRLSLDA-LNCSIM-mean, LRLSLDA-LNCSIM-max, and LRLSLDA-LNCSIM-min, respec-
tively. We further implemented LOOCV on the known experimentally verified lncRNA-disease associ-
ations. As a result, LRLSLDA-LNCSIM-mean, LRLSLDA-LNCSIM-max, and LRLSLDA-LNCSIM-min 
achieved AUCs of 0.8168, 0.8199, and 0.8132, respectively (see Supplementary Figure 2). No significant 
performance differences from LRLSLDA-LNCSIM1 and LRLSLDA-LNCSIM2 could be observed, which 
indicated the similarity results based on LNCSIM1 and LNCSIM2 are not complementary.

Case studies.  We regarded all the known experimentally confirmed lncRNA-disease associations in the 
LncRNADisease database as training samples and applied LRLSLDA-LNCSIM1 and LRLSLDA-LNCSIM2 
to predict potential lncRNAs associated with several important diseases. Furthermore, we tried to search 
for recent experimental literatures to confirm the predictive results and evaluate the predictive ability of 
our models.

As the third most common cancer in males and the second in females, colorectal cancer accounts 
for approximately 8% of all cancer death91–93. Colorectal cancer most commonly occurs sporadically 
and only 25% of the patients have a family disease history, which indicates that lifestyle and environ-
ment risk factors could also promote the progression of colorectal cancer91,92. With the development of 
high-throughput sequencing technologies in the recent years, researchers have confirmed some criti-
cal mutations underlying the pathogenic mechanism of colorectal cancer, including some well-known 
frequently-mutated oncogenes or tumor suppressor genes (such as APC, KPRS, PIK3CA, and TP53) 
and a large number of mutated genes with a low frequency94–96. Nowadays, biological experiments have 
further linked mutations and dysregulations of some lncRNAs with the development and progression of 
colorectal cancer, such as HOTAIR, KCNQ1OT1, and MALAT1 in our training samples. For example, 
several independent experiments showed that HOTAIR could be considered as a negative prognostic 
marker in the blood of colorectal cancer patients23,97–100. We implemented LRLSLDA-LNCSIM1 and 
LRLSLDA-LNCSIM2 to prioritize candidate lncRNAs without the known relevance to colorectal cancer. 
As a result, four out of top 10 predicted colorectal cancer-related lncRNAs (CRNDE, H19, PVT1, and 

Figure 3.  Comparison between LRLSLDA, LRLSLDA-LNCSIM1, and LRLSLDA-LNCSIM2 in terms of 
ROC curve and AUC based on LOOCV. As a result, new prediction method increase an AUC of 0.037 
and 0.0438, respectively, demonstrating that predictive accuracy has been improved by the operation of 
introducing new disease similarity and lncRNA functional similarity calculated from LNCSIM.
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CASC2) have been confirmed to be associated with colorectal cancer based on recent experimental 
literatures101–103 (http://cpfd.cnki.com.cn/Article/CPFDTOTAL-KAXH201309001039.htm). For example, 
elevated expression of CRNDE in the tissue and plasma of almost all colorectal adenomas and adeno-
carcinomas has been detected based on microarray analysis, which showed CRNDE has the potential 
to be a biomarker for colorectal adenomas and cancers101. Furthermore, real time PCR demonstrated 
PVT1 may be a new oncogene and has the functional correlation with the proliferation and apoptosis 
of colorectal cancer cells102.

As the most common cause of cancer-related death worldwide in both men and women, there are 
estimated 1.4 million deaths resulting from lung cancer each year104–107. Lung cancer death is greater 
than the combination of following three most cancers: colon, breast, and prostate cancer104. Specially, 
five-year survival rate of lung cancer patients is only approximately 15% from the time of diagnosis, 
which is lower than other cancers types104,105,108,109. Furthermore, considering the important fact that 
lung cancer patients are not usually diagnosed until advanced stage and there are only few effective 
lung cancer risk biomarkers, it is necessary and urgent to investigate the mechanism of lung cancer and 
find new biomarkers for early diagnoses104,105,110–112. In the last decades, much attention has been paid 
to identify deregulation of protein-coding genes as diagnostic and therapeutic targets of lung cancer113. 
However, with the rapid development of lncRNA discovery and lncRNA function annotation, researchers 
have found that lncRNA plays a critical role in the development and progression of lung cancer49,114. Four 
known lung cancer related lncRNAs has been included in the golden standard dataset. For example, it 
has been observed that lncRNA BCYRN1 was expressed in the tissues of the breast, cervix, oesophagus, 
lung, ovary, parotid, and tongue cancer, respectively115. However, BCYRN1 was expressed not in corre-
sponding normal tissues115. Another example is the association between lncRNA H19 and lung cancer. 
Based on a knockdown approach, experiments indicated that breast and lung cancer cell clonogenicity 
and anchorage-independent growth were decreased because of the down-regulation of H1951. We fur-
ther prioritized candidate lncRNAs based on the scored calculated based on LRLSLDA-LNCSIM1 and 
LRLSLDA-LNCSIM2. Three out of top ten predicted lung cancer related lncRNAs (HOTAIR, UCA1, 
and GAS5) have been confirmed by independent experimental literatures102,116–118. A typical example 
is HOTAIR, which is ranked 2nd by both models. The expression of HOTAIR was upregulated in lung 
cancer cells based on a three-dimensional organotypic culture model116,118. One important fact must be 
pointed out that the known lncRNA-disease association dataset used in this paper for potential asso-
ciation prediction was generated before the publication of this paper. Therefore, this example could be 
considered as an independent validation of our model. Another biological experiment implemented in 72 
NSCLC specimens by qRT-PCR revealed the expression of the tumor suppressor lncRNA GAS5 was sig-
nificantly down-regulated in lung cancer tissues compared to adjacent noncancerous tissues117. Therefore, 
GAS5 is considered to be a potential diagnostic biomarker for lung cancer and a novel therapeutic target 
in patients with lung cancer117.

As a global ranking method, LRLSLDA-LNCSIM1 and LRLSLDA-LNCSIM2 can reconstruct the 
missing lncRNA-disease associations for all the diseases simultaneously. Therefore, these two mod-
els were applied to simultaneously rank all the candidate lncRNA-disease associations. Out of top 15 
potential lncRNA-disease associations, 12 and 10 associations predicted by LRLSLDA-LNCSIM1 and 
LRLSLDA-LNCSIM2 have been confirmed by experimental literature, respectively (see Table  1 and 
Supplementary Table 3). Potential association between lncRNA MEG3 and heroin abuse was ranked 2nd 
and 4th out of 19413 candidate lncRNA-disease pairs by LRLSLDA-LNCSIM1 and LRLSLDA-LNCSIM2, 
respectively. Quantitative PCR confirmed our predictive result by demonstrating MEG3 was upregulated 
in human heroin abusers compared to matched drug-free control subjects119. Similar high-ranking evi-
dences can also be found in our predictive list, which demonstrate the reliable performance by integrat-
ing LNCSIM and LRLSLDA.

We have demonstrated reliable performance of LRLSLDA-LNCSIM1 and LRLSLDA-LNCSIM2 
in the terms of LOOCV and the case studies of colorectal cancer and lung cancer. Therefore, we fur-
ther implemented these two models to prioritize all the candidate lncRNAs for all the diseases in the 
LncRNADisease database by using all the known experimentally confirmed lncRNA-disease associations 
in the LncRNADisease database as training samples. Potential human disease-lncRNA association list for 
each disease were publicly released to benefit the biological experimental validation (see Supplementary 
Table 4 and 5). It is anticipated that potential disease-lncRNA associations predicted by our models could 
be confirmed by biological experiments and useful for complex disease research.

Further performance evaluation on another dataset.  To further analysis and validate the results 
of LNCSIM, we applied LNCSIM to all the lncRNAs investigated in the manually curated diverse 
ncRNA-disease repository (MNDR)120. Pairwise functional similarity among 95 lncRNAs calculated 
based on two versions of LNCSIM was listed in Supplementary Table 6 and 7, respectively. Furthermore, 
we integrated the dataset in the LncRNADisease database and MNDR and implement LNCSIM to cal-
culate lncRNA functional similarity among 169 lncRNAs investigated in the integrated dataset (see 
Supplementary Table 8 and 9, respectively).

Furthermore, LOOCV was implemented on the known experimentally verified lncRNA-disease 
associations in MNDR to compare the performance of LRLSLDA, LRLSLDA-LNCSIM1, and 
LRLSLDA-LNCSIM2 (see Supplementary Figure 3). Also for the integrated dataset, LOOCV was 

http://cpfd.cnki.com.cn/Article/CPFDTOTAL-KAXH201309001039.htm
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implemented based on LRLSLDA, LRLSLDA-LNCSIM1, and LRLSLDA-LNCSIM2 (see Supplementary 
Figure 4). It could be easily concluded that predictive accuracy has been improved by new disease sim-
ilarity and lncRNA functional similarity calculated from LNCSIM.

Discussions
Quantitatively calculating lncRNA functional similarity is critical for lncRNA functions prediction and 
potential lncRNA-disease associations inference. Therefore, it has become an important goal and signifi-
cant problem for computational biology research. In this article, the model of LNCSIM was developed to 
calculate lncRNA functional similarity on a large scale by integrating known lncRNA-disease associations 
and disease semantic similarity. LNCSIM was motivated based on the basic assumption that functionally 
similar lncRNAs tend to be associated with similar diseases and hence the lncRNA functional similar-
ity can be calculated by measuring the similarity of diseases associated with them78,90. Furthermore, 
LNCSIM was introduced into lncRNA-disease association identification model LRLSLDA developed in 
our previous work to check whether the predictive performance of LRLSLDA can be further improved. 
The reliable performance improvement has been demonstrated in both cross validation and case studies 
about colorectal cancer and lung cancer. Potential lncRNA-disease associations for all the disease inves-
tigated in this article have been publicly released for further biological experiment confirmation. In our 
opinion, LNCSIM has potential value for lncRNA-related interactions prediction and lncRNA biomarker 
detection for human disease diagnosis, treatment, prognosis and prevention.

There are at least three limitations in the method design of LNCSIM. Firstly, considering the fact 
that lncRNA functional similarity was calculated by integrating lncRNA-disease association data and 
the disease DAG, LNCSIM may cause bias to lncRNAs with more associated diseases. Therefore, 
the performance of LNCSIM would be further improved when more known experimentally verified 
disease-lncRNA associations can be obtained. Secondly, semantic contribution decay factor appear in 
the current model and how to select this parameter is not still solved well. Finally, lncRNA functional 
similarity calculation could be improved greatly by integrating more reliable types of biological datasets, 
such as lncRNA-related various interactions, lncRNA sequence, disease phenotype information.

Methods
LncRNA-disease associations.  Considering accumulating biological experiments have pro-
duced hundreds of lncRNA–disease associations, we manually collected experimentally reported 
disease-lncRNA associations and constructed the first publicly available lncRNA–disease association 
database, LncRNADisease (http://cmbi.bjmu.edu.cn/lncrnadisease) in the previous work11, which aims 
to provide a comprehensive resource of experimentally confirmed lncRNA–disease associations and lay 
the data fundament for lncRNA-related predictive research. The lncRNA-disease association dataset was 
downloaded from the LncRNADisease database in October, 2012. In LncRNADisease database, the same 
disease-lncRNA association based on the different experimental literature evidences has been considered 
to be different associations. Therefore, 486 associations have been recorded in this database. We got 
rid of those duplicate associations based on different evidences for the same lncRNA-disease pair. As a 

Disease lncRNA Evidence (PMID)

Down’s syndrome DGCR5 Unconfirmed

heroin abuse MEG3 21128942

lung adenocarcinoma H19 16707459

colorectal cancer CRNDE 22393467

velocardiofacial syndrome NRON Unconfirmed

colorectal neoplasia HOTAIR 24531795

lung adenocarcinoma MEG3 Paper without PMID124

lung adenocarcinoma BCYRN1 9422992

colorectal neoplasia MALAT1 21503572

colorectal neoplasia KCNQ1OT1 23660942

heroin addiction MIAT 21128942

brain ischemia B2 SINE RNA 15016078

liver injury IFNG-AS1 Unconfirmed

cervix cancer H19 8570220

breast cancer MALAT1 24499465

Table 1.   As a global ranking method, LRLSLDA-LNCSIM1 was applied to simultaneously rank all the 
candidate lncRNA-disease associations. The top 15 potential associations and the confirmation for their 
associations by experimental literature were listed here.

http://cmbi.bjmu.edu.cn/lncrnadisease
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result, 293 distinct high-quality experimentally verified lncRNA–disease associations have been obtained, 
including 118 lncRNAs and 167 diseases (see Supplementary Table 10).

To further analysis and validate the results of LNCSIM, we downloaded human lncRNA-disease asso-
ciations in the MNDR120 in March, 2015. Similar to the operations for the dataset from LncRNADisease 
database, we got rid of those duplicate records based on different experimental literature evidences for 
the same lncRNA-disease associations. As a result, we obtained 471 high-quality experimentally verified 
human disease-lncRNA associations, including 127 diseases and 241 lncRNAs (see Supplementary Table 
11).

Disease MeSH descriptors and directed acyclic graph.  MeSH descriptors of various diseases were 
downloaded from the National Library of Medicine (http://www.nlm.nih.gov/), which provided a strict 
system for disease classification for the research of the relationship among various diseases121. MeSH 
descriptors included 16 categories: Category A for anatomic terms, Category B for organisms, Category C 
for diseases, Category D for drugs and chemicals and so on. The MeSH descriptor of Category C for each 
disease was used in this paper. Furthermore, directed acyclic graph (DAG) ws constructed to demon-
strate the relationship among various diseases, where the nodes represents disease MeSH descriptors and 
all the MeSH descriptors in the DAG are connected by a direct edge from a more general term (parent 
node) to a more specific term (child node) (See Fig.  1). Each MeSH descriptor has one or more tree 
numbers to numerically define its location in the DAG. The tree numbers of a child node are defined as 
the codes of its parent nodes appended by the child’s information. For the disease A, DAG is denoted as 
DAG(A) =  (D(A),E(A)), where D(A) includes the nodes represent disease itself and its ancestor diseases 
and E(A) consisting of corresponding direct edges from a parent node to a child node represents the 
relationship between these two nodes (See Fig. 1).

Since the disease names in the LncRNADisease database and MNDR weren’t named based on MeSH 
descriptors, we mapped the diseases in these two disease-lncRNA association datasets into their MeSH 
descriptors. After getting rid of some diseases without any Mesh descriptors or tree numbers from these 
two disease-lncRNA association datasets and merging some diseases with the same Mesh descriptors, 254 
and 260 distinct lncRNA-disease associations were obtained in LncRNADisease database and MNDR, 
respectively (see Supplementary Table 12 and 13).

Disease semantic similarity model 1.  As mentioned, functional similarity between two lncRNAs 
is calculated based on the similarity of diseases associated with these two lncRNAs. Therefore, we devel-
oped two models to calculate disease semantic similarity based on disease DAGs (See Fig. 1).

Firstly, we calculated the disease similarity in the same way as described in the literature122. Disease 
can be described as a DAG. We defined the contribution of disease term t in DAG(A) to the semantic 
value of disease A as follows:







( ) =
( ) = ∆ ( ′) ′ ∈ ≠ ( )

C A
C t C t t t t A

1 1
1 max { 1 children of } if 1

A

A A*

where ∆ is the semantic contribution decay factor, which shows the contributions of other ancestor 
diseases to the semantic value of disease A decrease with the increase of the distance between this disease 
and disease A. In the DAG of disease A, disease A is located in the 0th layer, therefore it is the most 
specific disease term and its contribution to semantic value of disease A is defined as 1. Disease located 
in the 1st layer is considered to be a more general disease, so its contribution is multiplied by the seman-
tic contribution decay factor. Based on above formula, the semantic contribution of diseases in different 
layers to semantic value of disease A are differentiated.

Therefore, summing all the contributions from ancestor diseases and disease A itself, the semantic 
value of disease A is defined as follows:

∑( ) = ( )
( )∈ ( )

A C tC1 1
2t A

A
D

Furthermore, the semantic similarity between two diseases A and B can be defined based on the 
nodes shared by the two disease DAGs.

( , ) =
∑ ( ( ) + ( ))

( ) + ( ) ( )
∩∈ ( ) ( )SS A B

C t C t

C A C B
1

1 1

1 1 3
t A B A BD D

where SS1 is the disease semantic similarity matrix. The entity SS1(i,j) in row i column j is the disease 
semantic similarity between disease i and j based on disease semantic similarity model 1.

Disease semantic similarity model 2.  Furthermore, the disease similarity was calculated in the 
same way as described in the literature123. According to disease semantic similarity model 1 defined 
above, the disease terms in the same layer of DAG(A) have the same contribution to the semantic value 

http://www.nlm.nih.gov/


www.nature.com/scientificreports/

9Scientific Reports | 5:11338 | DOI: 10.1038/srep11338

of disease A. However, different disease terms in the same layer of DAG(A) may appear in the different 
numbers of disease DAGs. For example, two diseases appear in the same layer of DAG(A) and the first 
disease appears in less disease DAGs than the second disease. Obviously, we can conclude that the first 
disease is more specific than the second disease. Therefore, it is less accurate to assign the same contri-
bution value to these two diseases according to the above consideration. The contribution of the first 
disease to the semantic value of disease A should be higher than the second.

In conclusion, a more specific disease should have a greater contribution to the semantic value of 
disease A. Here, the contribution of disease term t in DAG(A) to the semantic value of disease A was 
defined as follows:

( ) = −      /    ( )C t2 log [the number of DAGs including t the number of diseases] 4A

We defined the semantic similarity between disease A and B by summing all the contributions from 
ancestor diseases and disease A itself to define the semantic value of disease A in the similar way as 
model 1 and paying attention to the nodes shared by the two disease DAGs.

( , ) =
∑ ( ( ) + ( ))

( ) + ( ) ( )
∩∈ ( ) ( )SS A B

C t C t

C A C B
2

2 2

2 2 5
t A B A BD D

where SS2 is the disease semantic similarity matrix calculated based on model 2, C2(A) and C2(B) is 
the semantic value of disease A and B, respectively. The entity SS2(i,j) in row i column j is the disease 
semantic similarity between disease i and j based on disease semantic similarity model 2.

LNCSIM.  Here, we developed the model of LNCSIM to quantitatively calculate lncRNA functional 
similarity by measuring the semantic similarity of their associated two groups of diseases (See Fig.  1). 
Taking the similarity calculation between lncRNA u and v as an example, we firstly defined D(u) and 
D(v) as the disease groups associated with lncRNA u and v, respectively. We calculated the similarity 
between D(u) and D(v) as the functional similarity between lncRNA u and v. To calculate the similar-
ity between D(u) and D(v), the similarity between one of diseases associate with one lncRNA and the 
group of diseases associated with the other lncRNA should be defined. The similarity between one of 
diseases associated with lncRNA u, such as D1, and the group of diseases associated with lncRNA v was 
calculated as follows:

( , ( )) = ( ( , ))
( )∈ ( )

S d D v SS d d1 max 1
6d D u

Finally, the functional similarity of lncRNA u and v was defined.

( , ) =
∑ ( , ( )) + ∑ ( , ( ))

( ) + ( ) ( )
∈ ( ) ∈ ( )FS u v

S d D v S d D u

D u D v 7
d u d vD D

where FS is the lncRNA functional similarity matrix and the entity FS(i,j) in row i column j is the func-
tional similarity between lncRNA i and j.

Performance evaluation.  LOOCV was implemented to compare the performance of LRLSLDA, 
LRLSLDA-LNCSIM1, and LRLSLDA-LNCSIM2. Each known disease-lncRNA association was used as 
test sample in turn and how well this association was ranked relative to the candidate disease-lncRNA 
pair was observed. In this way, all other known experimentally confirmed disease-lncRNA associations 
and all the disease-lncRNA pairs without confirmed associations were considered as training samples and 
candidate disease-lncRNA pair, respectively. Receiver operating characteristics (ROC) curve and Area 
under the curve (AUC) was used to implement performance evaluation. ROC curve plots true-positive 
rate (TPR, sensitivity) versus false-positive rate (FPR, 1-specificity) at different rank cutoffs. When the 
rank cutoffs of successful prediction were varied, corresponding TPR and FPR can be obtained. Here, 
sensitivity represents the percentage of the test samples obtaining the ranking higher than a given rank 
cutoff; Specificity represents the percentage of samples obtaining the ranking lower than this given rank 
cutoff. In this way, ROC was drawn and Area under the curve (AUC) was calculated. AUC =  1 indicates 
perfect performance and AUC =  0.5 indicates random performance.
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