
Optimizing artificial neural network models for metabolomics 
and systems biology: an example using HPLC retention index 
data

L Mark Hall1, Dennis W Hill2, Lochana C Menikarachchi2, Ming-Hui Chen3, Lowell H Hall4, 
and David F Grant*,2

1Hall Associates Consulting, Quincy, MA, USA

2Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA

3Department of Statistics, University of Connecticut, 69 North Eagleville Road, Storrs, C, 06269, 
USA

4Department of Chemistry, Eastern Nazarene College, Quincy, MA, USA

Abstract

Background—Artificial Neural Networks (ANN) are extensively used to model ‘omics’ data. 

Different modeling methodologies and combinations of adjustable parameters influence model 

performance and complicate model optimization.

Methodology—We evaluated optimization of four ANN modeling parameters (learning rate 

annealing, stopping criteria, data split method, network architecture) using retention index (RI) 

data for 390 compounds. Models were assessed by independent validation (I-Val) using newly 

measured RI values for 1492 compounds.

Conclusion—The best model demonstrated an I-Val standard error of 55 RI units and was built 

using a Ward’s clustering data split and a minimally nonlinear network architecture. Use of 

validation statistics for stopping and final model selection resulted in better independent validation 

performance than the use of test set statistics.

Over the past decade the field of metabolomics has expanded to encompass applications in 

genetics, environmental sciences, human health and preclinical toxicity studies [1]. 

Metabolomics can be considered a pivotal component of systems biology where metabolite 

levels can be correlated with protein and gene expression data to provide a more inclusive 

understanding of living organisms. Recent improvements in MS and LC have enabled high-

© 2015 Future Science Ltd
*Author for correspondence: Tel.: +1 860 486 4265, Fax: +1 860 486 5792, david.grant@uconn.edu. 

Supplementary data
To view the supplementary data that accompany this paper please visit the journal website at: www.future-science.com/doi/full/
10.4155/BIO.15.1

Financial & competing interests disclosure
The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or 
financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.
No writing assistance was utilized in the production of this manuscript.

HHS Public Access
Author manuscript
Bioanalysis. Author manuscript; available in PMC 2016 March 01.

Published in final edited form as:
Bioanalysis. 2015 May ; 7(8): 939–955. doi:10.4155/bio.15.1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.future-science.com/doi/full/10.4155/BIO.15.1
http://www.future-science.com/doi/full/10.4155/BIO.15.1


throughput detection of a large number of metabolites in biological samples. Likewise, 

improvements in chemometric tools have enabled the high-throughput extraction and 

comparison of raw data to determine which experimental features vary between sample 

groups. Unfortunately, the process of structure identification for observed features has 

remained time consuming, costly and frequently unsuccessful [2].

To address this dilemma, our group has undertaken development of MolFind/BioSM as an 

innovative approach for structural identification of chemical unknowns. MolFind/ BioSM 

uses the experimental exact mass of an unknown to search large databases and create a 

candidate list of possible matches. MolFind/BioSM applies five additional orthogonal filters 

to reduce the number of false positives returned from the exact mass search [2–6]. Filters 

are: HPLC retention index (RI) [3, 6–7], Ecom50 [2,3] drift index (DI) [5], biological/

nonbiological (BioSM) [8] and CID (MS/MS) spectra [5, 9]. In filtering, predicted values 

for RI, Ecom50 and DI are made for candidate compounds using computational models. 

Candidates whose predicted values most closely match the experimental values of the 

unknown for RI, Ecom50 and DI are returned as the most likely candidates. Surviving 

candidates are rank ordered based on results from the CID and BioSM models to create a 

final list. Filtering effectiveness is dependent on the computational models. For optimal 

performance, models should comply with the following: model data must have the correct 

structural diversity to apply to biochemical chemotypes; data must provide adequate 

coverage of the experimental data range; and the standard error of prediction (SE) must be 

as small as possible. MolFind/BioSM uses ± 3 SE filter ranges to filter out compounds 

whose predicted values are very different than the experimentally observed value of the 

unknown. Reductions in the SE lead to narrower filter ranges and the elimination of a 

greater number of false positives.

In previous studies [3, 6–7], RI was evaluated for the purpose of structure identification in 

the MolFind method. An HPLC-RI is generated using a homologous series of reference 

compounds with increasing lipophilicity. The RI value is a measure of relative (rather than 

absolute) retention time based on the reference compounds that elute just prior to and just 

after the solute of interest. Small changes in structure result in measurable changes in the 

retention index due to the ability of each atom to effect relative distribution between the 

mobile and stationary phases. Although many studies have been performed using ANN to 

model RI, [10–16] those studies have not addressed the issue of optimizing model 

development. Additionally, most studies were based on small datasets of homologous 

compounds and so do not address the issues of structure description inherent in modeling a 

diverse dataset. There are multiple algorithmic options and nearly limitless combinations of 

adjustable parameters to explore when constructing quantitative structure-retention 

relationships (QSRR) models with ANN learning methods. Thus, it is often difficult to 

establish best practices. Here we investigate ANN options by modeling RI data with a 

variety of learning parameters and testing the results with newly measured RI data and 

comparisons to a multiple linear regression (MLR) model.
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Materials & experimental data

Experimental determination of retention index (RI) values

Reagents & standards—A mixture of retention index control compounds were prepared 

at 0.1 umol/ml in water:methanol (1:1). The purity of the C3–C6 index control compounds 

was as follows; n-propanamide 97%, n-butanamide >98%, n-hexanamide 98%. An 

equimolar mixture of n-heptanamide, n-octanamide, n-nonanamide, n-decanamde, n-

undecanamide, n-dodecanamide, n-tridecanamide and n-tetradecanamide was synthesized by 

reacting a mixture of equimolar amounts of the respective n-alkyl carboxylic acids with 

ammonium carbonate. The identity of synthesized n-alkylamides was verified by accurate 

mass spectral analysis but purity was not determined. A methanolic mixture of C3-C6 n-

alkylamides was combined with a methanolic mixture of the C7–C14 n-alkylamides and 

used as the retention reference calibration standard. Because of long term degradation that 

appeared to be caused by cross reactions between some of the control compounds, two 

separate stock solutions were prepared and mixed 1:1 for each analysis. Mixture A was 

composed of 0.2 umol/ml nicotinic Acid, N, N-dimethylbenzamide, corticosterone, 

probenecid, indomethacin, phenylbutazone, and thonzonium. Mixture B was composed of 

0.2 umol/ml 2-aminopy-rimidine. Test compounds were used as received with no 

purification. Stock solutions of each compound were prepared at 1 mg/ml. Compounds with 

logP values ≤1 were dissolved in reagent grade water, compounds with logP values >1 and 

≤2 were dissolved in reagent grade water:methanol (1:1) and compounds with logP values 

>2 were dissolved in methanol. Mixtures of ten compounds that differed in molecular mass 

by >±4 Da were mixed together at a concentration of 0.5 umol/ml along with a mixture of 

internal control compounds (0.16 umol/ml 2,3,3A,4,5,7,8,9,9A9B–Decahydro-3-

hydroxy-3A–methyl-1H–benz(e)inden-7-one (S94) and 0.04 umol/ml mefenamic acid).

HPLC/MS system—Test compound mixtures were analyzed on an Agilent 1100 HPLC 

(Agilent, Santa Clara, CA, USA) system interfaced to a QTOF-2 mass spectrometer (Waters 

Associates, Beverly, MA, USA). The compounds were separated on a Zorbax SBC18 (1 mm 

× 150 mm, 3.5 um particle size) column containing a Zorbax Stable Bond (1 mm × 17 mm, 

5 mm particle size) OptiGuard precolumn. Solvent A was 0.01% heptafluorobutryic acid 

(HFBA) in water and solvent B was 0.01% HFBA, 10% water in acetonitrile. The analysis 

was performed at a mobile phase flow rate of 75 ul/min using a linear solvent gradient from 

0% solvent B to 100% solvent B in 17 min with a 5 min isocratic hold at 100% B. The 

column effluent entered the mass spectrometer electrospray source in positive ion mode. The 

source temperature was 120°C, the cone potential was 20 V and the capillary potential was 

3.0 kV. The nitrogen nebulizer gas flow rate was 100 l/h, the cone gas flow rate was 50 l/h 

and the desolvation gas flow rate was 250 l/h at 120°C. To aid in efficient transfer of the 

ions through the collision cell the nitrogen collision gas was set at 12 psi and the collision 

energy was set at 10 eV. Full scan mass spectra were collected at 2 scans/s. HPLC 

chromatographic and mass spectral data were processed with Masslynx 4.0.

The development of a mobile phase for HPLC analysis of compounds with a wide range of 

polarities and hydrophobicities always involves compromises in optimizing 

chromatographic and detector efficiencies. Questions exist about the use of HFBA as an ion 
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paring agent because of the potential for formation of HFBA cationic cluster complexes that 

may be detected as background ions or chromatographic peaks. To address this, LCMS data 

processing software has been adjusted to remove these ions from consideration. We believe 

that the retention of polar metabolites that would otherwise elute in the column void volume, 

and the decrease in both band dispersion and asymmetric elution of ionized basic 

compounds outweigh potential disadvantages.

Determination of test compound RI values—Prior to and at the end of each batch 

sample analysis 1 µl of a mixture of 1.4 umol/ml nitro-n-alkanes (C1-C10) and 1 µl of 0.7 

umol/ml uracil were analyzed on the HPLC system using a diode array detector at 210 nm in 

place of the mass spectrometer. A batch HPLC/MS analysis consisted of the analysis of 1 µl 

of 1.4 umol/ml uracil, 1 µl of the control test mixture followed by 1 µl of each RI test 

compound mixture.

Conversion to n-amide RI reference standards—During the initial analysis of test 

compounds the retentions times were normalized relative to the retention times of a 

homologous series of nitro-n-alkanes. In previous studies we defined the RI value at the 

retention time of each nitro-n-alkane as 100 times the number of carbon atoms in the 

respective nitro-n-alkane reference compound. The RI values for each test compound were 

calculated from the derived fourth order polynomial equation of the nitro-n-alkane RI value 

versus the respective retention time. The nitro-n-alkane reference compounds have been a 

reliable retention reference, however they are undetectable by electrospray MS. In an effort 

to develop a homologous series of retention reference compounds that could be detected by 

positive ion electrospray, we investigated the use of the n-alkylamide (C3-C14) series of 

compounds. For this study, RI values were calculated relative to the nitro-n-alkanes, but the 

RI values for the nitro-n-alkane homologues series was defined relative to the retention of 

the n-alkylamides in the HPLC system. The new RI values (RIamide) are based on equating 

100 times the number of carbon atoms in the respective n-alkylamide to their respective 

retention times. Since the relationship of the RIamide values of the reference compounds 

relative to their retention times was linear, the RIamide values of the test compounds were 

calculated by linear interpolation between the retention times of the reference compounds 

that eluted before and after the respective test compound.

Dataset structural profile—The measurements described above resulted in RI values for 

390 structurally diverse compounds. Examples of more than 40 different hydrophilic 

functional groups are present including amine, aniline, pyridine, pyrrole, ether, ester, ketone, 

alcohol, carboxylic acid, phenol and amide. In addition, there are numerous related 

functional subgroups such as the ‘amide-like’ features that contain an amide and an 

extended conjugated system of oxygen, nitrogen and carbon atoms. Examples of amide-like 

features include urea, imide, guanine, xanthine, cytosine, uracil, barbiturate, uric acid, 

hydantoin, pyrazolidinone and flavin. Limited examples of aldehyde, diazole, purine, 

guanidine, pyrimidine, guanine, xanthine, pyrazolidinone, phosphate, phosphonate, sulfonic 

acid, sulfinic acid, thioether, thioanisole, disulfide, sulfoxide, quaternary nitrogen and 

pyridinium are present. Hydrophilic functional groups appear in numerous combinations 

ranging from one group to six. Numerous lipophilic skeletal features are also present 
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including vinyl, phenyl, napthyl, cyclopentyl, cyclohexyl, t-butyl and a variety of chain 

lengths and branching patterns. Molecular weight ranges from 79 to 609 Da with an average 

of 217 Da. Structures for all compounds are given in Supplementary information [SI1].

Methods: model data

Model generation overview

Creation of a quantitative model is a process involving the acquisition of data and multiple 

data processing steps. A model is built on data consisting of a group of molecular structures 

and a corresponding group of experimentally measured endpoints (targets). In order to 

facilitate processing by machine learning algorithms, structures are reduced to numerical 

descriptors that encode structural characteristics from which variation in the target arises. 

The structures reduced to descriptors and the target values together constitute the model 

dataset. The target and structure descriptors values may need to be normalized and scaled to 

comply with algorithm input requirements. The dataset must also be partitioned into subsets. 

Some data are used for learning (training set), some data are used to determine when to stop 

learning (test set), and some data are withheld for validation (validation set). The dataset 

partitioned into train/test/validate subgroups is referred to as a data split. Finally, the 

subdivided data must be processed by an appropriate learning algorithm to enumerate the 

relationship between the descriptor values and the target. The quality of the resulting 

relationship is characterized by statistics tabulated for the subsets of the data split. The 

model dataset was described in the Materials & experimental data section. The descriptors, 

input normalization and scaling, and data partitioning methods are discussed in the 

remainder of this section.

Structure descriptors

A set of 36 structure information representation descriptors (SIR) [17–22] was selected 

to form the basis of an HPLC-RI QSRR model. Descriptors values were calculated using 

winMolconn, v2.1 (Hall Associates Consulting, Quincy, MA, USA). Molconn descriptors 

do not require a specific three-dimensional geometry to be determined for each structure. 

This is important given the throughput required by the MolFind/BioSM method. Descriptors 

were chosen to explicitly describe every feature of every molecule that would likely 

influence retention time.

Feature descriptors

Feature descriptors encode information about parts of a molecule (rings, atom types, 

functional groups, etc.). Challenges exist when selecting feature descriptors for a dataset that 

is diverse compared with its size. Diverse datasets require numerous inputs to encode all 

relevant chemical information and statistical constraints on the number of inputs relative to 

the number of data rows make it difficult to encode sufficient structure information in a 

statistically acceptable number of inputs.

The Interaction Group E-State (IGroup) descriptors were used to address this issue. The 

IGroups methodology [7] explicitly represents every atom in a molecule by grouping atom 

level contributions from atoms that undergo similar noncovalent interactions in solution. 
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Atom level contributions are quantified by the Atom-level Electrotopological State (E-State) 

[19]. The E-State quantifies the electron accessibility at each atom as the buildup or 

depletion of valence electron density modified by the topographic accessibility. The E-State 

is a measure of the extent to which the atom will participate in noncovalent intermolecular 

interactions. IGroups are created by assigning atoms from related functional groups to a 

unified set of descriptors. The amide-like features described earlier are an example of an 

IGroup. Other IGroups include acids (carboxylate, phosphate, phosphonate, sulfonate, 

sulfiniate), anilines (aniline, benzamidine), aromatic nitrogen (pyridine, quinoline, 

pyrimidine), permanent charge nitrogen (quaternary nitrogen, pyridinium) and others. After 

atoms are assigned to an IGroup, a discrete index is created for each noncarbon atom-type in 

the group. Each discrete index is created from the sum of the atom-level E-State values for 

all atoms in the molecule in the IGroup category. The IGroups method allows for the 

description of complex series of related functional groups in a small number of indices.

Graph-based and molecular connectivity feature descriptors were selected to encode feature 

information about branching, rings and flexibility including number of rings, number of 

circuits, number of rotatable bonds, the chi simple path-cluster 4 index, and the chi simple 

chain 5, 6 and 7 indices [21]. Finally, an E-State based internal hydrogen bonding index was 

used to encode the strength of molecular subgraphs that are likely to form internal hydrogen 

bonds.

Global descriptors

Global descriptors encode information that is common to all compounds. For this study, chi 

valence 0 [21] was used to approximate molecular volume. Two global indices were used to 

characterize hydrophilicity and lipophilicity. The rvalHyd index (ratio valence hydrophilic 

index) [3] is the sum of atom level E-State values of hydrophilic atoms divided by the sum 

of atom level E-State values for every atom in the molecule. This index quantifies the 

proportion of valence electron density associated with hydrophilic atoms. The sumLip [3] 

index (total lipophilic E-State) is the sum of the atom level E-State value for all lipophilic 

atoms in the molecule. Two global shape descriptors were created for this project. These 

descriptors are flatness, and inverted difference simple chi 2 (inv_dx2). The flatness index 

gives the ratio of the number of sp2, sp and aromatic atoms to the total number of atoms. 

The inv_dx2 index was created by subtracting the simple difference chi path 2 (dx2) index 

value for the molecule from 10. Since dx2 is 0.0 for molecules with no branching, straight 

chain molecules have an inv_dx2 value of 10 and inv_dx2 gets smaller with branching and 

rings. Formal definitions for all descriptors are given in Supplementary Information [SI2].

Input normalization & scaling

Neural nets models created in the study utilize a sigmoid transfer function that requires 

inputs with values from 0.0 to 1.0. To satisfy these constraints, descriptor values were 

normalized by Z-score and then scaled. For feature descriptors, a value of 0.0 indicates the 

feature is absent. For this reason, normalization of feature inputs used the mean and standard 

deviation of the nonzero rows. Feature descriptors values of 0.0 were not normalized or 

scaled to preserve their null-set significance. Because global descriptors have a meaningful 
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value for every compound, global inputs were normalized using the mean and standard 

deviation for all rows.

Following normalization, normalized values of global descriptor were scaled from 0.1 to 

0.7. The 0.7 maximum leaves ‘headroom’ to allow the model to make predictions for 

compounds with input values larger than those in the training data. For feature descriptors 

with nonzero values, normal values were also scaled from 0.1 to 0.7. Global descriptors for 

flatness and inv_dx2 were scaled from 0 to 1 because both have a theoretical minimum and 

maximum that cannot be exceeded, regardless of the molecule being described.

Dataset partitioning

The 390 compound dataset was partitioned into a train/test/validate data split as described 

above. Certain aspects of the data splitting process require examination at this point.

Random data split

In many previous ANN studies, the data split was created with random assignments. There 

are potential problems associated with this method [23]. ANN learning occurs by downward 

navigation on an n-dimensional error surface. Since the error surface is a function of the 

input descriptor values and the error (difference between target and predicted values), it is 

possible that a random split can introduce bias into the error surface and thus the learning 

process. Bias can be related to the target values, structure descriptor values, or both. This is 

especially true with datasets that are sparsely clustered in target property or descriptor space. 

When clusters of data are small and widely separated, there is an increased chance that a 

random split could place too many similar compounds into the training or validation set. 

This could result in a training space and corresponding error surface that does not effectively 

discriminate structure and property space. If too many compounds of a given class with 

small target values are randomly assigned to the validate set, the training set could lack the 

necessary information to discriminate between large and small target values for compounds 

of that class. All compounds of the class would tend to be overpredicted because most 

similar training set compounds have large target values. Since models predict best when 

interpolating a solution, it is optimal for the training space to have as large a numerical range 

as possible in both structure parameters and target property values. It is impossible to predict 

the range that will result from random assignments.

When multiple random splits of the same data are modeled, there can be significant variation 

in the compounds with the worst predicted residuals. Thus, poor predictions can arise solely 

from the data split composition. Since the goal of a model is to make as many good 

predictions as possible, the question arises as to whether there is an optimum method of 

creating a data split.

Deterministic data split

For the initial model optimizations investigated, a deterministically constructed data split 

was used to reduce the risk of bias. Other data splitting methods are evaluated in later 

sections. A deterministic [23] split is constructed to balance the structural diversity and 

experimental target range across the split subgroups. For this reason, a deterministic data 
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split method must have a means to quantify both the structure and target spaces of available 

data. A deterministic data split was constructed using the following method.

Model descriptors described earlier include 18 IGroups to encode heteroatomic functional 

groups. A bitkey of 18 bits was constructed for each compound with one ‘on-bit’ for each 

IGroup descriptor with a nonzero value. A bitkey is a string of bits with each bit 

representing one feature. A bit is ‘on’ (1) if the feature is present and ‘off’ (0) if the feature 

is absent. Compounds were sorted on bitkey value to identify groups of compounds with the 

same heteroatomic features. Compounds were rank ordered on experimental RI within each 

bitkey group. Groups were given an overall order from simple to complex with one on-bit 

compounds coming first. All groups of compounds with 1 on-bit were further sorted so that 

the 1 on-bit group with the largest number of members was placed first, followed by smaller 

groups in descending order. This procedure was repeated for groups with 2 on-bits, up to the 

maximum observed 12 on-bits.

After the bitkey order was established, data were partitioned into train, test and validate sets 

using the 4 × 10 × 10 ensemble method published previously [2–3,7]. To create the data 

split, available data were divided into four fit/validate sets (A,B,C,D). In each set, 25% of 

the data were assigned to validate and 75% were assigned to the fit set. Each compound was 

assigned to exactly one validate set. Because the data were preordered on bitkey and RI 

values, fit/validate sets were constructed by assigning every fourth compound to validate. 

After assignment, the rows of each set were reordered placing the validate rows last. After 

the fit/validate sets were created, each fit set was further subdivided into tenfolds. In each 

fold, 90% of the data were assigned to the training set and 10% were assigned to the test set. 

The test set for each fold was created by assigning every tenth compound to test. Each fold 

begins assignment on a different row so each compound is assigned to the test set in exactly 

onefold.

Assignment by the above method insures that a relatively equivalent number of structures 

from each structural subgroup were assigned to train, test and validate. The secondary 

ordering on RI value helps to insure an even distribution in target space. The result is that 

each fit/validate set has been subdivided into tenfolds, each with its own test set. 

Additionally, 25% of the data have been withheld for validation. Since the data split 

contains four fit/validate sets, validation data were available for every compound. The final 

ensemble was comprised of 40 models where each compound is in the training set of 27 

models, the test set of 3 models and the validate set of 10 models. This process is illustrated 

in Figure 1.

The data split described above was used to build an MLR model and multiple ANN models 

in an optimization process. Because optimization is a series of dependent steps where each 

successive optimization is dependent on the results of the previous step, ANN optimization 

results are presented incrementally in the methods section following the description of each 

optimization procedure. ANN optimizations are compared with an MLR model, so MLR 

modeling results are presented in the next section. Summary results are also given in the 

results section.

Hall et al. Page 8

Bioanalysis. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods: MLR model & ANN background

Baseline MLR model

As a starting point, a multiple linear regression (MLR) model of the bitkey data split was 

created using JMP version 4.2 (SAS Institute Inc., Cary, NC, USA). A separate MLR was 

created for each of the four fit/validate sets. The fit set data were used to create a model that 

was evaluated with predictions of the validation data. MLR modeling resulted in a validation 

set r2 of 0.83, mean absolute error (MAE) of 61 RIU and standard error (SE) of 73 (Figure 

2). Performance was less good when predicting new data. An average prediction from all 

four models was used for independent validation (IVal) using 1492 compounds for which RI 

was recently measured. Results were r2 = 0.68, MAE = 80 and SE = 86. When the model 

applicability domain was accounted for, results for compounds similar to model data were r2 

= 0.73, MAE = 72 and SE = 83 (Figure 2). Since the requirement of MolFind/BioSM is a 

model with the smallest possible ±3 standard error filter range, an ANN solution was 

investigated to determine if IVal results could be improved. ANN was chosen because 

neural networks have been used to create a successful model [2–3,7] of similar data based 

on N-nitro alkane standards.

ANN background

Since this paper describes ANN model optimization, a brief description of neural network 

methods is given here. ANN models enumerate a relationship between a set of targets y 

(dependent quantities) and a corresponding set of input variables x1, x2, xn (independent 

quantities) [24]. There is an implicit assumption that y depends on xn according to some 

function y = f(xn) that the model will approximate.

ANN as a computational model

A neural network is a series of algebraic equations organized as a network of three or more 

layers of neurons (nodes). Every node of each layer is connected to every node of the next 

higher level layer and a weight is associated with each connection. Networks used for this 

study consist of an input layer with one node for each descriptor, a hidden layer to support 

nonlinearity and an output layer with a single node to output a solution. The solution for 

each case (data row) is generated by a forward pass that sequentially calculates an output 

value for each node in the network. The forward pass starts by loading the descriptors for 

one case to the input layer. Output is passed from input layer nodes through a sigmoid 

transfer function [25] that transforms each node input value to a value from to 0 to 1. The 

transformed value is passed to connected nodes in the hidden layer. A weight is associated 

with each connection and functions as a coefficient. Input to each hidden layer node is the 

sum of the products of the input layer outputs and connection weights and hidden layer 

output is also made through a sigmoid transformation. The input and final solution generated 

by the output node is created in the same way. A given set of descriptor input values results 

in a specific numerical value output from the output node. This is the solution for a case 

described by the input values and is determined by the weights on each connection.
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ANN as a nonlinear learning system

ANN supervised learning adjusts the weights so as to approximate each target as a nonlinear 

function of the inputs. A significant advantage of ANN learning is the ability to enumerate 

this approximation without a priori knowledge of the exact form of the optimal nonlinear 

function [24]. In supervised learning, the network is presented with a sequence of case pairs 

consisting of a set of input values and a target value. The objective is to optimize the weight 

values so as to generate output for each case that is as close as possible to the target [24]. 

The output is compared with the target and an error is assessed to a cost function.

Models for this study used the back propagation gradient descent algorithm (BPGDA) [25]. 

The cost function and the weight space together enumerate an n-dimensional error surface 

where each point corresponds to a vector of weight values and an associated magnitude of 

the cost function. The network is ‘trained’ in a series of feed forward and back propagation 

passes that navigate ‘down’ the error surface. As described above, a feed forward pass is 

used to tabulate the error for each case. Back propagation utilizes gradient descent to 

determine the direction in which each weight must be adjusted in order to reduce the 

magnitude of the cost function. Gradient descent typically begins at a random point on the 

error surface and then modifies the weight values in the direction of steepest descent of the 

cost function [26]. The gradient, or direction in which the slope of the error surface is 

steepest in reduction of the cost function, is identified by calculating how changes in the 

weight values affect the error [25]. The gradient is the slope of the surface tangent to the 

current location in weight space and is therefore instantaneous. Since the location in weight 

space changes with each weight alteration, it is not possible to chart a path from the starting 

location to the cost minimum. Descent along the gradient must be approximated by making 

successive finite weight changes in the instantaneous direction of steepest descent. These 

weight adjustments are made in a series of steps with a magnitude proportional to the 

learning rate and gradually identify a location with a cost function minimum.

Weight adjustments can be determined and sequentially applied based on the error of each 

case (online updates) or adjustment values can be accumulated over all cases and applied 

simultaneously (batch updates) [26]. With either method, a training epoch is defined as 

applying weight adjustments once for all cases. Statistics are calculated at the end of each 

epoch.

Methods: nonoptimized neural net methods

Some aspects of ANN model development were not optimized in this study and for those 

aspects, the same methodology was used for all models constructed. These aspects are 

described in this section.

General ANN methodology

Neural net models for this study were trained according to the following general method. 

Each of the four fit/ validate sets described earlier was processed separately. Within each 

set, a total of 50 models were developed for each fold, each created from different random 

starting weights. Models were trained on the training set data and the test set MAE was 
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evaluated at the end of each epoch. Test set data were used for ‘stopping,’ meaning that 

training continued until the test set MAE minimized. When minimization occurred, training 

stopped and predictions were made for the validation set. Of the 50 models generated for 

each fold, the model with the lowest test set MAE was selected as the final model. For each 

set, the process resulted in nine predictions for train compounds, ten predictions for validate 

compounds, and one prediction for each test compound. The nine train predictions were 

averaged, the ten validate predictions were averaged and statistics were calculated for the 

train, test and validate subsets. The process was repeated for each of the four fit/validate 

sets. To create final ensemble statistics, averages were taken over the 40 models of the 

ensemble (4 fit/validate sets × tenfolds). For each compound, 27 training set predictions 

were averaged for a final train prediction, and 3 test set predictions are averaged for the final 

test prediction. Validate set predictions are aggregated so that validate statistics can be 

calculated for the overall data split. The average of predicted values from all 40 models of 

the ensemble was used to make predictions for the independent validation data (newly 

measured data). The above methodology was used to create all models with the exception 

that optimizations were also evaluated using validate set statistics for stopping.

Weight update method

As discussed earlier, neural network learning by back propagation involves adjusting, or 

updating, the value of the weights of each network connection following an error gradient 

toward a global minimum. There are two major methods by which network weights can be 

updated. In deterministic gradient descent (batch updates), weights are updated based on the 

cumulative error of all rows of data. Weight changes identified by back propagation are 

accumulated over the entire training set and applied simultaneously [26]. In stochastic 

gradient descent (online updates) weights are updated are based on the error of each row 

individually. For many datasets, including this one, training with batch weight updates 

requires a substantially smaller learning rate than training with online updates [26]. When a 

small learning rate is used, a very large number of epochs can elapse before weight values 

converge to a minimum. On several tests with this data, a learning rate of 0.01 was required 

in order for any learning to occur with batch updates and training took up to four times 

longer to achieve similar results. Since many ANN modeling options were explored for this 

study and a large number of models were built, the use of batch weight updates and small 

learning rate values was prohibitive. All models were built using online weight updates at 

the start of learning. The possibility of switching to batch updates later in learning was also 

explored.

Methods: optimized ANN methods & incremental results

ANN optimization

Optimization is a process that may be described as the isolation of a preferable methodology 

from a set of available options. Optimization is an incremental empirical process where a 

single aspect of learning is targeted and multiple variations are attempted to determine 

which variation provides the best statistical outcome. A reasonable methodology is chosen 

for aspects of learning that are not being optimized and is kept constant as the optimized 

aspect is varied. Whatever optimum method is discovered is maintained when the next 
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aspect of learning is optimized. Optimized methods eventually take the place of the 

‘reasonable’ methods used at the start of the process. Since results of each optimization 

affect later steps, it is useful to have the results of each step presented in the context of the 

procedure description.

This study examines the empirical optimization of three aspects of ANN learning:

Annealing the learning rate

The method by which the magnitude of the learning rate is gradually reduced of as training 

continues.

Data split method

The method by which compounds are partitioned into the train/test/validate data split.

Network architecture

The complexity/nonlinearity of the neural network that is used to learn the problem.

A description of the procedure used to optimize each aspect is given in the following 

sections along with the results of the optimization.

Annealing the learning rate

The gradient descent algorithm (GDA) identifies the direction of steepest descent from the 

current error surface location using the first derivative of the error with respect to the weight 

values ∂E/∂w. This gives the direction for the next ‘step’ toward the error function minimum 

[26]. The size of the step is proportional to the learning rate. The magnitude of the learning 

rate plays an important role in finding the global minimum. A large learning rate speeds up 

training and may allow weight adjustments to ‘step over’ local minima. Later in training, a 

large learning rate can cause the network to step over the minima and never reach it. As the 

global minimum is approached, ∂E/∂w gets smaller and the size of each step increases 

relative to the steepness of the gradient. Under these conditions, large steps can be 

counterproductive. If training starts with a very small learning rate, the weight values will 

converge on the first minima encountered, even if this is a local minimum.

Annealing, or incrementally reducing the learning rate, is one solution to this issue. When 

annealing is used, training begins with a large learning rate that is reduced as the global 

minimum is approached. Because variation in the direction of steepest descent inherent with 

online updates can also complicate reaching the global minimum, annealing can also involve 

a switch to batch weight updates. Training methodologies such as Local Rate Adaptation 

[27, 28] automatically decrease the learning rate in proportion to the steepness of descent, 

but such methods involve constants whose value must be determined by trial and error. As 

an alternative for this study, a large learning rate was used until the test set MAE minimized. 

When the minimum was reached, the learning rate was reduced and training continued as 

long as the test MAE continued to diminish. If the test MAE minimized again, the learning 

rate was reduced and training progressed as long as improvements continued. Batch weight 

updates were also investigated by switching to batch updates at each minimum.
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To optimize annealing by this method, the bitkey data split was trained with multiple 

annealing rate schedules. As a baseline, models were built using constant learning rates of 

0.25, 0.1 and 0.01 (ON 0.25, ON 0.1, ON 0.01). An additional model was build using an 

initial learning rate of 0.25 that was reduced to 0.1 when the test set MAE minimized (ON 

0.25, ON 0.1). An analogous schedule was tried where the update method was switched to 

batch along with the learning rate change (ON 0.25, BT 0.1). For a final set of schedules, a 

second drop in the learning rate was added if the test set MAE continued to drop after the 

first reduction. A model was built using online at 0.25, online at 0.1 and batch at 0.01 (ON 

0.25, ON 0.1, BT 0.01) and another with online at 0.25, batch at 0.1 and online at 0.01 (ON 

0.25, BT 0.1, ON 0.01). The top results are given in Table 1.

The stopping criteria is the statistical metric used to determine when to when to stop 

training, switch the rate, or change the update method. For the annealing schedules 

described above, the test set MAE was used for stopping. The test set for each fold is small, 

consisting of only 7.5% of the overall dataset. For this reason, test set statistics can be erratic 

and not necessarily a representative indicator of model performance. Because of this, 

validation statistics were also evaluated as the stopping criteria. Training was performed 

using the same annealing schedule, but the validation set MAE was used to determine when 

to lower the learning rate and when to stop training. Results using validation stopping are 

also given in Table 1.

Annealing the learning rate resulted in a better validation SE compared with using a constant 

learning rate of 0.25 or 0.1. The best annealing schedule for both test and validate stopping 

was ON 0.25, BT 0.1, ON 0.01. The validation statistics for these models are shaded in gray. 

The statistics in bold text are highlighted because these models were built using a constant 

learning rate of 0.01. These models achieved similar validation statistics to annealing based 

models but required 4–5 times as many epochs to reach the stopping criteria. This could 

represent an unacceptable increase in computational time for a large dataset. It is intuitive 

that test set stopping resulted in better test statistics and validation stopping resulted in better 

validation statistics. It is unclear if the use of the validation statistics for stopping 

overestimates the predictive quality of the model. This will be addressed later in the study.

Variation in data split method

The bitkey data split was used for annealing schedule optimization. Optimization of the data 

split method was examined by building new models based on other data split methods. Each 

split was processed using the annealing schedule of ON 0.25, BT 0.1, ON 0.01 and models 

were built using both test and validate stopping. The following data split methods were 

evaluated.

Bitkey split

The best bitkey split models (ON 0.25, BT 0.1, ON 0.01 annealing) served as a baseline. 

This split is reasonably distributed in structure and activity space but only the presence/

absence of heteratomic functional groups were used to characterize structure.
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Activity split

Data were rank ordered on ascending RI value and split according to the method described 

in the Data split section. This creates the best possible distribution of RI values across the 

subsets of the split.

Random split

Rows were sorted in random order and split according to the method described in the Data 

split section. Since every random split is unique, two random splits were evaluated.

Ward’s split

Ward’s hierarchical clustering [29] was used to evaluate a data split method that takes into 

account all descriptor values. Hierarchical clustering starts with each compound in its own 

cluster. At each algorithmic step, the two most similar clusters are combined until all 

compounds are in one cluster. A dendogram is produced showing a schematic of how the 

compounds are related. To create a data split, clusters were aggregated starting from the first 

algorithmic step. Related small clusters were grouped when the average RI value between 

the clusters was similar. Compounds that had no immediate branch neighbors with similar 

values were left in their own cluster. The result was 112 aggregate clusters ranging from 1 to 

9 members. The data split was established by a rank-order of each aggregate cluster on the 

RI value and sampling by the method used to create the bitkey split.

Models were built for each data split using the ON 0.25, BT 0.1, ON 0.01 annealing 

schedule described above. As with annealing optimization, models were built using both test 

set and validation set stopping. Results are given in Table 2 .

As was the case with annealing optimization, better test set statistics occurred with test set 

stopping and better validation set statistics occurred with validate set stopping. Based on the 

results of data split optimization, the Wards data split trained using validation MAE 

optimization produces that best validation MAE and SE, but it is unclear if this use of the 

validation statistics creates a distorted picture of how the model will perform in practice. 

The difference between the best and worst models is not large and this contributes to the 

lack of clarity about best practices.

In order to help resolve this, independent validation (IVal) using new data was introduced. A 

set of 1492 compounds for which RI has recently been measured was used to assess the 

performance of these models under conditions similar to actual use. Experimental RI values 

for all IVal compounds fell within the RI range of model training data. When the ON 0.25, 

BT 0.1, ON 0.01 bitkey model with test set stopping was used to predict the IVal data, the r2 

was 0.69, the MAE was 78 and the SE was 83. These values are much poorer than any of the 

statistics above would suggest and this must be addressed.

Applicability domain

Much of the discrepancy between model validation independent validation statistics can be 

explained by the model applicability domain (AD). The AD refers to the kind of chemical 

structures that would be expected to be well predicted based on the structures present in the 
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training data. In order to evaluate the model AD, it is necessary to compare model dataset 

structures with structures being predicted. The bitkey values described earlier form the basis 

of a simple comparison method. A simple AD metric was tabulated for each IVal compound 

by counting the number of compounds in the model dataset with a matching bitkey. When 

bitkeys for two compounds match, both compounds possess the same combination of 

heteroatomic features. For a given IVal compound, if the model dataset contains no 

compounds with a matching bitkey, there are no compounds in the model with the same 

combination of features. This would be an indication that a good prediction is less likely. 

Figure 3 shows the predicted versus observed plots and statistics for two sets of IVal 

compounds. The set on the left shows predictions for IVal compounds with 0–2 compounds 

in the model data with a matching bitkey. The set on the right shows predictions for IVal 

compounds with 3–27 dataset compounds with a matching bitkey. The difference in MAE 

and SE between the two groups is significant. This figure illustrates the necessity of 

evaluating the AD of compounds predicted by a model. The issue is complex because even 

for the 413 IVal compounds with no model data compounds with a matching bitkey (no 

compounds with the same combination of heteroatomic features), 160 of them are predicted 

within the validate MAE of the model (residual of 52 RIU or less) and 362 are predicted 

within ± 3 SE.

Optimizing the network architecture

Architecture is the number of layers and the number of neurons in each layer. Models 

developed up to this point used an architecture of a 36 input nodes, 35 hidden layer nodes 

and 1 output node (36.35.1). For architecture optimization, network configurations with a 

smaller number of hidden neurons were tested. The number of hidden neurons was cut 

approximately in half three times resulting in architectures of 36.18.1, 36.9.1 and 36.4.1. 

Since the model based on the Wards data split had the lowest MAE for both dataset 

validation and independent validation, architecture optimization was based on the Wards 

split trained using the annealing schedule determined earlier. As with annealing, and data 

split optimization, separate models were created using test set and validation set stopping. 

The best and worst results are given in Table 3.

Independent validation results for IVal compounds with three or more and four or more 

matching bitkeys are also included. A decrease in network nonlinearity resulted in improved 

validation MAE and SE for both test and validate stopping. Since the 36.9.1 and 36.4.1 

architectures resulted in the largest improvement for the Wards data split, 36.9.1 and 36.4.1 

models were also built for the bitkey and random splits. These did not show better validation 

performance and the Wards data split. Similar to data split and annealing optimization, 

validation stopping resulted in better dataset and independent validation statistics than the 

use of test set stopping.

Aggregate results of optimization

After all optimizations were concluded, the best ANN model with regard to validation SE 

utilized a 36.9.1 network architecture, the Wards data split, and was trained with the ON 

0.25, BT 0.1, ON 0.01 annealing schedule with validate set stopping (36.9.1/Wards/V-

stopping). There was meaningful improvement compared with the MLR model with a 
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validation SE difference of 19 RIU (73 with MLR, 54 with ANN). The best ANN model 

with regard to I-Val SE utilized a 36.4.1 network architecture but was the same in all other 

respects (36.4.1/Wards/V-stopping). For I-Val, there was improvement from the MLR SE of 

83/72 down to 66/56 for ANN (3+ matching bitkey/4+ matching bitkey).

The optimized ANN models also performed better in independent validation than the 

baseline ANN models built with random data splits and trained with a constant learning rate. 

The 35.36.1/ random-2/V-stopping ANN model listed at the top of Table 3 had the best 

validation statistics for the random split models trained without learning rate annealing. 

Independent validation of this model resulted in an IVal SE of 73/63. In contrast, the best 

optimized model with respect to independent validation was the 36.4.1/Wards/V-stopping 

model with an IVal SE of 66/56.

Discussion

Results suggest that ANN is a more effective approach then MLR for modeling this RI data. 

The permutations examined in this study reveal no consensus as to the specific method for 

obtaining the best ANN model. The differences among the best models are likely not 

significant, suggesting that a good model of these data can be built by multiple ANN 

methods. The 36.9.1/ Wards/V-stopping model had the best statistical results for the model 

validation set, but performed second best in independent validation where the 36.4.1/

Wards/V-stopping model was slightly better. The differences between the top ANN models 

are small enough that the difference in probable predictive quality during actual use cannot 

be determined. If a different set of compounds was used for independent validation, the 

‘best’ model could have been different as well.

For this dataset, independent validation suggests that the use of validation statistics for 

stopping produces models that work better in practice than models built with test set 

stopping. Though the differences were not large, for every model pair tested, independent 

validation statistics were better for models built with validate stopping than with test 

stopping. It can be argued that there is less difference between the model validation statistics 

and independent validation statistics for models using test set stopping implying that the 

validation statistics for models created with test set stopping give a more accurate 

assessment of model performance. While this is true, models created using validate set 

stopping performed slightly better in independent validation. It is clear that some of these 

conflicting issues must be resolved by individual researchers who will determine which 

scenario most closely suits the needs of their current project.

Despite the lack of clarity among the best ANN models, there is a meaningful difference 

between the optimized and nonoptimized models. The 35.36.1/ random-2/V-stopping model 

listed at the top of Table 3 had the best validation statistics for the random split models 

trained with a constant learning rate. Independent validation of this model resulted in an 

IVal SE of 73/63. The 36.4.1/Wards/V-stopping model achieved an IVal SE of 66/56. This 

demonstrates that optimizing the data split method, annealing schedule and network 

architecture resulted in a seven-point improvement for IVal SE compared with a randomly 

assigned data split trained with a constant learning rate. This improvement represents a 

Hall et al. Page 16

Bioanalysis. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10.4% reduction in SE. In the context of MolFind/BioSM, a 7 RIU reduction in SE 

corresponds to a ±3 SE filter window that is 42 RIU narrower. Based on these results, the 

36.4.1/Wards/V-stopping model would function as the most effective filter in MolFind/

BioSM.

The differences between the deterministic and random splitting methods were not large 

enough to be conclusive, but it is clear that the use of a deterministic splitting method was 

not counterproductive. After all optimizations, the random-2 split had the worst IVal 

performance, but performance was still reasonable the difference does not reveal any 

dramatic liability arising from the use of a random split. The activity based split appears to 

be the least favorable.

An interesting phenomenon is observed when comparing the difference in prediction results 

across the A, B, C and D sets of each data split for the random, Wards and bitkey split 

models created using the best architectures (36.4.1, 36.49.1). For the data splits created with 

the Wards and bitkey methods, the largest difference in SE across the four sets of any one 

ensemble was 9 RIU. This is an indication that the SE was relatively similar for all four sets. 

For models based on the two random splits, the largest SE difference was 23 RIU. For this 

dataset, there was a greater variation in SE across the four sets of the random splits as 

compared with the deterministic splits. This underscores the potential utility of the 4 × 10 × 

10 ensemble method when random data splits are used.

Comparing the results of this study to current literature has proven difficult. Other than 

previous publications by our group [3, 7], it has been difficult to find published ANN RI 

models of large diverse datasets to form the basis of a comparison. In a search of published 

RI models, the largest ANN model not from our group was based on 70 pesticides [13]. This 

study also utilized gas chromatographic retention index data and not HPLC. While this study 

references optimization of the number of hidden neurons, learning rate and momentum, no 

information was given as to the details of the optimization procedure. It is difficult to 

compare the models from this current study to previous publications of our group because 

previous models were built using nitro-n-alkane standard RI measurement. The numerical 

RI scale produced from the current n-alkylamide references is substantially different from 

the previous scale making direct comparisons unhelpful. The lack of published 

methodologies and examples to draw upon remains an issue with solving the problems of 

ongoing model development.

Since the MolFind/BioSM method requires the smallest possible prediction SE, minor 

optimizations are useful. The smaller the validation SE, the more compounds will be filtered 

out by the model. As the structure identification problem remains a significant obstacle in 

the field of metabolomics, the development of an application that can substantially narrow 

down a candidates list for an experimentally observed unknown would be a major 

development. The optimizations described in this report will be applied to a new model that 

includes the 1492 newly measured compounds that were used for independent validation in 

this study. It is hoped that the increase in the model structure space will result in further 

improvements in the validation standard error and a significant increase in the model 

applicability domain.
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Conclusion

In this study, we have reported on the results of optimizing three aspects of ANN modeling 

methodology to improve the computational model implemented in the MolFind/BioSM 

application. This application is part of an effort to determine the structure of experimentally 

observed unknowns in nontargeted metabolomics. Optimized aspects of ANN model 

development were:

• Learning rate annealing schedule;

• Data split method;

• Network architecture;

Model optimizations were evaluated with independent validation on new data. Results were 

compared with a baseline MLR model and to the results of nonoptimized ANN modes. This 

report also described additional aspects of model building including structure descriptors, 

input normalization and scaling, and the nonoptimized aspects of model generation that were 

implemented. A significant goal of this report was to provide sufficient detail to allow the 

reader to repeat the described model building and optimization methods or to apply them to 

studies on comparable data.

Future perspective

Progress in nontargeted metabolomics is currently limited by the inability to identify the 

structures of most detected compounds. MolFind/BioSM was created to address this 

problem. The use of differentially expressed experimental features (such as exact mass 

and/or retention time) among treatment groups has led to the development of multiple 

putative disease biomarkers [30,31]. However, until the chemical structure corresponding to 

each feature of interest can be reliably determined, it will remain difficult to identify 

relevant metabolic pathways or understand disease mechanisms and biological significance. 

The continued development and optimization of predictive models in Mol-Find/BioSM will 

lead to better model performance and greatly increase our ability to identify the structures of 

currently unknown compounds in biological fluids. These advances should ultimately 

enhance the scientific impact of metabolomics research.
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fragments produced the gas phase. This technique is an important 

means of structure characterization in bioanalytical systems.

Multiple Linear 
Regression

Multiple Linear Regression (MLR), a model generation technique 

capable of capturing the optimal linear relationship between a 

single dependent variable and multiple independent variables. 

MLR assumes some degree of linear relationship between the 

dependent and independent variables.

Structure 
information 
representation 
descriptors

Structure Information Representation (SIR) is a method of 

molecular representation which encodes structure information 

necessary for modeling noncovalent interactions. SIR descriptors 

are calculated from the molecular connection table without 

specification of a 3D geometry and encode information about 

electron accessibility and skeletal variation.
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Executive summary

• The MolFind/BioSM application utilizes an innovative approach for structural 

identification of chemical unknowns. MolFind/BioSM uses the experimental 

exact mass of an unknown to create a candidate list of possible matches and 

removes false positives by filtering the list with computational models. Because 

the predictive standard error of the models determines filtering effectiveness, 

optimization of the MolFind/BioSM HPLC retention index (HPLC-RI) model is 

investigated.

• HPLC RI measurements were made for 390 diverse compounds to form the 

basis of the HPLC-RI models. Measurements utilized a homologous series of n-

alkylamide reference compounds to convert retention times to RI. Additionally, 

newly measured HPLC-RI data for 1492 compounds was made available for 

independent validation of all models.

• A set of 36 SIR descriptors was used for model generation. Descriptors were 

selected to characterize every feature of every molecule that would likely 

influence retention time under known measurement conditions. Descriptors 

included the E-State IGroups, molecular connectivity indices and graph-based 

descriptors.

• Multiple artificial neural network models of HPLC-RI data were built and 

evaluated in the model optimization process. Optimized model results were 

compared with nonoptimized ANN model results and to results from an MLR 

model. Neural network learning methodologies that were optimized included the 

learning rate annealing schedule, data split method and network architecture.

• The best model with regard to independent validation of 1492 newly measured 

compounds utilized a network architecture of 36.4.1, was based on a Ward’s 

clustering data split, and was trained with a learning rate annealing schedule of 

Online 0.25lr, Batch 0.1lr, Online 0.01lr with validate set stopping. This model 

demonstrated a 10.4% improvement in standard error compared with the best 

nonoptimized ANN model and a 25.8% improvement over the MLR model.

Hall et al. Page 22

Bioanalysis. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hall et al. Page 23

Bioanalysis. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Bitkey split assignment of validate rows and test set assignment for fit/validate set A
The top figure shows nine compounds in a bitkey group rank-ordered on RI. To create four 

fit/validate sets, every fourth compound is assigned to validate. Set B assignment starts with 

the second row, set C the third row, etc, so that each compound is assigned to exactly one 

validate set. The middle figure shows fit/validate set A reordered with validate compounds 

last. The bottom figure shows some compounds in fit/validate set A with validate rows (V) 

moved to the end. The fit rows (F) for fit/validate set A are partitioned into ten train/test 

folds (0–9) by assigning every tenth compound to the test set (T). The result is 40 unique 

folds of the data. Every compound is used for training in 27 folds, for testing in threefolds, 

and for validation in tenfolds. A separate model was built for each fold. The top figure 

shows nine compounds in a bitkey group rank-ordered on RI. To create four fit/validate sets, 

every fourth compound is assigned to validate. Set B assignment starts with the second row, 

set C the third row, etc, so that each compound is assigned to exactly one validate set. The 

middle figure shows fit/validate set A reordered with validate compounds last. The bottom 

figure shows some compounds in fit/validate set A with validate rows (V) moved to the end. 

The fit rows (F) for fit/validate set A are partitioned into ten train/test folds (0–9) by 

assigning every tenth compound to the test set (T). The result is 40 unique folds of the data. 

Every compound is used for training in 27 folds, for testing in threefolds, and for validation 

in tenfolds. A separate model was built for each fold.

Hall et al. Page 24

Bioanalysis. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Multiple linear regression model dataset validation results and independent validation 
results
The left plot shows validation results from the 390 compounds dataset. The center and right 

plots show independent validation results from 1492 newly measured compounds. The 

center plot is for all independent validation compounds. The right plot shows all 

independent validation compounds reasonably similar to the model data. A nonlinear trend 

is apparent in all three plots where predictions for compounds RI < 400 tend to be 

overpredicted and predictions for compounds RI > 800 tend to be underpredicted. MAE: 

Mean absolute error; R2: Square of Pearson’s correlation coefficient; SE: Standard error.

Hall et al. Page 25

Bioanalysis. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Independent validation on 1492 newly measured compounds
The plot on the left shows IVal compounds where there were 0–2 compounds in the model 

dataset with a matching bitkey. The plot on the right shows compounds with 3–27 model 

compounds with a matching bitkey. When there are at least three matching compounds 

present in model data, at least one of matching compound will always be present in the 

training set. MAE: Mean absolute error; R2: Square of Pearson’s correlation coefficient; SE: 

Standard error.
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