Skip to main content
. Author manuscript; available in PMC: 2016 Mar 1.
Published in final edited form as: Bioanalysis. 2015 May;7(8):939–955. doi: 10.4155/bio.15.1

Table 1.

Results of training the bitkey data split with different annealing schedules.

Annealing schedule Stop Train§
Test#
Validate
Average
epochs††
r2‡‡ MAE§§ SE## r2 MAE SE r2 MAE SE
ON 0.25 T 0.96 30 38 0.89 51 61 0.86 56 67 585

O N 0 .1 T 0.96 29 37 0.89 50 60 0.87 54 65 1018

ON 0.01 T 0.96 28 35 0.89 48 59 0.87 52 66 7375

ON 0.25, BT 0.1, ON 0.01 T 0.98 20 27 0.9 46 57 0.87 52 65 1685

ON 0.25 V 0.96 30 38 0.86 54 66 0.89 51 61 543

O N 0 .1 V 0.96 29 37 0.87 54 65 0.88 51 61 920

ON 0.01 V 0.96 28 36 0.86 54 67 0.89 49 60 7065

ON 0.25, BT 0.1, ON 0.01 V 0.97 26 33 0.87 53 66 0.90 46 59 1313

Schedule of changes in learning rate and weight update method as training progresses.

Statistical set used to determine when to change learning rate and weight update method.

§

Training set statistics.

#

Test set statistics.

Validation set statistics.

††

Average of epochs trained over all 40 models.

‡‡

Square of Pearson’s correlation coefficient.

§§

Mean absolute error.

##

Standard error (root mean square error).