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Abstract

Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue 

characterization. Along with other acoustic parameters studied in quantitative ultrasound, the 

attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral 

centroid downshift (CDS) method is one the most common frequency-domain approaches applied 

to this problem. In this study, a statistical analysis of this method’s performance was carried out 

based on a parametric model of the signal power spectrum in the presence of electronic noise. The 

parametric model used for the power spectrum of received RF data assumes a Gaussian spectral 

profile for the transmit pulse, and incorporates effects of attenuation, windowing, and electronic 

noise. Spectral moments were calculated and used to estimate second-order centroid statistics. A 

theoretical expression for the variance of a maximum likelihood estimator of attenuation 

coefficient was derived in terms of the centroid statistics and other model parameters, such as 

transmit pulse center frequency and bandwidth, RF data window length, SNR, and number of 

regression points. Theoretically predicted estimation variances were compared with 

experimentally estimated variances on RF data sets from both computer-simulated and physical 

tissue-mimicking phantoms. Scan parameter ranges for this study were electronic SNR from 10 to 

70 dB, transmit pulse standard deviation from 0.5 to 4.1 MHz, transmit pulse center frequency 

from 2 to 8 MHz, and data window length from 3 to 17 mm. Acceptable agreement was observed 

between theoretical predictions and experimentally estimated values with differences smaller than 

0.05 dB/cm/MHz across the parameter ranges investigated. This model helps predict the best 

attenuation estimation variance achievable with the CDS method, in terms of said scan parameters.

I. Introduction

The ultrasonic attenuation coefficient is one of the parameters studied in tissue 

characterization to learn about the pathological state of tissue [1]–[7]. It has been shown that 

normal and pathological livers present with different frequency-dependent attenuation 

profiles [3], [7]–[10]. Attenuation coefficient has been studied as a classifying parameter in 

myocardial disease [1], [2], [11], carotid artery plaques [4], [5], [12], breast cancers [6], 

[13], and other tissue types [14]. In addition, accurate estimation and compensation for the 

attenuation can lead to improved estimation of other acoustic parameters [15]–[19].
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Most frequency domain estimation methods can be categorized as either determining the 

spectral difference or the spectral shift of echo signal from different depths within the 

attenuating medium [20].

Spectral difference methods, such as the reference phantom method (RPM), measure the 

decay of each frequency component of echo signal with depth, and provide an estimate of 

the attenuation coefficient as a function of frequency [21], [22].

Spectral shift methods, such as the centroid downshift method (CDS), measure the apparent 

shift of the spectrum toward lower frequencies. This downshift is due to the fact that high-

frequency components of the signal experience higher attenuation than low-frequency 

components. These methods usually assume a linear frequency dependence for the 

attenuation and measure the slope of downshift with depth to estimate the attenuation 

coefficient [23]–[25]. Autoregressive modeling of the echo signal spectrum has also been 

studied as a computationally efficient way of determining the centroid [26], [27].

Several known advantages and disadvantages to using each category of attenuation 

estimation methods in a clinical setting exist. For example, the CDS method is susceptible to 

diffraction effects due to beam focusing [24]. As a result, the CDS method underestimates 

attenuation coefficients in the prefocal region and overestimates them in the postfocal region 

of the imaging plane. Spectral difference methods, such as the RPM, compensate for 

diffraction and other system-related effects through normalization of the sample power 

spectrum by a reference power spectrum acquired using the same system settings. However, 

spectral difference methods, such as RPM, experience estimation biases in nonuniform 

media with abrupt backscatter coefficient boundaries, whereas spectral shift methods, such 

as CDS, are not affected by backscatter level changes, as long as the frequency dependence 

of the backscatter does not change drastically throughout the sample. As a result, there is 

interest in using and improving both categories of methods [28], based on the clinical 

application. Our laboratory has previously proposed a frequency-domain method, namely 

the hybrid method [29], to improve upon the CDS method by incorporating a normalization 

step to reduce system-dependent effects. Labyed and Bigelow provided a comparison of the 

different attenuation estimation methods in [30]. Kim and Varghese presented a diffraction 

compensation technique in [31] that can be used with spectral shift methods. This technique 

makes use of a well-characterized reference phantom with known attenuation to measure the 

biases introduced to centroid estimates and compensate for them while analyzing the sample 

data. It is also possible to extend the usable parameter estimation region with the CDS 

method by using multiple foci while imaging the medium.

In this paper, we present a theoretical framework that can help predict the accuracy and 

precision with the CDS method, using different ultrasonic settings, in terms of various 

system parameters such as transmit pulse center frequency and bandwidth, time-gating 

window size and type, electronic signal to noise ratio (SNR), and number of centroids used 

in the region of interest (RO I) to determine the attenuation coefficient. The results are 

compared with measurements performed on simulated and physical tissue- mimicking (TM) 

phantoms with uniform attenuation and backscatter coefficients. Finally, an attenuation SNR 
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measure has been studied as a way to determine the optimal parameter values to use for 

attenuation estimation.

II. Materials and Methods

In this section we present a spectral model of the RF signal and derive spectral moments and 

their variance from it. Using these variance terms, we derive the estimation variance of the 

centroid and translate it into the estimation variance of the attenuation coefficient.

A. Parametric Model of the Power Spectrum of the RF Signal

The power spectrum of backscattered RF signals from depth z, received at the ultrasound 

transducer, can be modeled to incorporate the effects of frequency-dependent attenuation, 

sampling, windowing, and additive electronic noise, as presented in (1). The noise process is 

assumed to be zero-mean and white with power density of 

(1)

where  represents the power spectrum of the received signal, and St(f) denotes the 

spectrum of the transmit pulse. BSC(f, z) is the spectral profile for the random scatterers in 

the medium. α(f, z) is the cumulative attenuation at frequency f and depth z. Ts is the 

sampling interval, and Bnoise,w is the equivalent noise bandwidth of the selected window 

function, which has a value of 1 for the rectangular window and greater than 1 for other 

window functions. The asterisk represents convolution with Sw(f), the power spectral 

characteristic of the window function, given by

(2)

where W(f) is the discrete-time Fourier transform (DTFT) of the window function. In this 

parametric model, we assume a Gaussian spectral shape for the transmit pulse that is 

centered on frequency ft with peak value of S0, and linear frequency dependence for 

attenuation with slope β. A rectangular window function is selected for initial analysis. The 

results can be generalized for other window types by modifying the equivalent noise 

bandwidth. Given these assumptions, the received power spectrum can be written as

(3)

The exponential terms can be rearranged as follows:

(4)

The DTFT of the rectangular window of length M and its spectral characteristic [32, ch. 6] 

are given in (5) and (6).
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(5)

(6)

Note that (6) is the DTFT of the triangular function:

(7)

Taking  to be the expected center frequency of the received signal, the 

modeled power spectrum from (4) can be written as (8), which has a better suited form for 

studying the spectral moments:

(8)

Random scatterers in the medium are responsible for the backscatter term in (8). Taking 

r[nTs] to be the impulse response sequence for these random scatterers, it can be modeled 

[23], [33], as a sample function of a zeromean and white Gaussian process with pdf:

(9)

Because r(n) are independent and identically distributed Gaussian random variables, the 

spectral term BSC(f, z) can also be shown to have an exponential distribution (chi-squared 

with two degrees of freedom) and constitute a Gaussian random process [32, ch. 3]:

(10)

(11)

Given this pdf, expected value and variance of the spectral backscatter term are calculated as 

(12). Measurements on simulated phantom spectra agree with this model to within a 

constant factor.

(12)
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B. Second-Order Statistics of the Spectral Centroid

Next, we derive the spectral moments from the spectral representation of the received signal 

given in (8). Considering that the estimated power spectrum has support [0, fs/2], with fs 

being the sampling frequency, and resolution Δf = fs/M, expected values of the zeroth, first, 

and second spectral moments can be written as follows:

(13)

(14)

(15)

Using these estimated spectral moments, the centroid is estimated as (16), and the spectral 

width is estimated as (17).

(16)

(17)

Variance of the estimated centroid frequency is calculated as follows:
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(18)

According to this model, variability in the estimated moments arises from variability in the 

backscatter spectral term and the effective additive noise power. Assuming a white Gaussian 

noise process , the effective noise power of a sampled and windowed data 

segment of length M will have a Gamma distribution [32, ch. 6].

(19)

For a sufficiently large M (e.g., M > 10), this Gamma distribution converges to a Gaussian 

distribution with expectation , and variance . Therefore, contribution of additive 

noise to the variance of the spectral moments can be estimated as given in (20):

(20)

Using (20), total variance of the estimated moments, including contribution of the 

backscatter term is calculated as follows. Replacing the variance terms from (21)–(23) into 

(18) yields the estimation variance of the centroid.

(21)

(22)
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(23)

C. Attenuation Estimation Statistics

To estimate the attenuation coefficient β[Np/cm/MHz], a linear regression is performed over 

N consecutive windows of RF data (of size Δz) along depth, where their corresponding 

centroid estimates are fitted to a linear equation for which the slope of centroid frequency 

downshift with depth is determined by the attenuation coefficient as follows:

(24)

where ν(n) represent the variability in centroid frequency estimates and are modeled as 

independent normal random variables with zero mean and variance .

The joint probability density for  with parameter β is therefore given by (25):

(25)

The log-likelihood function is written as

(26)

and its first and second partial derivatives with respect to β are written as (27) and (28):

(27)

(28)
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The Cramer-Rao lower bound (CRLB) [32, ch. 4] on variance of the attenuation coefficient 

estimate, β̂, is therefore given by (29):

(29)

Another maximum-likelihood (ML) estimator of β can be written when the intercept of the 

linear relationship, Fc, is assumed to be unknown. In this case, a larger variance expression 

for the estimator of β is achievable, given by (30).

(30)

Multiplying the variance given in (30) by (8.686)2 converts its unit to [dB/cm/MHz]2.

Theoretical bounds for attenuation estimation variance were compared with statistics 

computed from simulated phantom and estimated from physical tissue-mimicking phantom 

data sets. Simulated phantoms were created using a program based on the classical linear 

diffraction theory [34]. For this study, a linear array transducer with 128 elements and a 0.2 

mm spacing was simulated. Beam focus was set at 40 mm. A phantom with dimensions of 

100 mm in depth and 160 mm in width was simulated. Simulated scatterers were glass beads 

with a 50 µm diameter and a density of 10 per cubic millimeter. Uniform attenuation of 0.5 

dB/cm/MHz and sound speed of 1540 m/s were also assumed for the simulation. Sampling 

was performed at 40 MHz. To minimize diffraction effects, parameter estimation zone was 

limited to a symmetrical region about the focal depth. Scan parameters such as transmit 

pulse center frequency, transmit pulse bandwidth, and SNR were changed to generate 

different RF data sets using the simulated phantom. Initial values for these scan parameters 

were 5.5 MHz center frequency, 65% bandwidth, 40 dB SNR, and 8 mm window length 

(i.e., 6.3 pulse lengths or 28.5 wavelengths) with a Hann window function. Pulse length is 

defined as the distance between first and last transition of the transmit pulse above 0.1% of 

its maximum level [35]. Power spectra were estimated by calculating the squared FFT of the 

windowed data segments and averaging them over 40 adjacent A-lines. Given the large 

window length chosen, a 65% axial overlap between windowed segments was used.

III. Results

A. Simulated Phantom Results

The attenuation estimates obtained by the centroid downshift method in the focal region of 

the simulated transducer were used to calculate the estimation statistics. The effect of 

variation in the scan parameters on variance of the estimated attenuation coefficient was 

studied and compared with the theoretical values derived from the model.

1) Signal-to-Noise Ratio—A Gaussian-shaped transmit pulse spectrum with a 5.5 MHz 

center frequency and 65% bandwidth was selected. Window size was set to 8 mm to yield 
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stable power spectra and limit spectral broadening effects [35]. Additive white Gaussian 

noise (AWGN) with different power density values were added to the simulated RF data. 

SNR was computed as the ratio of the power spectrum peak to the out of band average noise 

power. Standard deviation (STD) of the estimated attenuation coefficient in the focal region 

of the phantom was computed and plotted against SNR as shown in Fig. 1.

Fig. 2 shows the mean attenuation coefficient estimates for this SNR range. Note that for 

SNR values below 25 dB the estimation fails and therefore second-order statistics, i.e., STD 

of the attenuation coefficients, are not meaningful. As the SNR is increased, however, 

experimental and theoretical STDs begin to agree.

2) Transmit Pulse Bandwidth—A Gaussian transmit pulse spectrum with a 5.5 MHz 

center frequency was assumed. SNR and window size were set to 40 dB and 8 mm, 

respectively. Standard deviation of the transmit pulse, σt, was varied from 0.5 to 4.1 MHz, 

and attenuation coefficients were estimated in the focal region of the simulated data. A 

comparison between the STD of the estimated attenuation coefficients and the theoretical 

predictions is illustrated in Fig. 3. Observe that increasing the transmit pulse bandwidth 

lowers the estimation variance. Fig. 4 shows the mean attenuation coefficient estimates for 

the same bandwidth range. Note that as the transmit sigma increases beyond 2.5 MHz 

(100% bandwidth), estimation becomes biased and ultimately fails. This is due to loss of 

spectral information during calculation of moments at high bandwidths. This can be 

remedied by using a higher transmit center frequency.

3) Transmit Pulse Center Frequency—Standard deviation of the transmit pulse was 

set to 1.5 MHz. SNR was set to 40 dB, and window length was kept at 8 mm. Center 

frequency was varied from 2 to 8 MHz and the attenuation coefficient was estimated in the 

focal region of the simulated phantom. Standard deviation of the attenuation estimates are 

compared with the theoretical predictions in Fig. 5. Mean attenuation coefficient estimates 

for this frequency range are plotted in Fig. 6.

4) Window Length—The Gaussian transmit pulse was set to have a 5.5 MHz center 

frequency and a 1.5 MHz STD. SNR was set to 40 dB. Window length was varied from 3 to 

17 mm (i.e., 2.4 to 13.4 pulse lengths or 10.7 to 60.7 wavelengths). In typical clinical 

ultrasound imaging frequency ranges, a window length smaller than 4 µs (~3 mm) would 

result in unstable power spectral estimations and lead to spectral broadening effects [36]. 

The STD of estimated attenuation coefficients in the focal region of the simulated phantom 

is plotted against the theoretical predictions from the model in Fig. 7.

It is evident that increasing the window length results in increased robustness of the power 

spectra and centroid estimates and, therefore, lowers the variance of the attenuation 

estimates. However, increasing the window length also introduces bias to the estimates due 

to increasing non-stationarities, as illustrated in Fig. 8.

B. Physical TM Phantom Measurements

A uniform TM reference phantom with constant speed of sound (1540 m/s) and attenuation 

coefficient (0.5 dB/ cm/MHz) was scanned using a 9L4 linear array transducer (Siemens 
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Medical Solutions USA Inc., Mountain View, CA) with a 6.7 MHz nominal center 

frequency (actual center frequency of the power spectra was 5.6 MHz) and 50% bandwidth. 

Data acquisition was performed using an Acuson S2000 ultrasound system (Siemens 

Medical Solutions USA Inc.) equipped with a research interface. Imaging depth was 80 mm 

and beam focus was set at 20 mm. 40 adjacent power spectra were averaged in each RO I, 

and a 65% axial overlap between windowed segments was used. The centroid downshift 

method was utilized to estimate the attenuation coefficient in the focal region of the 

transducer using different window sizes ranging from 3 to 15 mm, i.e., 2.4 to 11.8 pulse 

lengths, or 10.9 to 54.5 wavelengths. Standard deviation and mean of the estimates were 

calculated and plotted as shown in Figs. 9 and 10.

C. A Signal-to-Noise Measure for Attenuation

Recently, the attenuation SNR has been studied as a measure of effectiveness for different 

attenuation estimation methods [37]. In this section, we provide plots of attenuation SNR, 

defined as ratio of the mean attenuation coefficient to its STD for physical and simulated 

phantoms.

Fig. 11 shows SNRβ for the uniform TM reference phantom described in Section III-B for 

different window lengths. Note that SNRβ increases with increased window lengths until the 

increasing non-stationarities of the echo signal (with larger windows) introduce so much 

bias to the estimation process that the attenuation SNR begins to drop.

In a similar manner, Figs. 12 and 13 show variations in SNRβ with different window lengths 

and with different transmit pulse bandwidths for a simulated phantom, respectively. Observe 

that both experimental and simulated results follow a similar trend.

IV. Discussion

Consideration should be given to the modeling of the spectral backscatter term. The model 

assumes that random scatterers in the medium are small (unresolved) and their concentration 

is high enough to satisfy the requirements of the central limit theorem, and constitute diffuse 

scattering. This results in a normally distributed impulse response sequence as given in (9) 

and therefore a Rayleigh distribution for signal envelope, and exponential distribution for its 

intensity. Hence the pdf in (11). The model is accurate when windowing effects (i.e., 

leakage and broadening) can be neglected, thereby justifying the assumption of 

independence at different frequency points. Expected value and variance of the spectral 

backscatter term were directly computed, in the simulated case, from the frequency-domain 

representation of the phantom before insonification. In the experimental case, it suffices to 

measure the expected value and variance of the power spectrum itself in the RO I because it 

is the ratio of variance to squared mean of the backscatter term that remains in the 

theoretical expressions, and not its absolute value. The spectral effects of the window 

function, such as spectral broadening due to main lobe and interference due to side lobes of 

the window spectrum, have been assumed negligible in the derivation of spectral moments 

and their variance terms. This assumption is reasonable for sufficiently large window sizes 

(e.g., >10 wavelengths) as is the case in this study. However, for small window sizes, the 

mentioned effects become significant. In any case, the model provides theoretical 
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predictions for the STD of the attenuation coefficient estimated using the centroid downshift 

method, which show acceptable agreement with experimental measurements and can serve 

as a guideline for evaluating attenuation estimation algorithms. It is worth mentioning that 

the centroid downshift method is susceptible to diffraction effects and does not provide 

stable estimates outside of a symmetrical area about the transducer focal zone. Diffraction 

effects have not been accounted for in this model. Instead the parameter estimation region 

has been limited to a symmetrical RO I about the focal depth. As a result, the model only 

predicts the best achievable performance of the CDS method. Therefore, as depicted in Fig. 

8, there are limitations on increasing the data segment length to get robust power spectra for 

this method. Besides, increasing the window length would also limit the spatial resolution of 

the attenuation coefficient estimated, which is not desirable in attenuation imaging 

endeavors.

V. Conclusion

We have derived a parametric model for the backscattered power spectrum from an 

attenuating medium. The spectral centroid estimate and its statistics were calculated based 

on this model and used to provide a theoretical prediction on the STD of the attenuation 

coefficient estimated using the centroid downshift method. The results were verified by 

comparing to measurements on simulated and physical TM phantoms. Theoretical 

predictions for the STD of the estimated attenuation slope were shown to track simulated 

and experimentally measured values with errors of less than 0.05 dB/cm/MHz over the 

parameter ranges investigated in this paper. This framework can help with selecting suitable 

imaging parameters such as transmit pulse center frequency and bandwidth, SNR, and 

window length and type that would provide required levels of stability for attenuation 

estimation. We were able to isolate scan parameter ranges that provided estimation STDs of 

0.1 dB/cm/MHz or better for our simulated and physical TM phantoms.
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Fig. 1. 
Standard deviation (STD) of the estimated attenuation coefficient from simulated RF data in 

the focal region of the simulated transducer plotted against SNR, along with theoretical 

values given by the model. N shows the number of regression points used to estimate the 

attenuation coefficient.
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Fig. 2. 
Mean of the estimated attenuation coefficients from simulated RF data in the focal region of 

the simulated transducer plotted against SNR. N shows the number of regression points used 

to estimate the attenuation coefficient.
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Fig. 3. 
Standard deviation (STD) of the estimated attenuation coefficient from simulated RF data in 

the focal region of the simulated transducer plotted against STD of the transmit pulse, σt, 

along with theoretical values given by the model. N shows the number of regression points 

used to estimate the attenuation coefficient.
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Fig. 4. 
Mean of the estimated attenuation coefficients from simulated RF data in the focal region of 

the simulated transducer plotted against standard deviation of the transmit pulse, σt. N shows 

the number of regression points used to estimate the attenuation coefficient.
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Fig. 5. 
Standard deviation (STD) of the estimated attenuation coefficient from simulated RF data in 

the focal region of the simulated transducer plotted against transmit pulse center frequency, 

along with theoretical values given by the model. N shows the number of regression points 

used to estimate the attenuation coefficient.
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Fig. 6. 
Mean of the estimated attenuation coefficients from simulated RF data in the focal region of 

the simulated transducer plotted against transmit pulse center frequency. N shows the 

number of regression points used to estimate the attenuation coefficient.
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Fig. 7. 
Standard deviation (STD) of the estimated attenuation coefficient from simulated RF data in 

the focal region of the simulated transducer plotted against window lengths 3 to 17 mm (2.4 

to 13.4 pulse lengths or 10.7 to 60.7 wavelengths), along with theoretical values given by the 

model. N shows the number of regression points used to estimate the attenuation coefficient.
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Fig. 8. 
Mean of the estimated attenuation coefficients from simulated RF data in the focal region of 

the simulated transducer plotted against window lengths 3 to 17 mm (2.4 to 13.4 pulse 

lengths or 10.7 to 60.7 wavelengths). N shows the number of regression points used to 

estimate the attenuation coefficient.
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Fig. 9. 
Standard deviation (STD) of estimated attenuation coefficients in the focal region of a 

uniform TM reference phantom plotted against window lengths 3 to 15 mm (2.4 to 11.8 

pulse lengths or 10.9 to 54.5 wavelengths). N shows the number of regression points used to 

estimate the attenuation coefficient.
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Fig. 10. 
Mean of the estimated attenuation coefficients in the focal region of a uniform TM reference 

phantom plotted against window lengths 3 to 15 mm (2.4 to 11.8 pulse lengths or 10.9 to 

54.5 wavelengths). N shows the number of regression points used to estimate the attenuation 

coefficient.
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Fig. 11. 
Attenuation SNR for a uniform TM reference phantom plotted against window lengths 3 to 

15 mm (2.4 to 11.8 pulse lengths or 10.9 to 54.5 wavelengths). N shows the number of 

regression points used to estimate the attenuation coefficient.
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Fig. 12. 
Attenuation SNR for a simulated uniform phantom plotted against window lengths 3 to 17 

mm (2.4 to 13.4 pulse lengths or 10.7 to 60.7 wavelengths). N shows the number of 

regression points used to estimate the attenuation coefficient.
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Fig. 13. 
Attenuation SNR for a simulated uniform phantom plotted against standard deviation of the 

transmit pulse, σt. N shows the number of regression points used to estimate the attenuation 

coefficient.
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