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Abstract

The N-oxide derivatives of [2-(3-pyridinyl)-1-hydroxyethylidene-1,1-phosphonocarboxylic acid 

(or PEHPC) and [2-(3-pyridinyl)-1-ethylidene-1,1-phosphonocarboxylic acid (or PEPC) have been 

prepared and evaluated for their activity against several enzymes which utilize isoprenoids. The 

parent pyridines are known inhibitors of GGTase II, but the N-oxide derivatives show no 

improvement in biological activity in assays with the isolated enzyme. However, the PEHPC N-

oxide did induce significant accumulation of intracellular light chain in myeloma cells, consistent 

with inhibition of Rab geranylgeranylation.
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The Rab family of small GTPases plays key roles in mediating intracellular trafficking 

events. These proteins are geranylgeranylated by the enzyme geranylgeranyl transferase II 
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(GGTase II) and mutant forms of Rabs that are unable to be geranylgeranylated are 

mislocalized and therefore nonfunctional.1 We have hypothesized that agents which impair 

Rab geranylgeranylation, either directly via inhibition of GGTase II,2 or indirectly via 

depletion of GGPP,3,4 would result in disruption of monoclonal protein secretion in human 

myeloma cells. We have shown that disruption of Rab geranylgeranylation leads to an 

accumulation of monoclonal protein in the endoplasmic reticulum, induction of the unfolded 

protein response pathway, and apoptosis.5,6 Because myeloma cells are so heavily engaged 

in secretion of antibodies, specific inhibitors of GGTase II may represent a novel therapeutic 

strategy for treatment of myeloma or other diseases characterized by excessive protein 

secretion.

Although several types of GGTase II inhibitors are known,7–10 we were particularly 

intrigued by the phosphonocarboxylate family.11 Both PEHPC (1, also known as NE-10790) 

and PEPC (2) can be viewed as analogues of the bisphosphonate risedronate (3).12 However, 

while risedronate is a potent inhibitor of farnesyl diphosphate synthase (FDPS, IC50 ~ 6 

nM)11 and is in clinical use for the treatment of osteoporosis,13 compounds 1 and 2 show 

little activity against FDPS but do inhibit selectively the downstream enzyme GGTase II. 

Reported IC50 values for PEHPC against GGTase II range from ~32 to ~600 uM. 14–16 

Furthermore, formal deletion of the OH group (i.e. compound 2) does not greatly diminish 

activity against GGTase II,11 and the enantiomers of 1 differ in activity by only ~4-fold.16 In 

contrast the phosphono carboxylate 4, also known as IPEHPC and viewed as an analogue of 

the bisphosphonate minodronate (5),12,17 shows significantly greater potency even as the 

racemate, and the (+)-enantiomer 4 is ~60-fold more active than the (−)-enantiomer.15 

However, the (+)-enantiomer also shows weak inhibition of at least one other enzyme 

involved in isoprenoid biosynthesis, probably geranylgeranyl diphosphate synthase 

(GGDPS).16

Studies of IPEHPC have revealed that it inhibits the second geranylgeranylation of Rab 

proteins,16 which suggests that it might be feasible to inhibit processing of some Rab 

proteins selectively over others. Because both PEHPC and IPEHPC inhibit this second 

geranylgeranylation but not the first, they may bind in an enzyme complex that includes 

both GGTase II and a Rab escort protein (REP) in such a way that the reorganization of the 

complex necessary for the second transfer is prevented. It has been suggested that 

complexation occurs in a large carvern in the protein, but the specific structural features that 

favor this binding are not yet clear. In an effort to advance understanding of structure 

activity relationships, and ultimately to obtain more potent inhibitors of GGTase II, we have 

begun to prepare derivatives of PEHPC and PEPC. In this paper we report the preparation 

and biological activity of the N-oxide derivatives of these compounds. The N-oxide 

introduces an N-1 substituent while yielding analogues that preserve a lone pair near the 

placement of the lone pair in the original pyridyl nitrogen, and at the same time are still 

formally neutral with respect to the pyridyl ring. While other derivatives can be imagined 

that accomplish both of these goals, they would require significantly more deep-seated 

changes to the structure. It was our expectation that synthesis and biological evaluation of 

the N-oxides would encourage, or discourage, preparation of less accessible analogues (or 
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mimics) of these pyridine derivatives. Thus the target compounds became the N-oxides 6 
and 7.

Synthesis of two N-oxide analogues of PEHPC is shown in Figure 3. Pyridine aldehyde 8 
was condensed with ethyl ester 9 to afford the known keto ester 10,18 which was further 

treated with diethyl phosphite to give the key intermediate 11. Compound 11 was allowed to 

react with mCPBA to oxidize the pyridine ring and give N-oxide 12 in a reasonable yield. 

Acid hydrolysis of N-oxide 12 converted it to the corresponding acid 13, but only in low 

yield. While some carboxylate phosphonate triesters can be converted to the corresponding 

triacids by prolonged treatment with base,19 that approach was not feasible in this series. 

Instead, treatment of the triester 12 with base resulted in a smooth rearrangement to the 

corresponding phosphate 14. Based on analysis of the 31P NMR spectrum, acid catalyzed 

hydrolysis of phosphate triester 14 gave the corresponding phosphate monoester 15, but this 

compound was not examined further.

The GGTase II inhibitor PEPC (2), which has a potency similar to PEHPC,20 was pursued 

through a parallel synthesis. However, it was challenging to obtain the target molecule 2 
following a literature procedure,21 perhaps due to the poor solubility of the commercially 

available hydrochloride salt 16 in organic solvents. To overcome this issue, the 

hydrochloride salt was first neutralized by treatment with NaHCO3 to give compound 16 as 

the free base which was then added to a solution of the anion of triethyl phosphonoacetate 

(15) in situ.22 The reaction mixture was allowed to stir overnight to form the PEPC 

precursor 17 in reasonable yield. With the key intermediate 17 in hand, part of the material 

was converted directly to PEPC (2) by hydrolysis while the remaining material was treated 

with the mCPBA to generate N-oxide 18. Hydrolysis of triester 18 by treatment with HCl 

gave the corresponding acid 7. At this point, the known GGTase II inhibitors, PEHPC (1), 

and PEPC (2) and their new N-oxide analogues 6 and 7 were tested for their relative 

biological activity.

The N-oxides 6 and 7, as well as the parent compounds 1 and 2, were tested for their ability 

to inhibit FDPS or GGTase II in in vitro enzyme assays.3 As shown in Table 1, these 

compounds do not potently inhibit either enzyme. Despite these compounds displaying 

similar activity against both enzymes, only evidence of GGTase II inhibition was observed 

in cell culture studies. Immunoblot studies were performed to assess the effects of these 

compounds on protein geranylgeranylation in RPMI-8226 human myeloma cells. Rap1a is a 

substrate of GGTase I and an antibody was used which detects only unmodified protein. 

Rab6 is a representative Rab protein and is therefore a substrate of GGTase II. For Rab6, a 

Triton X-114 lysis protocol was used to generate a detergent (membrane) fraction.3 With 

disruption of Rab geranylgeranylation, there is a decrease in membrane-bound protein. 

Lovastatin, an HMG-CoA reductase inhibitor which globally disrupts protein prenylation, 

was used as a control. As shown in Figure 5A, none of the bisphosphonates induce an 

accumulation of unmodified Rap1a. As expected, PEHPC (1) induces a decrease in the 

amount of membrane-bound Rab6. The N-oxide 6 and PEPC (2) diminished the level of 

membrane-bound Rab6 to a lesser extent while the N-oxide 7 did not decrease membrane-

bound Rab6 levels. As we have demonstrated previously, both lovastatin and PEHPC (1) 

Zhou et al. Page 3

Bioorg Med Chem Lett. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



induce apoptosis (as indicated by PARP and caspase 3 cleavage) as well as ER stress 

(calnexin cleavage).5,6 Interestingly, although compound 7 does not appear to alter 

significantly Rab6 levels in the membrane fraction, it does induce cleavage of PARP, 

caspase 3, and calnexin to a similar extent as the parent compound 2, suggesting there may 

be off-target effects. Finally, the ability of these compounds to disrupt monoclonal protein 

trafficking (a functional read-out of impairment of Rab geranylgeranylation3,5) was 

examined. As shown in Figure 5B, PEPHC and its N-oxide derivative 6 induce an 

accumulation of intracellular light chain while PEPC and its N-oxide derivative 7 do not 

significantly alter light chain trafficking, which is consistent with the weaker ability of the 

latter two compounds to diminish Rab geranylgeranylation.

While it is somewhat disappointing that the new N-oxides are not more potent inhibitors of 

GGTase II in assays with the isolated enzyme, at the same time it is significant that the 

PEHPC N-oxide 6 does have cellular activity consistent with inhibition of Rab 

geranylgeranylation. This suggests that larger substituents at the pyridyl nitrogen might be 

tolerated or even afford greater potency. Studies along these lines are underway and will be 

reported in due course.
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Figure 1. Pyridyl bisphosphonates and the corresponding carboxy phosphonates
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Figure 2. N-Oxide derivatives of PEHPC (6) and PEPC (7)

Zhou et al. Page 7

Bioorg Med Chem Lett. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Synthesis of N-oxide analogues of PEHPC
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Figure 4. Synthesis of PEPC and its N-oxide analogue
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Figure 5. Effects of PEHPC derivatives in myeloma cells
RPMI-8226 cells were incubated for 48 hours in the presence or absence of lovastatin (20 

μM, Lov), PEHPC (5 mM), PEPC (5 mM), or the N-oxides 6 and 7 (5 mM). A) Cells were 

lysed using RIPA buffer to generate whole cell lysate or with Triton X-114 to generate a 

detergent (membrane) fraction and immunoblot analysis was performed. The Rap1a 

antibody detects only unmodified protein. β-Tubulin was used as a loading control for whole 

cell lysate and calnexin was used as the loading control for the detergent fraction. * Denotes 

the PARP cleavage product while ** denotes the calnexin cleavage product. The gels are 

representative of two independent studies. B) Intracellular lambda light chain concentrations 

were determined via ELISA. Data are expressed as percentage of control (mean + SD, n=3). 
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The * denotes p<0.05 per unpaired two-tailed t-test and compares treated cells to untreated 

control cells.
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Table 1

FDPS
IC50 (mM)

GGTase II
IC50 (mM)

1 (PEHPC) 0.2 0.7

6 2 1.8

2 (PEPC) 1 1.1

7 >2 0.8
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