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To investigate whether distinct populations have differing
human immunodeficiency virus type 1 (HIV) neutralizing
antibody responses, we compared 20 women from Tanzania’s
HIV Superinfection Study (HISIS) cohort, who were infected
multiple HIV subtypes, and 22 women from the Centre for
the AIDS Programme of Research in South Africa (CAPRI-
SA) cohort, who were infected exclusively with HIV subtype
C. By 2 years after infection, 35% of HISIS subjects developed
neutralization breadth, compared with 9% of CAPRISA sub-
jects (P = .0131). Cumulative viral loads between 3 and 12
months were higher in the HISIS group (P = .046) and
strongly associated with breadth (P < .0001). While viral
load was the strongest predictor, other factors may play a
role, as the odds of developing breadth remained higher in
HISIS even after correction for viral load.
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Broadly neutralizing antibody (bNAb) responses are important
for vaccines. Although most infected people develop some

degree of neutralization cross-reactivity [1], approximately
10%–30% of individuals develop Abs that are very broadly neu-
tralizing. These usually develop after 2–4 years and are associ-
ated with higher early viral loads [2]. Different populations may
vary in their bNAb responses, owing to differences in host ge-
netics, infecting subtype, and disease progression profiles. Sub-
type has been implicated in the potency and breadth of bNAbs,
but most studies did not control for viral load and duration of
infection [3].Other viral factors influencing the development of
breadth include early viral diversity, shorter variable loops, dif-
ferences in glycosylation motifs, and, according to some studies,
dual infection [4, 5]. The common targets between subtypes of
human immunodeficiency virus (HIV)-specific bNAbs have
been mapped to 5 sites on the envelope, the CD4 binding
site, the V1V2 and V3/C3 regions of gp120, the membrane
proximal external region in gp41, and the gp41-gp120 interface.
However, some studies have shown that there may be subtype-
specific epitope variants [3]. It remains unclear to what extent
intersubtype recombinants impact the development of the
bNAb response in infection.

To understand the evolution of bNAb responses in different
populations in Africa, we compared the kinetics and breadth of
neutralization responses in 2 cohorts: one in Tanzania (the HIV
Superinfection Study [HISIS]), in which participants were in-
fected with multiple HIV subtypes or recombinant forms [6];
and one in South Africa (the Centre for the AIDS Programme
of Research in South Africa [CAPRISA]), in which all partici-
pants were exclusively infected with HIV subtype C [2]. This
study showed that participants in the Tanzanian cohort had
higher viral loads and significantly more bNAb responses
than the South African cohort at 2 years after infection.

MATERIALS AND METHODS

Ethics Statement
Ethics approval was obtained from the Tanzania Ministry of
Health, Ludwig Maximilians University (Munich, Germany),
and the University of Cape Town, for HISIS; and the uni-
versities of KwaZulu-Natal (Cape Town) and Witwatersrand,
for CAPRISA. All participants provided written informed
consent.

Participants
For the HISIS cohort, high-risk, HIV-seronegative women from
Mbeya, Tanzania, were recruited and followed up quarterly for
2 years [7]. The first 20 seropositive participants were included
in this study.
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For the CAPRISA cohort, high-risk, HIV-negative women from
KwaZulu-Natal were monitored for recent HIV infection, as de-
scribed previously [8], and the first 22 women infected in the CAP-
RISA 002 study were included in this study. Women were
monitoredat leastmonthly for thefirst yearandquarterly thereafter.

Plasma HIV RNA loads in both cohorts were measured in a
quantitation range of ≥400 to ≤750 000 virus copies/mm3,
using the Amplicor HIV Monitor Test, version 1.5 (Roche,
Basel, Switzerland). All participants were antiretroviral (ART)
naive.

Estimation of Duration of Infection
The duration of Fiebig stage I/II infection was estimated as 14
days and that of Fiebig stages III/IV was estimated as 30 days.
For participants beyond Fiebig stage IV infection, duration of
infection was estimated as the midpoint between the last sero-
negative and first seropositive visits, or 45 days preceding the
first seropositive visit.

Reverse Transcription Polymerase Chain Reaction
Amplification and Sequencing
RNAwas extracted and reverse transcribed as described elsewhere
[9]. Single-genome amplification or end-point dilution was
performed on complementary DNA derived from a plasma speci-
men obtained during the first seropositive visit, for HISIS sub-
jects, and from the first visit of HIV detection in a plasma or
serum specimen, for CAPRISA subjects, and amplicons were di-
rectly sequenced [9]. Sequence accession numbers are available in
the supplementary material. Pairwise DNA distances and maxi-
mum likelihood trees were computed using Mega 4 software.

Characterization of Infecting Virus
Infecting virus sequences were subtyped using the REGA
subtyping tool (http://bioafrica.mrc.ac.za/rega-genotype/html/
subtypinghiv.html).

Panel Viral Isolates
The panel of molecularly cloned full-length env genes for
HIV-1 Env pseudovirus production consisted of 4 representa-
tive clones from the standard panel of HIV strains for subtype
A (Q168ENVa2, Q461ENVe2, Q842ENVd12, and Q23ENV17),
subtype B (AC10.0.29, CAAN5342.A2, QH0692.42, and PVO.4),
and subtype C (Du156.12, Du422.1, ZM214M.PL15, and
ZM109F.PB4), obtained from the National Institutes of Health
AIDS Research and Reference Reagent Program.

Cloning of Envelope Genes and Neutralization Assays
Functional env clones representing transmitted founder (T/F)
virus were generated for 16 HISIS participants and inserted
into mammalian expression vectors. HEK293T and TZM-bl
cell lines were prepared, and Env-pseudotyped viruses were
generated. Neutralization was measured and calculated as the
median infectious dose (ID50) [2].

The following consensus C mutants were used for mapping
HISIS_605 neutralization activity: N160A and K169E, for V2;
I307A, H330Y, and N332A, for V3; K360V, E362N, L369P,
T372V/T373M, and S375M, for CD4 binding site; T408A and
T415I, for V4; R416A, for C4; and F468V, for V5.

Calculation of Breadth and Potency Scores and Statistical
Analyses
Breadth and potency scores were calculated for each plasma
sample according to the method of Blish et al [10]. Wilcoxon
rank sum and Mann–Whitney U tests were performed using
Graphpad Prism (GraphPad Software, La Jolla, California). Lin-
ear mixed model analyses fitted to viral load and corrections for
repeated measures were performed using SAS, version 9.3 (SAS
Institute, Cary, North Carolina).

RESULTS

Characteristics of the 2 Cohorts and Their Infecting Viruses
All participants in CAPRISA and HISIS were high-risk females
who acquired HIV heterosexually and were recruited within a
mean of 34 days from the estimated time of infection (range,
14–45 days), followed for 2 years (range, 24–27 months), and
remained ART naive. Infections reflected the HIV diversity of
their respective local epidemics, with HISIS participants infect-
ed with subtypes A (4 participants), C (8), D (1), and recombi-
nant viruses (7 [2 with AC, 2 with ACD, 1 with AD, and 2 with
CD]) [6], while all CAPRISA participants had subtype C infec-
tions [8] (Figure 1A and 1B).

HISIS Participants Had Greater Neutralization Breadth
Neutralization assays were conducted using a 12-pseudovirus
panel consisting of subtypes A, B, and C (Supplementary Fig-
ure 1), and each plasma sample was assigned breadth and potency
scores. Scores were calculated on the basis of overall neutraliza-
tion titers and panel virus susceptibility. Two years after infection,
there was significantly higher breadth among the Tanzanian par-
ticipants, of whom 35% (7 of 20) developed bNAbs (defined as
Abs that could neutralize >50% of the panel viruses at titers of
over 1:50 [ID50 >50]), compared with only 9% (2 of 22) in the
CAPRISA cohort (P = .0139; Figure 1C and 1D and Supplemen-
tary Figure 1). Accordingly, the HISIS cohort had a significantly
higher mean breadth score (3.35) than the CAPRISA participants
(0.95; P = .0131). Potency scores did not differ between the 2 co-
horts. HISIS participants had higher mean breadth scores against
subtype C panel viruses (1.65), followed by subtype B (0.9), and
subtype A (0.8) (Supplementary Figure 1 and Figure 1C and 1D).
No such trend was observed in CAPRISA participants.

Early Viral Loads Were Predictive of Breadth at 2 Years and
Were Higher in the HISIS Cohort
We found a strong association with breadth at 2 years and plas-
ma viral load area under the curve (AUC) between 3 and 12
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months (P < .0001; r2 = 0.4747). Furthermore, the median plas-
ma viral load AUC for individuals in HISIS was significantly
higher than for those in CAPRISA (P = .046, by the Mann–

Whitney U test; Supplementary Figure 2A). To determine
whether there was an effect independent of viral load, a multi-
nomial regression model was fit to breadth as a 3-level

Figure 1. A and B, Circular maximum likelihood trees showing consensus-derived infecting viral sequences from the HISIS cohort (A) and the CAPRISA
cohort (B). Thirty reference sequences, including 18 circulating recombinant form sequences and a SIVcpz outgroup are included (black). Branch tips are
color coded as follows: subtype A, green; subtype B, blue; subtype C, red; and recombinants, purple. C and D, Hierarchical clustering of neutralization titers
(displayed as the median infectious dose [ID50]) for plasma specimens from 20 HISIS donors (C) and 22 CAPRISA donors (D) and 12 panel viruses. The
dendrograms on the left cluster plasma samples according to their neutralization capacity, while the dendrograms at the top cluster the panel viruses
according to their neutralization susceptibilities. Donor plasma names and the subtype of their infecting viruses are at the right hand margins of panels
C and D. Abbreviations: CAPRISA, Centre for the AIDS Programme of Research in South Africa; HISIS, HIV Superinfection Study.
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categorical outcome (no breadth [breadth score, 0]; moderate
breath [breadth score, 1–4]; and broadly neutralizing (breadth
score, ≥5]) with an adjustment for the influence of plasma
viral load AUC. We found that the odds of developing bNAb
responses among HISIS participants was 5.88 times that
among CAPRISA participants (P = .0644). The odds remained
higher after correcting for plasma viral load AUC (odds ratio,
3.1), although this was no longer statistically significant
(P = .2920). Nevertheless, these data are consistent with contri-
butions from other factors to the development of greater
breadth in the HISIS group.

Viral Characteristics and Development of Neutralization
Breadth

There was a high incidence of subtype C infection (40%) and
intersubtype recombinant virus infection (35%) in HISIS par-
ticipants (Supplementary Figure 1). However, neither finding
was associated with significant differences in mean breadth
scores both before and after accounting for viral load. We
were thus unable to establish subtype as a major factor in the
development of breadth in the HISIS cohort.

High diversity in early infection and superinfection with a
second strain following seroconversion has been associated

Figure 2. The development of autologous neutralizing antibody responses in the HISIS cohort (A) and the CAPRISA cohort (B). A functional envelope
clone representing the transmitted/founder or an early virus for each of 16 HISIS and 14 CAPRISA participants was tested against longitudinal samples of
autologous plasma in an Env-pseudotyped virus neutralization assay. Results are shown as neutralization titers (displayed as the median infectious dose
[ID50]). Abbreviations: CAPRISA, Centre for the AIDS Programme of Research in South Africa; HISIS, HIV Superinfection Study.
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with neutralization breadth [4, 5]. In HISIS, 7 of 20 subjects
(35%) were reported to be dually infected (incorporating both
coinfection and superinfection) [6, 11], compared with 3 of 22
subjects (14%) in the CAPRISA group [12] (Supplementary
Figure 1). However, we found no significant association be-
tween dual infection and the development of breadth in either
cohort or in a combined analysis, using a Wilcoxon rank sum
test and a multinomial regression model.

A comparison of variable loops between the cohorts found no
significant difference inV1-V5 length (Supplementary Figure 2B).
We also found no significant association between the loop length
of the infecting virus and the development of breadth.

Development of Autologous NAb Responses
We compared the kinetics of autologous NAb responses in the
HISIS cohort with the kinetics in the CAPRISA cohort (Figure 2).
In the HISIS and CAPRISA cohorts, 14 of 16 participants (88%)
and 12 of 14 participants (86%), respectively, developed respons-
es with ID50 titers greater than 1:100 at 20 weeks after infection.
At 12 months, 4 HISIS participants had titers greater than
1:10 000 (Figure 2A). No CAPRISA participant reached titers
of 10 000 (Figure 2B). Median autologous titers at 12 months
were significantly higher in the HISIS cohort, compared with
the CAPRISA cohort (P = .0327, by the Wilcoxon signed rank
test), but there was no significant correlation between median
titer and breadth within each cohort or in a combined analysis.

Development of NAb Breadth in HISIS_605
Plasma specimens from one participant in the HISIS cohort,
HISIS_605, who was infected with an A/C recombinant, neu-
tralized 83% of the virus panel and fulfilled the definition of
an elite neutralizer. Breadth developed rapidly, and her plasma
neutralized 72% of the panel viruses 15 months after infection
(Supplementary Figure 3A).

To identify the Ab specificity, plasma was screened against
a panel of mutants introduced into a consensus C backbone
to determine their ability to abrogate recognition by bNAbs.
Mutations in the V1V2 and V3/C3 glycan epitopes did not af-
fect neutralization titers. The CD4 binding loop spans 364–374,
and mutations in or near this region (K360V, E362N, L369P,
and S375M) reduced neutralization titers (<75% reduction in
titer; Supplementary Figure 3B). Only position 369 has been
shown to be a contact site for CD4 mAbs (CH103 and b12)
[13], and we confirmed that the L369P mutation affected neu-
tralization by VRC01. However, because of a lack of sample
availability, we were unable to confirm whether this individual’s
potent responses targeted the CD4-bs.

DISCUSSION

We report different frequencies of bNAb responses in 2 female
cohorts in Africa, with the HISIS participants from Tanzania

having more bNAb responses at 2 years after infection, com-
pared with the South African CAPRISA participants. More-
potent autologous NAb responses were also found in the
HISIS cohort at 12 months. Cumulative viral loads between 3
and 12 months were strongly predictive of breadth at 2 years
and were significantly higher in HISIS participants.

Our study suggests that other factors may play a role, since
the odds of developing breadth remained higher in the HISIS
group even after correction for viral load. The role of subtype,
dual infection, and other virological characteristics could not be
established, because of the limited size of the study. Although
subtype has been implicated in differences in viral load set
point [14], other factors, including tropical coinfections such
as malaria [15], which is absent in South Africa, may contribute
to these differences in viral load. Other unknown environmen-
tal or genetic factors, such as the host genetic variation observed
within Africa, may also influence levels of viral replication in
different populations.

One HISIS individual (HISIS_605) developed bNAbs within
1 year of infection and was an elite neutralizer by 2 years after
infection. This is rare [2] and was not observed in CAPRISA.
Preliminary mapping data suggest that bNAbs produced by
HISIS_605 may target the CD4 binding site. Further studies
of this individual could help us understand the pathway to de-
veloping bNAbs more rapidly and inform vaccine design.

In conclusion, the CAPRISA and HISIS longitudinal cohorts,
which recruited women recently infected with HIV, enabled us
to directly compare the development of breadth in NAb re-
sponses in populations with different local epidemics. Viral
load was the major factor associated with these differences,
and further work is needed to understand whether the presence
of coinfections influenced viral load and the development of
bNAb responses. This and other cofactors, including virological
characteristics, need to be considered because they may have
implications for the continued efforts to understand how to
elicit these responses through vaccination.

Supplementary Data

Supplementary materials are available at The Journal of Infectious Diseases
online (http://jid.oxfordjournals.org). Supplementary materials consist of
data provided by the author that are published to benefit the reader. The
posted materials are not copyedited. The contents of all supplementary
data are the sole responsibility of the authors. Questions or messages regard-
ing errors should be addressed to the author.
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