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SUMMARY

Campylobacter jejuni infection is one of the most widespread in-
fectious diseases of the last century. The incidence and prevalence
of campylobacteriosis have increased in both developed and de-
veloping countries over the last 10 years. The dramatic increase in
North America, Europe, and Australia is alarming, and data from
parts of Africa, Asia, and the Middle East indicate that campylo-
bacteriosis is endemic in these areas, especially in children. In
addition to C. jejuni, there is increasing recognition of the clinical
importance of emerging Campylobacter species, including Cam-
pylobacter concisus and Campylobacter ureolyticus. Poultry is a ma-
jor reservoir and source of transmission of campylobacteriosis to
humans. Other risk factors include consumption of animal prod-
ucts and water, contact with animals, and international travel.
Strategic implementation of multifaceted biocontrol measures to
reduce the transmission of this group of pathogens is paramount
for public health. Overall, campylobacteriosis is still one of the
most important infectious diseases that is likely to challenge global
health in the years to come. This review provides a comprehensive
overview of the global epidemiology, transmission, and clinical
relevance of Campylobacter infection.

INTRODUCTION

Campylobacter species are Gram-negative spiral, rod-shaped, or
curved bacteria with a single polar flagellum, bipolar flagella,
or no flagellum, depending on the species (1). Campylobacter spe-
cies are non-spore-forming, are approximately 0.2 to 0.8 by 0.5 to
5 wm, and are chemoorganotrophs which obtain their energy
sources from amino acids or tricarboxylic acid cycle intermediates
(2). Most Campylobacter species grow under microaerobic condi-
tions and have a respiratory type of metabolism; however, several
species (Campylobacter concisus, Campylobacter curvus, Campylo-
bacter rectus, Campylobacter mucosalis, Campylobacter showae,
Campylobacter gracilis, and, to a certain extent, Campylobacter hy-
ointestinalis) require hydrogen or formate as an electron donor for
microaerobic growth. In addition, certain species prefer anaerobic
conditions for growth.

The Campylobacter genus was established in 1963 following the
renaming of Vibrio fetus to Campylobacter fetus, forming the type
species of this genus (3). The Campylobacter genus belongs to the
family Campylobacteraceae, the order Campylobacterales, the class
Epsilonproteobacteria, and the phylum Proteobacteria. Since its
first description, the genus has grown to include several important
human and animal pathogens that are primarily classified through
phylogenetic means. The genus Campylobacter consists of 26 spe-
cies, 2 provisional species, and 9 subspecies (as of December
2014).
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Campylobacter jejuni is a major cause of gastroenteritis world-
wide. Moreover, C. jejuni infection may lead to autoimmune con-
ditions known as Guillain-Barré syndrome (GBS) and Miller
Fisher syndrome. Many Campylobacter species are known patho-
gens in humans and animals (1). In humans, Campylobacter spe-
cies have been associated with a range of gastrointestinal condi-
tions, including inflammatory bowel diseases (IBD), Barrett’s
esophagus, and colorectal cancer (Fig. 1) (1). They have also been
reported to be involved in extragastrointestinal manifestations,
including bacteremia, lung infections, brain abscesses, meningitis,
and reactive arthritis, in individual cases and small cohorts of
patients (1). A full list of the clinical manifestations associated
with Campylobacter infection is presented in Table 1. The precise
role of Campylobacter species in the development of these clinical
conditions is largely unknown. In this review, we describe the
latest global epidemiological landscape of C. jejuni and other
Campylobacter species in gastroenteritis and other diseases. We
also discuss the modes of transmission and biocontrol methodol-
ogies to prevent transmission of campylobacteriosis.

GASTROENTERITIS

C. jejuni and C. coli are established causes of diarrhea in humans.
A human experimental infection study revealed that the rate of
colonization increased with increasing doses of C. jejuni, whereas
the development of illness did not (4). Infection with a dose as low
as 800 CFU resulted in diarrhea in some volunteers (4). However,
ithas been speculated further that the dose of C. jejuni required for
the development of campylobacteriosis can be as low as 360 CFU
(5). Mathematical modeling suggested that an intermediate dose
of 9 X 10* CFU/ml has the highest ratio of illness to infection (6).
In contrast, an association between dose and occurrence of disease
was observed in humans experimentally infected with C. jejuni
strain 81-176. In addition, exposure to C. jejuni strain 81-176 of-
fered only short-term protection (7). This can be reconciled by the
fact that the severity of disease, dose-response relationship, and
illness/infection ratio are dependent, at least in part, on the strain
used. These strain-specific differences were clearly observed when
experimental infection of naive individuals with C. jejuni strain
CG8421 failed to offer protection against a second bout of cam-
pylobacteriosis upon rechallenge with the same strain (8). Inter-
estingly, an immunocompetent adult experimentally infected
with C. jejuni experienced recrudescence of the infection at the
conclusion of antibiotic therapy (9), suggesting that the incidence
of recurrent infection may be underestimated.

Patients with C. jejuni or C. coli infection experience acute
watery or bloody diarrhea, fever, weight loss, and cramps that last,
on average, 6 days (1). Gastroenteritis induced by C. coli is clini-
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FIG 1 Environmental reservoirs, routes of transmission, and clinical manifestations associated with Campylobacter species. Campylobacter species can be
transmitted to humans through consumption of undercooked or contaminated food or via contact with animals. Tap, bore, and pond waters are also sources of
Campylobacter species. Person-to-person transmission (fecal-oral or via fomites) can occur. Ingestion of a sufficient dose of organisms via the oral-gastric route
may lead to one or more gastrointestinal and/or extragastrointestinal manifestations; the outcome is dependent on the species or strains of Campylobacter
involved in the infection. Abbreviations: IBD, inflammatory bowel diseases; IBS, irritable bowel syndrome. Question marks indicate conditions for which a role

for Campylobacter is implicated but not certain.

cally indistinguishable from that by C. jejuni. The onset of symp-
toms usually occurs 24 to 72 h following ingestion and may take
longer to develop in those infected with a low dose. The peak of
illness can last 24 to 48 h and may include abdominal pain that
mimics appendicitis (10). Polymorphonuclear leukocytes and
blood (gross or microscopic) can be observed in the stool, and
diffuse inflammatory colitis is present in colonic biopsy specimens
from infected patients (10). While infection with C. jejuni or C.
coli can occur in patients of all ages, a recent study from Denmark
showed that infection is more prevalent in toddlers (1 to 4 years)
and young adults (15 to 24 years) than in other age groups (11). A
recent comparison of the characteristics of patients infected with
C. jejuni or C. coli indicated that slightly older patients (34.6 years
versus 27.5 years) and those who traveled abroad were at a greater
risk of being infected with C. coli than with C. jejuni (12). Studies
have also shown that infections with C. jejuni and C. coli are more
common during the summer months (11, 13). Although C. coli is
less prevalent than C. jejuni in many geographic regions, C. coli
infections can contribute as many as 25% of all gastroenteritis
cases caused by Campylobacter species (14-18).

C. concisus, Campylobacter ureolyticus, Campylobacter upsa-
liensis, and Campylobacter lari are known as “emerging Campylo-
bacter species,” a term used to describe their underappreciated
roles in human and animal diseases. Emerging Campylobacter

July 2015 Volume 28 Number 3

Clinical Microbiology Reviews

species are likely to contribute to the etiology of gastroenteritis,
especially in cases which have no known association with other
established pathogens (1, 19-21). Furthermore, many diagnostic
laboratories fail to detect emerging Campylobacter species owing
to a lack of the specialized cultivation techniques required to cul-
ture these organisms, including the use of microaerobic or anaer-
obic conditions enriched with hydrogen (1). Indeed, introduction
of hydrogen as part of routine microaerobic culture for stool sam-
ples at a University Hospital in Bern, Germany, resulted in a sig-
nificant increase in the rate of isolation of C. concisus (22). As a
consequence, the incidence of C. concisus detection rose from 0.03
to 1.92%.

Patients infected with C. concisus and certain Campylobacter
species other than C. jejuni and C. coli generally experience milder
symptoms, with fewer individuals reporting fever, chills, weight
loss, and mucus and blood in their stools than those infected with
C. jejuni and C. coli (1, 23). In general, the milder severity of
symptoms has been found to correlate with the low levels of fecal
calprotectin in those infected with C. concisus (median, 53 mg/kg
of feces; interquartile range, 20 to 169 mg/kg). For comparison,
fecal calprotectin levels are higher (median, 631 mg/kg; interquar-
tile range, 221 to 1,274 mg/kg) in those infected with C. jejunior C.
coli (24). Symptoms associated with C. concisus infection tend to
be more persistent than those of C. jejuni or C. coli infection, with
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TABLE 1 Species within the genus Campylobacter and their clinical relevance to humans (as of December 2014)°

Campylobacter species”  Clinical manifestations

Associated with bacteremia; also found in gastroenteritis, brain abscesses, epidural abscess aspirate, cerebrospinal fluid, cellulitis,

C. coli Established pathogen in gastroenteritis; also found in blood, meningitis, and acute cholecystitis

C. concisus Emerging pathogen associated with gastroenteritis and IBD (Crohn’s disease and ulcerative colitis); also found in Barrett’s
esophagitis, blood, and brain abscess

C. curvus Found in gastroenteritis, ulcerative colitis, Barrett’s esophagitis, blood, liver, and bronchial abscesses

C. fetus®
endocarditis, mycotic aneurysm of the abdominal aorta, and peritonitis

C. gracilis Potential periodontal pathogen; also found in IBD, head and neck infection, and brain abscess

C. hominis Found in blood and IBD (possibly a commensal in the intestine)

C. helveticus
C. hyointestinalis
C. insulaenigrae

Found in gastroenteritis
Found in gastroenteritis and blood
Found in gastroenteritis and blood

Established pathogen in gastroenteritis and possible predisposing agent in IBD, postinfectious IBS, and celiac disease; infection may

result in sequelae in the forms of Guillain-Barré syndrome, Miller Fisher syndrome, Bell’s palsy (unilateral facial paralysis), and
reactive arthritis; found in IBD, blood, myocarditis, meningitis, acute cholecystitis, urinary tract infection, and acute febrile

Putative periodontal pathogen; also found in gastroenteritis, IBD, vertebral abscess, blood, necrotizing soft tissue infection, and pus

C. jejuni
illnesses associated with leukopenia or thrombocytopenia
C. lari Associated with gastroenteritis; also found in blood
C. mucosalis Found in gastroenteritis
C. rectus
C. showae Found in IBD, intraorbital abscess, and blood
C. sputorum Found in gastroenteritis, axillary abscess, and blood

C. upsaliensis
C. ureolyticus
ulcers or gangrenous lesions of the lower limb

Emerging pathogen in gastroenteritis; also found in breast abscess, blood, and placenta
Associated with gastroenteritis and IBDj also found in oral, perianal, and soft tissue abscesses, soft tissue or bone infections, and

“ No disease association in humans has been reported for C. avium, C. canadensis, C. corcagiensis, C. cuniculorum, C. lanienae, C. lari subsp. concheus, C. peloridis, C. subantarcticus,
C. troglodytis, C. volucris, “Campylobacter sp. Dolphin DP,” and “Campylobacter sp. Prairie Dog” (as of December 2014).

Y Includes C. fetus subsp. fetus, C. fetus subsp. venerealis, and C. fetus subsp. testudinum.
¢ The table was updated from the work of Man (1).

80% of patients reporting diarrhea that lasted 14 days or more,
whereas only 32% of those infected with C. jejuni or C. coli re-
ported prolonged diarrhea (23). Similar to the case profile for C.
concisus infection, infection with C. fetus is more common than
infection with C. jejuni and C. coli in older patients (68.4 years
versus 28.6 years) (12).

Epidemiology

There is evidence to suggest that there has been a rise in the global
incidence of campylobacteriosis in the past decade. The numbers
of cases of campylobacteriosis have increased in North America,
Europe, and Australia. Although epidemiological data from Af-
rica, Asia, and the Middle East are still incomplete, these data
indicate that Campylobacter infection is endemic in these regions.
Differences in the incidence and number of cases reported from
different countries or regions within the same country may vary
substantially (Fig. 2) (25, 26). It is likely that these variations arise,
in part, from differences in the sensitivity of detection methodol-
ogies and the area, population, and scope of the case profile
studied, as well as differences in the standard and stringency of
biocontrol protocols, surveillance bias, food practices, and avail-
ability of natural reservoirs for Campylobacter species in these re-
gions. Furthermore, the reported cases of C. jejuni and C. coli
infections are likely to represent only the tip of the iceberg owing
to underreporting (27).

An additional factor that has been hypothesized to influence the
prevalence of Campylobacter infections is population-level immu-
nity (28). Population-level immunity refers to the host immune
response against an infection within a population that can provide
protection against transmission of an infection and/or disease for
unprotected individuals. At the population level, this can have
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impacts on the epidemiology and risk assessment of campylobac-
teriosis (28). In developing countries where Campylobacter is en-
demic, infection is usually limited to children, with illness/infec-
tion ratios decreasing with age, suggesting that exposure in early
life might lead to the development of protective immunity (13).
This might reflect why asymptomatic Campylobacter infections
are common in developing nations, which could also have an im-
pact on the transmission of Campylobacter infections in these re-
gions due to asymptomatic excretion (28). Asymptomatic excre-
tion is also found in developed countries, with a number of studies
showing that a majority of shedders are asymptomatic (29, 30).
Outbreaks caused by Campylobacter species are not uncom-
mon. The Centers for Disease Control and Prevention defines a
foodborne disease outbreak as the occurrence of more cases than
expected in a particular area or among a specific group of people
during a specific period, usually with a common cause. Since 2007,
the numbers of individuals reported in published outbreaks of
campylobacteriosis have ranged from 10 to more than 100 and
have correlated with the type of event and environmental source
of infection (Fig. 3). The most common reported sources of Cam-
pylobacter responsible for outbreaks are consumption of poultry
products or water (Fig. 3). Between 1992 and 2009, 143 outbreaks
were reported in England and Wales, United Kingdom. Of these,
114 were due to contaminated food or water, 2 to animal contact,
and 22 to an unknown mode of transmission (31). According to
records from the Centers for Disease Control and Prevention,
there were 4,936 Campylobacter outbreaks in the United States
between 1999 and 2008 (32). Between 2009 and 2010, 56 con-
firmed and 13 suspected outbreaks were reported to the U.S. Na-
tional Outbreak Reporting System, among which 1,550 illnesses
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L
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® « Found in 5-16% of
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Australia (2010)
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foodborne infections

« 17,000+ cases/year

Peru (2002-2006)
« Found in 8.3% of gastroenteritis cases
(children, crude incidence: 0.37 episodes/year)

Madagascar (2010-2012)
« Found in 8.9% of
gastroenteritis cases (children)

New Zealand (2008)
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FIG 2 Incidence and prevalence of campylobacteriosis (C. jejuni/C. coli). The latest information on the global epidemiology of campylobacteriosis from the
literature is shown, including data from the United Kingdom (47), Denmark (11), Germany (49), Norway (424), Poland (25, 50, 425), the Netherlands (51), Israel
(67), China (60, 61), Japan (26), India (63-65), Australia (69), New Zealand (73), Madagascar (78), Malawi (77), Kenya (79, 426), Guatemala (41), Peru (427),
Mexico (428), the United States (10 sites within The Food-Borne Diseases Active Surveillance Network) (34), and Canada (37-39). B.C., British Columbia. (Map
adapted from an image from Wikimedia Commons [http://commons.wikimedia.org/wiki/File:A_large_blank_world_map_with_oceans_marked_in

_blue.PNG].)

and 52 hospitalized cases were recorded (33). Unfortunately, out-
break data from developing nations are severely lacking. A full list
of published campylobacteriosis outbreaks since 2007 is shown in
Fig. 3. Below, we summarize the epidemiological data from differ-
ent regions of the world.

North and Central America. In the United States, the annual
number of campylobacteriosis cases, based on 10 years of out-
break data (1998 to 2008), was estimated to be 845,024 cases,
resulting in 8,463 hospitalizations and 76 deaths (32). The U.S.
Food-Borne Diseases Active Surveillance Network (1996 to 2012)
reported an annual incidence of 14.3 per 100,000 population for
Campylobacter infection (34). Batz and colleagues estimated the
annual costs of campylobacteriosis to be $1.7 billion in the United
States (35). Importantly, there was a 14% increase in the incidence
of campylobacteriosis in 2012 compared to the 20062008 period,
whereas the incidences of Cryptosporidium, Listeria, Salmonella,
Shigella, Shiga-toxigenic Escherichia coli (STEC) 0157, and Yer-
sinia infections decreased over the same period (34). Analysis of
seven states in the United States within the Food-Borne Diseases
Active Surveillance Network revealed that of nine common food-
borne pathogens, Campylobacter was the leading cause of travel-
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associated gastroenteritis from 2004 to 2009, accounting for
41.7% of cases (3,445 of 8,270 cases reported), followed by Salmo-
nella (36.7%) and Shigella (13.0%) (36). The same study also
found that Campylobacter species were the second most prevalent
pathogens in non-travel-associated gastroenteritis, behind Salmo-
nella species, accounting for 26.5% of the 14,782 cases reported
between 2004 and 2009 (36).

In Quebec, Canada, 28,521 cases of campylobacteriosis were
reported between 1996 and 2006, which yielded an estimated an-
nual incidence of 35.2 cases per 100,000 persons (37). A higher
incidence of campylobacteriosis (49.69 cases per 100,000 people)
was reported from 1990 to 2004 in the Waterloo region of On-
tario, Canada (38). In southwestern Alberta, Canada, 36.9% and
5.4% of the patients with diarrhea reported from 31 May to 31
October 2005 were positive for C. jejuni and C. coli, respectively
(14). With a rate among the highest in the country, the province of
British Columbia had an annual average of 38.0 cases per 100,000
people during 2005 and 2009 (39).

In Mexico, C. jejuni was the most common cause of acute gas-
troenteritis in infants and preschoolers in 2006 and 2007 (isolated
in 15.7% of 5,459 cases) (40). Campylobacteriosis is also very
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FIG 3 Timeline of published campylobacteriosis outbreaks since 2007 (381, 382, 429-447).

common in children in Guatemala, with incidence rates of 185.5
to 1,288.8 per 100,000 children (41). One study estimated that the
incidence of campylobacteriosis in Barbados in 2000 was 5.4 per
100,000 inhabitants—an incidence which had doubled in 2002
(42). However, there is no further report describing the incidence
of human campylobacteriosis in this region. Overall, C. jejuni is a
major pathogen in the United States and Canada, but its precise
impact in regions of Central America is less clear.

South America. In 2011, Ferndndez reviewed the available data
on the prevalence of C. jejuni and C. coli in South America (43).
The prevalences of C. jejuni ranged from 4.6 to 30.1% of diarrheic
patients in Argentina (three studies), while those of C. coli were 0
to 1.4%, with C. coli being responsible for a third of the Campylo-
bacter-related gastroenteritis cases in one of these studies. How-
ever, none of these studies included a control group. In Bolivia, the
prevalences of C. jejuni ranged from 4.4 to 10.5%; however, of the
two studies cited, one included a control group in which C. jejuni
was detected in 9.6% of the controls. Similarly, two studies in
Brazil found that the levels of detection of C. jejuni were similar
between patients (5.8 to 9.6%) and controls (4.9 to 7.2%), while
those of C. coli ranged from 2.2 to 6.0% for patients and from 1.2
to 2.0% for controls. Detection levels of C. jejuni and C. coli in
gastroenteritis patients ranged from 0 to 14.1% in Chile, 0 to
14.4% in Colombia, 0 to 23.0% in Ecuador, 0.6 to 18.4% in Para-
guay, 0 to 23.0% in Peru, 0 to 14.3% in Uruguay, and 0 to 13.0% in
Venezuela (43).

In 2013, Collado and colleagues reported the detection of C.
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jejuni and emerging Campylobacter species in patients with gas-
troenteritis from southern Chile (44). In this study, fecal samples
were collected from participants over the period from November
2010 to March 2012, and the presence of Campylobacter species
was detected by PCR. Of the 140 patients, 11.4% tested positive for
C. concisus DNA, compared to only 3.4% of the 116 healthy con-
trols (P < 0.05) (44). Notably, the prevalence of C. concisus DNA
in gastroenteritis patients was found to be similar to that of C.
jejuni (10.7%). In Peru, a study that included 150 pediatric stool
samples from the Etiology, Risk Factors and Interactions of En-
teric Infections and Malnutrition and the Consequences for Child
Health and Development (MAL-ED) cohort study detected C.
jejuni/C. coli in 41.3% of the children with gastroenteritis and
18.7% of the controls (P = 0.007) (45). In contrast, the difference
in the prevalences of other Campylobacter species, including C.
hyointestinalis subsp. lawsonii, C. troglodytis, and C. upsaliensis, in
children with gastroenteritis (33%) and in controls (24%) was not
statistically significant (45). Taken together, the data from South
America indicate that Campylobacter species contribute to the eti-
ology of gastroenteritis, but the contribution of campylobacterio-
sis to this disease, relative to the contributions of other major
pathogens, is unclear.

Europe. The most current evaluation of the epidemiology of
campylobacteriosis in 27 European Union (EU) state members
indicated the incidences of Campylobacter infections to range
from 29.9 to 13,500 per 100,000 population in 2009 (with the
lowest incidences in Finland and Sweden and the highest in Bul-
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garia) (46). Overall, this equated to 9.2 million cases, compared to
6.2 million cases of salmonellosis, in 2009 (46). A United King-
dom-wide study conducted over the period from April 2008 to
August 2009 identified Campylobacter species as the most com-
mon bacterial pathogens in cases of gastroenteritis (47). In this
study, the reported rate of campylobacteriosis was 9.3 cases per
1,000 person-years in the community, with an estimated total of
500,000 cases and 80,000 general practitioner consultations across
the United Kingdom annually (47). Investigation of the preva-
lence of pathogen-induced diarrhea in the United Kingdom in
2008 to 2009 revealed that the prevalence of Campylobacter species
had not decreased compared to that observed 15 years prior (21).
In contrast, the prevalences of enteroaggregative E. coli, Salmo-
nella, and Yersinia enterocolitica had all decreased over the same
15-year period (21).

Similarly, in Germany, the prevalence of campylobacteriosis in
2011 was similar to the data from 2001; in contrast, over the same
period, the prevalence of salmonellosis had decreased (48). In
2011, there were 70,560 reported cases of campylobacteriosis, a
prevalence higher than that reported for Salmonella, Shigella, Yer-
sinia, and Listeria infections (48). According to data from Hesse,
Germany, the annual incidences of campylobacteriosis between
2005 and 2011 ranged from 53.4 to 81.4 cases per 100,000 persons
(49). While in Poland the estimated incidence in 2012 was re-
ported to be 1.12 cases per 100,000 inhabitants, it is likely that
campylobacteriosis is underdiagnosed and underreported in this
region (25, 50). Interestingly, a study from the Netherlands pre-
dicted that in 2060 the incidence of campylobacteriosis in this
region will be similar to thatin 2011, at 51 per 100,000 population
(51). The same model estimated that salmonellosis would account
for only 12 cases per 100,000 persons in 2060. However, it is im-
portant that these estimates were calculated using age-specific de-
mographic forecasts for 10-year periods between 2020 and 2060,
without having considered other factors, such as social clustering,
health care systems, and food processing and preparation. Alto-
gether, the estimated cost of illness in the Netherlands due to
campylobacteriosis was €21 million per year (52). The high levels
of campylobacteriosis across Europe may be reflected in the con-
tinuous increase in the number of C. jejuni-related GBS cases in
Paris between 1996 and 2007 (mean annual increment, 7%; P =
0.007) (53).

Epidemiological data from Europe over the last 3 years have
transformed our understanding of the clinical importance of
emerging Campylobacter species in health and disease. Data col-
lected from the Netherlands between March and April 2011 re-
vealed that 71.4% of 493 gastroenteritis cases were PCR positive
for Campylobacter DNA, among which 20 were C. jejuni-associ-
ated cases (4.1%). In addition, a further subset of samples was
sequenced, which allowed the identification of other Campylobac-
ter species, including C. concisus (4.1%), C. concisus or C. curvus
(0.8%), C. ureolyticus (0.6%), C. gracilis (0.6%), C. showae or C.
rectus (0.4%), C. upsaliensis (0.4%), C. hominis (0.2%), and C.
sputorum (0.2%) (54). These results suggest that, in the Nether-
lands, the prevalence of C. concisus in gastroenteritis is similar to
that of C. jejuni. A similar finding based on a culture-dependent
approach has been reported for Denmark, where the prevalences
of C. jejuni and C. concisus in adults and children were compara-
ble, with the annual incidence of C. concisus infection reported to
be 35 cases per 100,000 inhabitants in 2009 and 2010 (11, 55). This
is in line with results from Portugal, where Campylobacter species

July 2015 Volume 28 Number 3

Clinical Microbiology Reviews

Epidemiology of Campylobacter Infection

were detected in 31.9% of diarrheic fecal samples, with C. jejuni
and C. concisus being the most prevalent species (13.7% and 8.0%,
respectively) (56). Furthermore, based on PCR analysis, the prev-
alences of C. ureolyticus in gastroenteritis cases in Ireland in the
period from 2009 to 2012 ranged from 1.15 to 1.30% (57, 58).
Furthermore, molecular screening for seven members of the Cam-
pylobacter genus by using PCR revealed the overall prevalence of
Campylobacter species in patients with gastroenteritis from south-
ern Ireland to be 4.7%, with C. jejuni being the predominant spe-
cies, accounting for 66% of all Campylobacter species detected,
followed by C. ureolyticus (22.3% of all Campylobacter species de-
tected), C. coli (6.7%), C. fetus (2.1%), C. hyointestinalis (1.3%), C.
upsaliensis (1.1%), and C. lari (0.5%) (59). Overall, there is com-
pelling evidence from Europe to suggest that in addition to C.
jejuni, emerging Campylobacter species contribute to the etiology
of gastroenteritis in this region.

Asia and the Middle East. Epidemiological data on campylo-
bacteriosis in Asia and the Middle East are limited. Investigation
of the etiology of gastroenteritis in three hospitals in Yangzhou,
China, between July 2005 and December 2006 showed that 4.84%
of 3,061 patients with diarrhea were PCR positive for C. jejuni,
with the highest prevalence being detected in those younger than 7
years of age (60). Between 2005 and 2009, 14.9% (142/950 pa-
tients) of patients with gastroenteritis in a hospital in Beijing,
China, were reported to be positive for Campylobacter species (127
with C. jejuni and 15 with C. coli) (61). Based on detection rates of
Campylobacter in raw chicken and the consumption trend of
chicken products in China from 2007 to 2010, Wang and col-
leagues predicted that 1.6% of the urban and 0.37% of the rural
population are affected by campylobacteriosis every year (62). In
the Miyagi Prefecture of Japan, Kubota and colleagues estimated
that, from 2005 to 2006, the numbers of acute gastroenteritis ep-
isodes associated with Campylobacter, Salmonella, and Vibrio
parahaemolyticus infections were 1,512, 209, and 100 per 100,000
population per year, respectively (26), suggesting that Campylo-
bacter species are responsible for the majority of bacterial gastro-
enteritis cases in this region. The unusually high incidence of cam-
pylobacteriosis in this region may be attributed to a range of
factors, such as unexpected outbreaks during the time frame ex-
amined and/or the methodologies used to estimate the incidence
rate. Nevertheless, the high incidence of campylobacteriosis in
certain regions of Asia highlights the need for further active sur-
veillance of food safety.

In India, recent data from an infectious disease hospital in
Kolkata reported that, in the period from January 2008 to Decem-
ber 2010, 7.0% (222/3,186 patients) of hospitalized patients with
gastroenteritis were culture positive for Campylobacter species,
with 70% of the isolates identified as C. jejuni (63). Based on
real-time PCR analysis, Sinha and colleagues reported 16.2%
(11/68 samples) of diarrheic stool samples from patients in the
same region to be positive for Campylobacter species (64). Cam-
pylobacteriosis has also been reported to be most prevalent in
children under the age of 5 years in this region (isolated in 10% of
cases, compared to 3.7% for other age groups; P < 0.001) (63). In
Vellore, South India, between January 2003 and May 2006, 4.5%
of 349 children under the age of 5 years with diarrhea were positive
by PCR for C. jejuni or C. coli (65). In addition, in a prospective
case-control study conducted between 1 December 2007 and 3
March 2011 to identify the etiology of diarrhea in children aged 0
to 59 months, C. jejuni was reported to be significantly associated
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with moderate to severe diarrhea in children from Kolkata, India,
Mirzapur, Bangladesh, and Karachi, Pakistan (66). However, a
further study that examined 144 Bangladeshi children failed to
identify a significant association between Campylobacter species,
including C. jejuni/C. coli, C. troglodytis, C. hyointestinalis subsp.
lawsonii, C. concisus, and C. upsaliensis, and diarrhea (45).

The most recent data from the Middle East show Campylobac-
ter species to be a major and increasing cause of gastroenteritis in
this region. For example, the annual incidence of campylobacte-
riosis in Israel increased from 31.04 cases per 100,000 population
in 1999 to 90.99 cases per 100,000 population in 2010, with chil-
dren under the age of 2 years having the highest incidence (356.12
cases per 100,000 population) (67). Consistently, a study con-
ducted between 2007 and 2009 showed that of 99 hospitalized
children with gastroenteritis reported in a hospital in Nahariya,
Israel, 61% were positive for Campylobacter species, followed by
Shigella (24%) and Salmonella (16%) (68). It is difficult to accu-
rately assess the burden of Campylobacter infections in Asia owing
to insufficient epidemiological data. There is nevertheless a trend
indicating a possible rise in the incidence of campylobacteriosis in
the Middle East.

Oceania. Campylobacteriosis is the most commonly notified
foodborne infection in Australia, with 16,968 notified cases (112.3
cases per 100,000 cases of notified foodborne infection) in 2010
(69-71). In 2010, the prevalence of Campylobacter infections in-
creased 6% compared with the data from 2008 and 2009 (69-71).
Similarly, an increase in salmonellosis notifications was observed,
with 11,992 notifications (53.7 cases per 100,000 cases) in 2010,
compared to 9,533 notifications (43.6 cases per 100,000 cases) in
2009 and 8,310 notifications (39 cases per 100,000 cases) in 2008
(69-71). In contrast, Gibney and colleagues reported Campylo-
bacter to be the second leading cause of acute gastroenteritis in
Australia in 2010, after norovirus, with the highest disability-ad-
justed life-year burden (72).

In New Zealand, over the period from 2002 to 2006, the inci-
dence of campylobacteriosis was reported to be 353.8 cases per
100,000 population. However, in 2008, this high incidence
dropped substantially, to 161.5 cases per 100,000 population, due
to successful intervention strategies within the poultry sector in
this region (discussed further below) (73). Epidemiological data
available from 364 patients with campylobacteriosis from New
Zealand, obtained through telephone and postal questionnaires,
showed that 47% of the cases were due to consumption of con-
taminated food, 27.7% from direct contact with animals, 6.9%
from overseas travel, 3.3% from consumption of contaminated
water, and 11% from an unknown mode of transmission (74). A
study from New Zealand suggested that emerging Campylobacter
species are not associated with gastroenteritis cases (75). Among
the fecal samples collected in that study, between 2007 and 2009,
C. concisus (healthy controls, 53.1%; patients, 46.9%), C. ureolyti-
cus (healthy controls, 24.5%; patients, 10.9%), C. hominis (healthy
controls, 16.3%; patients, 8.6%), and C. gracilis (healthy controls,
6.1%; patients, 14.1%) were detected in samples from both pa-
tients and healthy controls, with similar frequencies (75). How-
ever, the authors concluded that given the level of genetic diversity
within these species, in particular C. concisus, the possibility that
they may play a role in disease cannot be ruled out.

Only one study has investigated the prevalence of Campylobac-
ter species in the regions of Oceania other than Australia and New
Zealand. Howard and colleagues reported the isolation of Campy-

694 cmr.asm.org

Clinical Microbiology Reviews

lobacter species from 143/1,167 (12%) gastroenteritis cases, com-
pared to 20/660 (3%) controls, among children admitted to the
Goroka Base Hospital, Papua New Guinea, between October 1985
and March 1990 (76). More data are required to elucidate the
epidemiological landscape of campylobacteriosis in most Oceania
regions.

Africa. Data from a limited number of countries in Africa have
indicated that Campylobacter infection is most prevalent in the
pediatric population. A 10-year study (1997-2007) from Blantyre,
Malawi, Africa, found that C. jejuni and C. coli were detected in
21% (415/1,941 children) of hospitalized children with diarrhea
by real-time PCR, with C. jejuni accounting for 85% of all campy-
lobacteriosis cases (77). Between 1997 and 1999, nondiarrheic
children were also examined, and 14% were PCR positive for C.
jejuni and C. coli (77). Although this prevalence was significantly
lower than that for children with diarrhea within the same period
(28%; P < 0.001) (77), these observations indicate that C. jejuni
and C. coli are endemic in this pediatric population. These find-
ings are supported by a study conducted in Moramanga, Mada-
gascar, where the rate of Campylobacter isolation from diarrheic
samples was reported to be 8.9% (41/459 samples), while that in
nondiarrheic samples was 9.4% (278/2,965 samples) (78). In Ke-
nya, samples collected from May 2011 to May 2012 at a hospital in
Kisii for the detection of a range of enteric pathogens showed 5.8%
(9/156 samples) of samples from patients with diarrhea to be cul-
ture positive for Campylobacter species, which was significantly
higher than the incidence of 0.6% (1/156 samples) in the controls
(P = 0.02) (79). A further study which described 138 Tanzanian
children and the use of diverse detection techniques, including
culture, enzyme immunoassay, and PCR, reported the detection
of C. jejuni/C. coli in 34.8% of gastroenteritis cases and 30.4%
of controls and other, non-jejuni/coli Campylobacter species in
47.8% of gastroenteritis cases and 42.0% of controls (45). These
differences, however, did not reach statistical significance (45).
Pioneering work conducted by Lastovica and colleagues in South
Africa, who used culture methods optimal for the isolation of
most Campylobacter species, unveiled a more complete and real-
istic epidemiological landscape of C. jejuni and emerging Campy-
lobacter species. From 2005 to 2009, 5,443 strains of Campylobac-
ter species were isolated from stools of children with diarrhea at
the Red Cross Children’s Hospital in Cape Town. Of these, 40%
were C. jejuni (32.3% C. jejuni subsp. jejuni and 7.7% C. jejuni
subsp. doylei), while the second most prevalent organism was C.
concisus (24.6%) (80). From 1990 to 2009, Lastovica cultivated
more than 2,000 clinical isolates of C. concisus (81), a valuable
collection which could be characterized further by more extensive
genomic sequence analyses. Overall, it is not unreasonable to con-
clude that C. jejuni and other Campylobacter species are endemic
to children in most surveyed regions of Africa.

OTHER GASTROINTESTINAL MANIFESTATIONS

While gastroenteritis is a major clinical condition resulting
from Campylobacter infection, these organisms have also been
associated with a range of other serious conditions within the
gastrointestinal tract, including IBD, esophageal diseases, perio-
dontitis, functional gastrointestinal disorders, celiac disease, cho-
lecystitis, and colon cancer. Here we review the epidemiology and
impact of Campylobacter infection in these gastrointestinal dis-
eases.
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Inflammatory Bowel Diseases

IBD are chronic inflammatory conditions of the gastrointestinal
tract which include Crohn’s disease (CD) and ulcerative colitis
(UC). The phenotype in patients with CD is characterized by
transmural lesions that may occur in any site along the gastroin-
testinal tract, while patients with UC are affected by continuous
submucosal inflammation restricted to the colon. Despite exten-
sive research, the etiology of IBD has yet to be elucidated; however,
the general hypothesis is that they are complex diseases in which a
dysregulated immune response that leads to chronic inflamma-
tion arises as a result of a dysregulated gastrointestinal microbial
ecology, host genetic factors, and a disruption of the gastrointes-
tinal epithelium triggered by environmental factors (82).

The role of Campylobacter species in IBD has been investigated
for the past 3 decades. C. jejuni was the initial focus of research
(83-85), but it was not until 2009 that Gradel and colleagues pro-
vided evidence that indicated an association between C. jejuni in-
fection and an increased risk of IBD (86). Furthermore, recent
studies investigating the role of other emerging Campylobacter
species in IBD have provided solid evidence that demonstrates an
association between C. concisus and these gastrointestinal disor-
ders (81, 87-94).

The association between emerging Campylobacter species (C.
concisus, C. showae, C. hominis, C. gracilis, C. rectus, and C. ureo-
Iyticus) and CD was first described by the Mitchell group in 2009
(87). For a cohort of newly diagnosed pediatric CD patients, 82%
of intestinal biopsy specimens were found to be positive for Cam-
pylobacter DNA by PCR, compared to 23% of control samples
(87). Only the prevalence of C. concisus DNA was found to be
significantly higher in patients with CD (51%) than in controls
(2%) (P < 0.0001) (87). Consistent with this, a study by Tankovic
and colleagues found that C. concisus was present in 21% (4/19
patients) of IBD patients but only 9% (1/11 controls) of controls
(88). In 2010, Man and colleagues further reported that 65% of
fecal samples from patients with CD were positive for C. concisus,
compared to 33% of samples from healthy controls and 37% of
samples from non-IBD controls, and the differences were statisti-
cally significant (P = 0.03 and P = 0.008, respectively) (89). Fur-
ther analyses to investigate the fecal microbiota in a subset of these
patients by using pyrosequencing techniques detected C. concisus
in two CD samples but not in controls, which indicates that C.
concisus DNA was present in sufficient quantity to be detected by
less sensitive approaches (90). The increased prevalence of C. con-
cisus DNA in CD patients compared to controls appears to be
specific to the intestinal tract, because no difference in prevalence
of C. concisus DNA was found for saliva samples from IBD patients
(100%; 13 CD patients and 5 UC patients) and healthy controls
(97%; 57/59 controls) (95). This raises the possibility that the oral
cavity may be a natural reservoir for C. concisus.

In a study to investigate whether specific microorganisms were
selectively transported to the lymph nodes of CD patients, O’Brien
and colleagues used high-throughput sequencing and reported
Campylobacteraceae DNA to be present in three CD patients (96).
In line with this, a study by Kovach and colleagues identified 37
immunoreactive proteins of C. concisus, detected using sera col-
lected from 10 C. concisus-positive children with CD (97). Of these
proteins, flagellin B, the ATP synthase F1 a subunit, and outer
membrane protein 18 were consistently recognized by all CD pa-
tients (97).
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Similarly, the prevalence of C. concisus was reported to be higher
in patients with UC (91-94). For example, Mahendran and col-
leagues found a higher prevalence of C. concisus, not only in co-
lonic biopsy specimens from adult CD patients (53%; 8/15 pa-
tients) but also in those from UC patients (31%; 4/13 patients),
than in controls (18%; 6/33 individuals) (P < 0.05) (91). Two
further studies, conducted in Scotland, showed an increased prev-
alence of C. concisus DNA in both adults and children presenting
with UC (92, 93). The first study isolated C. concisus from three
children with IBD (two with CD and one with UC) but not from
any of the controls; however, based on PCR, the prevalences of C.
concisus were not significantly different between patients and con-
trols (92). In contrast, the second study detected a significantly
higher prevalence of C. concisus DNA (33.3%; 23/69 samples) in
intestinal biopsy specimens from adult UC patients than in con-
trols (10.8%; 7/65 individuals) (P = 0.0019) (93). More recently,
Rajilic-Stojanovic and colleagues examined the fecal microbiota
of 15 UC patients during remission and 15 controls, using a highly
reproducible phylogenetic microarray assay that can detect and
quantify more than 1,000 intestinal bacteria in a wide dynamic
range. This showed the levels of Campylobacter and other patho-
gens (Fusobacterium, Peptostreptococcus, and Helicobacter) to be
increased in the fecal samples from UC patients compared with
those in controls (P = 0.0004) (94). The reason for the increased
level of Campylobacter species during the remission stage of UC is
unclear, and the identity of the Campylobacter species is unknown,
as only the genus information was provided (94).

Despite solid evidence supporting an association between C.
concisus and IBD, the observation that C. concisus is detected in the
intestines of one-third of cohorts without IBD raises the possibil-
ity that C. concisus may simply be present as a result of dysbiosis
and intestinal inflammation (1, 98). Although causality between
C. concisus and IBD has not yet been established, recent studies
have focused on identifying specific genetic variants of C. concisus
or genomospecies that may be associated with disease. C. concisus
is a genetically heterogeneous species which is defined by 2 to 4
genetically variable genomospecies (99-105). A recent study by
our group addressed this issue by determining the levels of C.
concisus exotoxin 9/Dnal, a putative virulence factor postulated to
be associated with increased survival in the cell, in patients with
CD (106—-108). This showed exotoxin 9/Dnal levels to be signifi-
cantly higher in fecal samples from CD patients [48.8 = 20.7 pg
(gfeces) '] thanin controls [4.3 * 1.1 pg (g feces) ~'] (P = 0.037).
Based on these findings, it is possible that IBD patients are colo-
nized by strains harboring specific virulence factors (106). Fur-
thermore, our group also identified the zonula occludens toxin
(Zot) gene within the genomes of some C. concisus strains (109),
and we showed that the levels of Zot gene DNA in patients with
moderate to severe CD were increased compared to those for mild
CD [for mild CD, 1.6 * 0.7 pg (g feces)"'; and for moderate/
severe CD, 4.4 = 1.0 pg (g feces) '] (P = 0.059) (110). Based on
these and other findings on the pathogenicity and immunogenic-
ity of C. concisus (108, 111, 112), we hypothesized that C. concisus
strains can be subdivided into the following two pathotypes which
differ from nonpathogenic strains: (i) adherent and invasive C.
concisus (AICC), which possesses a superior ability to survive in-
tracellularly within host cells (potentially involving exotoxin
9/Dnal and other virulence factors); and (ii) toxigenic C. concisus
(AToCC), which produces Zot, with the potential to target tight
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junctions of host cells (98). Further characterization of the prev-
alence of these strains in IBD is required.

In addition to C. concisus, Mukhopadhya and colleagues found
21.7% (15/69 samples) of samples from UC patients and 3.1%
(2/65 samples) of samples from controls (P = 0.0013) to be PCR
positive for C. ureolyticus (93). Overall, further investigations are
required to establish a causative role; nevertheless, these findings
collectively indicate an important contribution of C. concisus to
the pathogenesis of IBD.

Esophageal Diseases

Esophageal diseases include gastroesophageal reflux disease
(GERD), Barrett’s esophagus (BE), and esophageal adenocarci-
noma. GERD is a chronic disorder in which mucosal damage to
the esophagus occurs due to stomach acid or, occasionally, stom-
ach content, which may contain bile, flowing back into the esoph-
agus, which over time increases the risk of BE. In turn, BE is a
preneoplastic condition defined by the replacement of normal
squamous mucosa by metaplastic columnar mucosa in the distal
esophagus. This event increases the predisposition to the develop-
ment of esophageal adenocarcinoma.

Early studies have reported the bacterial composition to differ
in individuals with a healthy esophagus, GERD, and BE. The bac-
terial communities detected in these sites are primarily character-
ized by members of four phyla: the Actinobacteria, Bacteroidetes,
Firmicutes, and Proteobacteria (113—-118). Recent studies have
demonstrated that Campylobacter species, and C. concisus in par-
ticular, are among the dominant species present in patients with
GERD and BE (113, 119). For example, in a study by Macfarlane
and colleagues which examined the presence of aerobic, mi-
croaerobic, and anaerobic microorganisms in esophageal aspi-
rates and mucosal samples from patients with BE, 57% of patients
were reported to be colonized by Campylobacter species, the ma-
jority of which were C. concisus (113). In agreement with these
findings, Blackett and colleagues reported Campylobacter species,
almost exclusively C. concisus, to be increased in patients with
GERD and BE, but not in esophageal adenocarcinoma patients,
compared with healthy controls (119). This finding suggests a
possible association between C. concisus colonization and reflux
into the esophagus. Furthermore, the authors showed a strong
correlation between C. concisus colonization and production of
interleukin-18 (IL-18) (119), a cytokine that stimulates both in-
nate and adaptive immune responses and has been widely associ-
ated with carcinogenesis (120).

Periodontal Diseases

C. rectus, C. gracilis, C. showae, and C. concisus have been identified
as potential oral pathogens, while other Campylobacter species,
including C. curvus, C. sputorum, and C. ureolyticus, have been
isolated from the oral cavity; however, it remains unclear if they
are linked to periodontal disease (1, 121-129). Gingivitis is a pre-
ventable and reversible clinical condition that includes erythema,
edema, bleeding, sensitivity, tenderness, and enlargement. Perio-
dontitis is a more severe condition characterized by a loss of clin-
ical attachment level, reduction in bone level, and, ultimately,
tooth loss. These oral inflammatory conditions are induced by
biofilms that accumulate in the gingival margin and are reported
to be initiated in periodontal tissue by a number of bacterial spe-
cies, including C. rectus (121).

A number of studies have shown C. rectus to be associated with
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higher levels of clinical attachment loss, bleeding on probing of
the sampled site, and probing depth (121, 130-133). Furthermore,
the abundance of C. rectus has been reported to be elevated signif-
icantly in patients with chronic gingivitis and moderate periodon-
titis but not in severe periodontitis patients, suggesting that this
organism is associated with the early stages of periodontitis (130,
134). C. gracilis has been isolated from the oral cavities of individ-
uals presenting with dental caries (135-137), and its reported co-
aggregation with Actinomyces species hasled to the suggestion that
these Gram-negative obligate anaerobic rods contribute to the
development of biofilms, dental plaque, and root caries (138).

Evidence that C. showae and C. concisus may also play a role in
periodontal disease has been reported in a number of studies. For
example, an increased prevalence and abundance of both species
have been observed at active periodontal disease sites (121, 128,
129, 139-141). Furthermore, the findings that substantially in-
creased levels of C. concisus are observed at periodontal sites with
a more severe gingival bleeding index and that the presence of a
systemic humoral immune response against C. concisus can be
observed in patients with periodontal disease support the view
that this species is an oral pathogen (142-144). In contrast, one
study observed reduced levels of C. showae in plaque from white-
spot or dentin lesions of patients with periodontal disease com-
pared with the levels in healthy subjects (135), while another re-
ported that C. concisus was associated with an increase in tooth
attachment in a patient with periodontitis (145).

It has been speculated that oral colonization by Campylobacter
species may lead to other pathological consequences in the body.
For example, a study by Ercan and colleagues suggests that the
presence of C. rectus in the oral cavity of pregnant women with
periodontal disease may lead to adverse pregnancy outcomes, in-
cluding preterm birth and low birth weight (146). Furthermore,
this observation was reported to be more pronounced in those
with generalized periodontitis and a high bleeding index. Whether
this phenomenon relates to the ability of bacteria and their prod-
ucts to diffuse more readily when vascular permeability increases
in gingival tissues during pregnancy remains to be determined. A
small number of studies have investigated a possible etiological
association between oral Campylobacter species and IBD. It is in-
teresting that periodontal disease and IBD share some common
clinical features and are both associated with an unusual microbi-
ota. For example, levels of C. gracilis have been reported to be
significantly higher at periodontitis sites of patients with CD than
at those of patients with UC or than the levels in healthy controls
(147). In addition, elevated levels of C. concisus can be found in
periodontal lesions of IBD patients, and the oral cavity in these
patients may be colonized by specific orally affiliated and enteri-
cally invasive C. concisus strains (148, 149).

Functional Gastrointestinal Disorders

C. jejuni and other Campylobacter species are associated with the
development of foodborne gastroenteritis-associated sequelae, in-
cluding postinfectious functional gastrointestinal disorders
(PFGD). Two PEGD have received the most attention: irritable
bowel syndrome (IBS) (150-156) and functional dyspepsia (FD)
(156-161). IBS is defined by recurrent abdominal pain or discom-
fort during at least 3 days/month in the last 3 months, associated
with an alteration of bowel habits (diarrhea, constipation, or
both), in accordance with the Rome I1I classification system (162).
FD is characterized by persistent or recurrent symptoms (pain or
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discomfort centered in the upper abdomen) in the last 3 months,
in the absence of organic disease (including on upper endoscopy).
The postinfectious forms of these disorders develop de novo de-
spite clearance of the causative agent.

The mechanisms underlying postinfectious IBS are poorly un-
derstood but might include persistent changes in the gut micro-
biota as well as in mucosal immunocytes, enterochromaffin cells,
mast cells, and enteric nerves (163). In addition, host factors, in-
cluding female gender, depression, hypochondriasis, smoking,
adverse life events in the preceding 3 months, and treatment with
antibiotics, are risk factors for the development of postinfectious
IBS (163).

The percentages of individuals presenting with gastroenteritis
who develop postinfectious IBS range from 3.7% to 36% (163);
however, studies exclusively investigating C. jejuni-associated
postinfectious IBS showed percentages ranging from 9.0 to 13.8%
(152, 164). Furthermore, long-term follow-up studies have re-
vealed that C. jejuni-associated postinfectious IBS symptoms can
persist for up to 10 years after the infectious event (165, 166).
Current evidence suggests that both bacterial and host factors play
a crucial role in the predisposition to C. jejuni-associated postin-
fectious IBS. These include increased cytotoxic virulence of the
Campylobacter strain and increased transcellular bacterial trans-
location, a reduced absorptive capacity of the gut, and increased
mucosal permeability in the host during acute gastroenteritis
(167). Experimental evidence that Campylobacter toxins are im-
portant determinants for the development of chronic gastrointes-
tinal symptoms following acute gastroenteritis comes from a
study by Thornley and colleagues, who observed that Campylo-
bacter strains associated with postinfectious IBS were more toxi-
genic to both HEp-2 and African green monkey kidney epithelial
(Vero) cells (164). Further studies have shown that C. jejuni infec-
tion is the strongest risk factor for postinfectious IBS compared to
Salmonella and Epstein-Barr virus infections (150, 151).

More recently, other Campylobacter species have been identi-
fied to play a role in postinfectious IBS. Nielsen and colleagues
reported patients infected with C. jejuni, C. coli, and C. concisus to
be more likely to develop IBS symptoms at 6 months postinfection
(23). In a follow-up study, they assessed the risk of postinfectious
IBS associated with C. concisus and found that patients with gas-
troenteritis associated with C. concisus carried a 25% risk of devel-
oping IBS (168).

Similar to the case for IBS, a number of studies have provided
evidence for an association between Campylobacter infection and
a risk of postinfectious FD. A meta-analysis of 19 studies found
that following infections with several pathogens, including C. je-
juni, Salmonella spp., Escherichia coli 0157, Giardia lamblia, and
norovirus, the prevalences of postinfectious FD were 9.6 and
30.5% in adults and children, respectively (157). Consistent with
these findings, Ford and colleagues reported the odds ratio (OR)
of postinfectious FD to be 2.30 (95% confidence interval [CI], 1.63
to 3.26) in a cohort study following a waterborne outbreak of
infections with Campylobacter species and E. coli 0157 (158). In
addition, a recent study by Porter and colleagues reported the
relative risk of Campylobacter-associated FD among active-duty
U.S. military personnel with acute gastroenteritis from 1998 to
2009 to be 2.0 (95% CI, 1.3 to 3.0) (159). Of particular interest,
Campylobacter species and E. coli O157 can be identified in blood
tests and stool cultures from postinfectious FD patients (157).
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Opverall, there is good evidence to suggest a link between Campy-
lobacter infection and IBS or FD.

Colorectal Cancer

Increasing evidence indicates that dysbiosis of the gut microbiota
contributes to the development of colorectal cancer. Currently,
due to a lack of epidemiological studies, evidence supporting a
role for Campylobacter species in colorectal cancer is very limited.
However, a recent study by Warren and colleagues, investigating
metatranscriptome data obtained from colorectal cancer and con-
trol tissues, demonstrated that Campylobacter species, predomi-
nantly C. showae, coaggregate with Fusobacterium and Leptotrichia
species (169). This finding is of particular interest because previ-
ous studies have shown that Fusobacterium species are overrepre-
sented in colorectal tumors compared to control specimens (170,
171). As part of their study, Warren and colleagues isolated a novel
C. showae strain (CC57C) from colorectal cancer tissue, which
they showed harbored a number of potential virulence genes, in-
cluding a VirB10/D4 type IV secretion system. Furthermore, in
vitro assays showed that this strain aggregates with another tumor
strain of Fusobacterium nucleatum (CC53) (169). Based on these
findings, Warren and colleagues raised the possibility that a
Gram-negative anaerobic bacterial population comprising Cam-
pylobacter and Fusobacterium might be associated with colorectal
cancer (169). Consistent with this, a study by Wu and colleagues
(172) which used culture-independent pyrosequencing and re-
verse transcription-quantitative PCR (RT-qPCR) reported a spe-
cific microbial profile, characterized by significant increases in
Bacteroides, Enterococcaceae, Fusobacterium, and Campylobacter
species, to be associated with colorectal cancer. Although these
studies provide an indication that Campylobacter species are pres-
ent in patients with colorectal cancer, further studies will be re-
quired to determine if any relationship between Campylobacter
and the development of colorectal cancer exists.

Celiac Disease

Celiac disease is a digestive disorder in which the immune system
reacts abnormally to gluten, resulting in damage to the lining of
the small intestine. Celiac disease is estimated to affect approxi-
mately 1% of people worldwide (173, 174), and the incidence of
this disease has increased up to 5-fold in some countries, including
the United States (175). In 2007, a case study described for the first
time the development of celiac disease in a young healthy woman
following infection with C. jejuni (176). More recently, Riddle and
colleagues reviewed the U.S. Department of Defense medical en-
counter database to identify whether there is a risk of developing
celiac disease following foodborne infection (177). They found
that the rates of celiac disease were similar in those with prior
diarrhea caused by bacteria (0.07 per 100,000 person-years) and
matched controls (0.04 per 100,000 person-years). However, per-
sons diagnosed with campylobacteriosis had a 3.5-fold higher rate
of celiac disease (0.15 per 100,000 person-years) than unexposed
individuals (177). Furthermore, no patients exposed to any of the
other gastrointestinal pathogens, including Salmonella (nonty-
phoidal), Shigella, and Y. enterocolitica, developed celiac disease
(177). To date, there are insufficient epidemiological data to con-
clude whether campylobacteriosis is associated with celiac disease.

Cholecystitis

Cholecystitis refers to inflammation of the gallbladder that usually
arises when the cystic duct is blocked by gallstones, leading to the
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accumulation of bile within the gallbladder. C. jejuni has been
implicated in the development of cholecystitis; however, this is
considered rare given that only 15 cases have been described in the
literature over the last 30 years (178). One possible reason for this
is that the standard conditions used for culture of bacteria from
bile samples do not generally favor the growth of Campylobacter
species; thus, some cases of Campylobacter-associated cholecysti-
tis may have been overlooked (178).

EXTRAGASTROINTESTINAL MANIFESTATIONS

In addition to gastrointestinal infection, Campylobacter species
also cause a range of clinical manifestations in other parts of the
body, as either a local isolated infection, a systemic manifestation
after an episode of enteritis, or a postinfectious immune disorder.
These manifestations include Guillain-Barré syndrome, Miller
Fisher syndrome, brain abscesses and meningitis, bacteremia, sep-
sis, endocarditis and myocarditis, reactive arthritis, and clinical
manifestations that result in complications in the reproductive
tract. The clinical importance and epidemiology of these extragas-
trointestinal manifestations as a result of Campylobacter infection
are discussed in the following sections.

Guillain-Barré Syndrome

GBS was first reported by Landry in 1859 (179, 180); however, it
was not until 1916 that the French neurologists Guillain, Barré,
and Strohl first described the clinical features of GBS (181). GBS is
aneurologic condition characterized by a progressive symmetrical
weakness in the limbs, with or without hyporeflexia, which can
also affect respiratory and cranial nerve-innervated muscles (180).
The two main subtypes of GBS are acute motor axonal neuropathy
(AMAN) and acute inflammatory demyelinating polyneuropathy
(AIDP), with each subtype displaying a distinct immunopatho-
genesis and response to treatment (182). AMAN is an axonal sub-
type that progresses more rapidly and is considered the major
subtype (30 to 65% of patients) in Asia and Central and South
America (182, 183), while AIDP is more prevalent in Europe and
North America (182). The annual incidence of GBS is approxi-
mately 1.2 to 2.3 cases per 100,000 persons; however, the incidence
increases with patient age and male gender (180).

GBS is considered a postinfectious disease, and the major trig-
ger of this disease is C. jejuni infection, with a direct correlation
between annual rates of GBS and campylobacteriosis being re-
ported. For example, following the implementation of stricter hy-
giene measures on poultry meat in New Zealand, decreased rates
of GBS were observed, which correlated with a fall in the number
of campylobacteriosis cases (184). Furthermore, outbreaks of GBS
have been associated with outbreaks of C. jejuni infection (185). A
recent systematic review reported the proportion of Campylobac-
ter cases resulting in GBS to be 0.07% (95% CI, 0.03% to 0.15%)
(186). Moreover, evidence exists to suggest that the number of C.
jejuni-related GBS cases is increasing in some countries (53).

The underlying mechanism of the nerve damage associated
with GBS is reported to be due to cross-reactivity between anti-
bodies produced in response to C. jejuni lipooligosaccharide
(LOS) and human gangliosides, such as the GM, ganglioside
(187). For example, C. jejuni strains expressing o2,3-sialylated
GDla/GMla- and «2,8-sialylated GD1c-mimic LOS structures
have been shown to interact with sialoadhesin and sialic acid-
binding immunoglobulin-like lectin-7 (Siglec-7), respectively
(188, 189). T-cell responses are also important in GBS, with LOS

698 cmr.asm.org

Clinical Microbiology Reviews

that was a2,8-sialylated being shown to induce Th1l immune re-
sponses, while LOS containing a2,3-linked sialic acid induces Th2
responses (188). Evidence of this Th1/Th2 polarized immune re-
sponse following C. jejuni infection comes from a study by Malik
and colleagues, who showed that IL-10-deficient mice infected
with colitogenic C. jejuni had upregulated Th1/17 but not Th2
responses, while GBS-associated C. jejuni enhanced Th2 responses
but blunted Th1/17 responses (190). Thus, the GBS-associated C.
jejuni strains may protect against colitis but instead promote au-
toimmunity. In addition to sialylated LOS structures in C. jejuni,
two capsule biosynthesis genes (¢j1421c and ¢j1428c) have been
shown to have higher conservation rates among strains isolated from
GBS patients than among strains from enteritis patients (191). Fur-
thermore, a gene encoding a glucosyltransferase (cj1135) was re-
ported to be more conserved in enteritis strains whose LOS did not
mimic gangliosides, suggesting that this gene may function to silence
the neuropathogenesis of C. jejuni LOS (191).

Miller Fisher Syndrome

Miller Fisher syndrome is a clinical variant of GBS that was dis-
covered in 1956 by Charles Miller Fisher. This condition is defined
by acute-onset ophthalmoparesis, areflexia, and ataxia, which
arise from the development of anti-GQ1b antibodies following
exposure to LOS from certain bacteria (192, 193). Several patho-
gens have been linked to the molecular mimicry that leads to the
development of this condition. Of these, C. jejuni is the most fre-
quently identified one (194). Siglec-7 has been shown to exclu-
sively bind to C. jejuni strains that express terminal disialylated
ganglioside mimics. C. jejuni binding to Siglec-7 is reported to
correlate with the presence of anti-GQ1b antibodies and oculo-
motor weakness in patients, suggesting that this may be a potential
trigger of Miller Fisher syndrome (195).

In some cases, patients are negative for antibodies against GQ1b
(196, 197), indicating that antibodies against gangliosides other
than GQ1b may be involved in the development of disease. For
example, Oyazato and colleagues reported a recent atypical per-
sistent case of Miller Fisher syndrome following Campylobacter
enterocolitis where the patient had anti-GA1 antibody in his se-
rum, but not anti-GQ1b and anti-GT1a (198). Further work is
required to investigate the etiology and epidemiology of Campy-
lobacter-associated Miller Fisher syndrome and the ability of Cam-
pylobacter species other than C. jejuni to trigger this disease.

Bacteremia and Septicemia

One of the most common extragastrointestinal manifestations of
Campylobacter species is bacteremia, which is predominantly as-
sociated with C. jejuni, C. coli, and C. fetus infections (1). At least
10 different Campylobacter species have been documented in bac-
teremia cases, but bacteremia cases associated with C. lari, C. in-
sulaenigrae, and C. upsaliensis infections are rare (1, 80, 199, 200).
Campylobacter-associated bacteremia cases are often underre-
ported (201). Most cases occur in elderly or immunocompro-
mised patients with one or more concurrent pathologies, includ-
ing liver cirrhosis or neoplasia; among these patients, 10 to 15%
die within 30 days of disease diagnosis (202—-204). A recent study
conducted in a Danish population reported the estimated inci-
dence of C. jejuni-, C. coli-, C. fetus-, and C. lari-associated bacte-
remia to be 2.9 cases per 1,000,000 person-years, with a peak in-
cidence in patients older than 80 years (205). In contrast, a 10-year
nationwide study in Finland concluded that C. jejuni and C. coli
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bacteremias affect predominately younger individuals without
major underlying diseases (206). The disease generally results
from a single gastroenteritis complication in children or as recur-
rent episodes in immunocompromised children without gastro-
intestinal symptoms (207). A number of Campylobacter species,
including C. jejuni, C. coli, C. fetus, and C. upsaliensis, have also
been associated with sepsis in both immunocompetent and im-
munocompromised children and adults (208-210). Furthermore,
anumber of cases of C. fetus-associated neonatal sepsis have been
reported (discussed below) (211).

Cardiovascular Complications

Campylobacter species, mainly C. jejuni and C. fetus, have been
detected in association with a wide spectrum of cardiovascular
complications, including endocarditis, myocarditis, pericarditis,
myopericarditis (pericarditis with concurrent myocardial in-
volvement), atrial fibrillation, and aortitis with aortic dissection.

Myo(peri)carditis (refers to either myocarditis, pericarditis, or
myopericarditis) associated with bacterial enteritis is a rare but
serious condition in immunocompetent individuals. These con-
ditions can lead to arrhythmia, dilated cardiomyopathy, conges-
tive heart failure, and sudden cardiac death. Salmonella and Shi-
gella are the main gastrointestinal pathogens linked to myo(peri)
carditis, but the increasing incidence of campylobacteriosis
worldwide over the last 10 years has drawn attention to Campylo-
bacter-associated myo(peri)carditis. Interestingly, Becker and col-
leagues recently calculated the annual incidence rates of myocar-
ditis, using data obtained from 6,204 individuals with stool
cultures positive for Campylobacter and 62,040 matched controls,
and they found the incidence rate to be 16.1 cases (95% CI, 2.3 to
114.4 cases) per 100,000 person-years in the population with
Campylobacter-positive stool samples, compared to only 1.6 cases
(95% CI, 0.2 to 11.4 cases) per 100,000 person-years in the control
population (212). Notably, the same authors did not find a signif-
icant difference in the number of myopericarditis cases between
the Campylobacter-infected and control populations (212). How-
ever, because of the rarity of these events (only two cases of myo-
carditis and two cases of pericarditis were found in the entire study
sample), it is important to highlight the low statistical precision of
this study.

A number of C. jejuni-associated myo(peri)carditis cases have
been published since 1980 (213-230). These reports collectively
indicate that patients usually present with symptoms such as tho-
racic pain, with concomitant electrocardiogram changes as well as
increased levels of cardiac enzymes, 3 to 5 days after the onset of
gastroenteritis. These studies also suggest that males are more sus-
ceptible, and microbiological stool cultures and/or serological
analyses in these cases reveal C. jejuni as the only causative agent.
In many cases, blood cultures remain sterile and the outcome is
generally benign.

About 11 cases of C. fetus-associated myo(peri)carditis have
been documented in the English literature. For these cases, blood
cultures are generally positive and the outcome is more severe,
sometimes even leading to death (225, 231). This might relate to
the fact that, in contrast to C. jejuni, C. fetus tends to cause a more
severe compromise of the pericardium, which might be due to
colonization of the pericardium following bacteremia and septi-
cemia and might explain the development of nonspecific symp-
toms, such as fever, malaise, and weight loss (232).

The mechanism by which Campylobacter species cause myo-
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(peri)carditis remains unclear. It has been hypothesized that inva-
sion of the cardiac tissue, bacterial exotoxins, circulating immune
complexes, and cytotoxic T cells are involved (225). C. fetus-asso-
ciated myo(peri)carditis may also require expression of bacterial
surface layer proteins to confer evasion of the host immune
system.

Campylobacter-associated endocarditis is an infrequent condi-
tion in which both native and prosthetic valves can be affected.
Previous studies have shown that individuals with Campylobacter-
associated endocarditis have either C. jejuni or C. fetus infection
and that one-third of these patients suffer from concurrent
chronic diseases, including hepatic cirrhosis, connective tissue
disease, tuberculosis, or cancer (233-239). Furthermore, four
cases of atrial fibrillation associated with C. jejuni infection have
been reported in the literature (230, 240), and both C. jejuniand C.
fetus infections have been associated with Campylobacter-associ-
ated aortitis (241-244). Overall, the limited current evidence sug-
gesting an association between Campylobacter species and cardio-
vascular complications precludes causal inference.

Meningitis

Both C. jejuni and C. fetus subsp. fetus have been implicated in the
development of meningitis in humans (245-252). Meningitis
caused by C. fetus subsp. fetus has generally been reported for
immunocompromised adults and is rare, with only eight cases
reported from 1983 to 1998 (248). C. jejuni-associated meningitis
is also rare and may affect both healthy and immunocompro-
mised children and adults (246, 247, 251).

Extraoral Abscesses

Campylobacter species have been reported to be present in several
types of abscesses outside the oral cavity. C. rectus has been asso-
ciated with a chest wall infection (253), a breast abscess (254), and
a vertebral abscess (255), while C. curvus has been associated with
a liver abscess in a patient with complicated ovarian cancer and a
bronchial abscess in a patient with lung cancer (254). C. gracilis
and C. concisus have both been implicated in brain abscesses, while
C. showae was detected in an intraorbital abscess (255). Most ab-
scesses are polymicrobial in nature, making it difficult to assess the
contribution of a specific Campylobacter species to the clinical
outcome.

Reactive Arthritis

Reactive arthritis is a form of arthritis which most commonly
occurs in patients in their 30s or 40s and develops following gas-
trointestinal or genitourinary infections. This condition can affect
joints, such as knees and ankles, as well as the eyes and the genital,
urinary, and gastrointestinal systems. Symptoms can begin ap-
proximately 1 month following infection and resolve within a
year, although in some patients this condition may persist for up
to 5 years (256). In 2007, a systematic review by Pope and col-
leagues reported the incidence of reactive arthritis associated with
Campylobacter infection to be 1 to 5% (257). Other studies have
estimated the risk of reactive arthritis associated with Campylo-
bacter infection to be 3 to 13%, compared with 0 to 9% for E. coli
0157:H7, 2 to 15% for Salmonella, 1 to 10% for Shigella, and 0 to
14% for Yersinia (256). Recently, Ajene and colleagues performed
acomprehensive systematic review to identify the global incidence
of reactive arthritis associated with infections by enteric patho-
gens, namely, Campylobacter, Salmonella, and Shigella (258). They
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found 25 articles, among which 14 cohort studies were chosen for
calculation. Among a total of 63,206 patients infected by Campy-
lobacter, 573 developed reactive arthritis, generating an incidence
rate of 9 reactive arthritis cases per 1,000 cases of Campylobacter
infection (258). Furthermore, the incidences of reactive arthritis
resulting from Campylobacter infection ranged from 8 to 16% in
adults and 0 to 6% in children. In comparison, the incidence rate
for both Salmonella and Shigella infections was slightly higher,
with 12 reactive arthritis cases per 1,000 infections (258). In a
more recent meta-analysis assessing the proportion of Campylo-
bacter cases that develop chronic sequelae, Keithlin and colleagues
found that only 2.86% (95% CI, 1.40 to 5.61%) of patients in-
fected with Campylobacter, mainly with C. jejuni and C. coli, de-
veloped reactive arthritis (186), suggesting that the incidence rate
of Campylobacter-associated reactive arthritis is largely dependent
on the geographic regions and cohorts used.

Complications of the Reproductive System

C. jejuni, C. coli, C. fetus subsp. fetus, and C. upsaliensis have been
shown to cause septic abortion and neonatal sepsis in humans and
animals (259, 260). These species are generally associated with
abortion in pregnant women following an aggressive bowel infec-
tion that results in sepsis, with the infection eventually transmitted
to the fetus (259). The clinical presentation and outcome of abor-
tion caused by Campylobacter do not differ between species.

Other Campylobacter species, such as C. rectus and C. curvus,
have been associated with premature birth and low birth weight in
pregnant humans or mice (146, 261, 262). It has been shown that
C. rectus translocates from the oral cavity to the reproductive tract,
leading to inflammation that results in preterm birth (146). In
mice, this inflammation appears to be mediated by the activation
of Toll-like receptor 4 (TLR4) in placental tissues infected with C.
rectus (262, 263). It remains to be seen if similar mechanisms
control the inflammation that leads to preterm birth and intra-
uterine growth restriction following Campylobacter infection in
humans.

CLINICAL MICROBIOLOGY

Isolation Methodologies in Clinical Settings

There is no gold standard or common method for the isolation of
all Campylobacter species from clinical samples. Several selective
agar media, using blood-based agar or blood-free agar, have been
used for the isolation of Campylobacter species, particularly ther-
motolerant species (2). However, given the variability in antibiotic
susceptibilities among Campylobacter species, these methods are
effective for only a subset of species.

A more robust method—the Cape Town protocol—requires
filtration of homogenized clinical samples through membrane fil-
ters with a pore size of 0.45 or 0.65 pm onto blood agar media
(with or without vancomycin supplementation). The plates are
then incubated at 37°C under microaerobic conditions (~5% O,)
enriched with CO, and H, (264). While not an absolute require-
ment, H, enhances the growth of some Campylobacter species.
The Cape Town protocol has been used successfully to isolate a
range of Campylobacter species from fecal, intestinal biopsy, and
saliva samples (264).

Enrichment procedures have been suggested to improve isola-
tion rates from samples with a small starting number of Campy-
lobacter cells (e.g., intestinal biopsy specimens). Enrichment of
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homogenized intestinal biopsy specimens in Ham’s F-12 medium
supplemented with vancomycin, followed by incubation at 37°C
for 2 days and in combination with the Cape Town protocol, has
been effective for the isolation of a number of Campylobacter spe-
cies from patients with chronic gastroenteritis and IBD (108).
Other enrichment broths that have been used to successfully iso-
late Campylobacter species include brucella-FBP (a combination
of ferrous sulfate, sodium metabisulfite, and sodium pyruvate),
Preston, Doyle and Roman, modified charcoal cefoperazone de-
oxycholate, Park and Sanders, Bolton, Hunt and Radle, and Hunt
broths (265).

Laboratory Diagnosis

Laboratory diagnosis of Campylobacter infection requires the use
of culture-dependent and/or culture-independent methodolo-
gies. In culture-dependent methodologies, single isolated colonies
can be subjected to a range of conventional biochemical tests to
identify phenotypic traits. Temperature, incubation time, and at-
mospheric conditions, for example, an H,-enriched atmosphere
or growth at 42°C, can also be used to favor the growth of Cam-
pylobacter species during isolation procedures. The biochemical
profile of an unknown organism is then matched to previously
defined characteristics of the Campylobacter genus/species to en-
able identification of the organism to the genus or species level. In
culture-independent methodologies, DNA or RNA can be iso-
lated from clinical samples or from a pure culture. A genetic sig-
nature or marker of the organism can then be determined using
sequencing techniques or genus- or species-specific PCR amplifi-
cation of the gene of interest, for example, the 16S rRNA gene.
Culture-independent tests are increasingly being used for the de-
tection of Campylobacter species, and while in many cases they can
enhance detection sensitivity, it has been proposed that this will
have an impact on public health surveillance given that detailed
analyses of isolates are required to monitor the distribution of
different strains (266).

Biochemical identification. Biochemical tests can be used to
differentiate Campylobacter species from related genera and to
identify organisms to the species level (2). The relevant biochem-
ical tests used to differentiate between members of the Campylo-
bacter genus have been reviewed by Lastovica (80). In that article,
a biochemical flowchart to identify Campylobacter species is out-
lined, beginning with growth with or without supplementation of
H,, followed by an indoxyl acetate test, a hippurate test, growth on
MacConkey agar, an aryl sulfatase test, and production of H,S.
Furthermore, detection of L-alanine aminopeptidase activity can
be employed to differentiate between Campylobacter, Helicobac-
ter, and Arcobacter species and other Gram-negative bacteria (80).
However, the ability to differentiate between C. jejuni and C. coli
would be the most relevant in the clinical setting. The only bio-
chemical test that distinguishes between these two species is the
hippurate hydrolysis test. C. jejuni isolates have the ability to hy-
drolyze hippurate, whereas C. coli isolates yield a negative test
result.

Molecular identification. The 16S rRNA gene has been used
extensively for rapid detection and identification of many bacte-
rial taxa, including Campylobacter species (267, 268). Owing to the
sequence similarity among Campylobacter species, the 16S rRNA
gene sequence cannot be used to differentiate between very closely
related species, such as C. jejuni and C. coli (269). The larger 23S
rRNA gene and the internal transcribed spacer (ITS) region, a
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region which lies between the 16S and 23S rRNA genes, have also
been used to differentiate between Campylobacter species and
strains (270-272). The 23S rRNA genes contain strain-specific
intervening sequences, whereas the I'TS region is highly variable in
size and sequence composition depending on the species (273,
274). Indeed, a comprehensive analysis revealed the ITS region to
be the most discriminatory region, compared with the 16S and
23S rRNA genes, for species and strain differentiation for the
Campylobacter genus (270). When all three regions (16S rRNA-
ITS-23S rRNA) were combined to create a phylogenetic tree, the
resultant tree had the highest resolution in differentiating between
members of the Campylobacter genus (270).

Several enzyme immunoassays are also available for the de-
tection of C. jejuni and C. coli in clinical samples. A recent study
by Granato and colleagues compared three commercially avail-
able kits with culture-based techniques and found that the three
immunoassays had sensitivities that ranged from 98.5 to 99.3%
and specificities that ranged from 98.0 to 98.2%, while standard
culture had a sensitivity of 94.1% (275). Furthermore, a number
of real-time assays are also available for the detection of Campy-
lobacter species, some of which are capable of detecting more than
one species at a time, including C. jejuni, C. coli, and C. lari (57).
Interestingly, Javed and colleagues also described an assay to de-
tect C. jejuni and C. coli based on the ability of recombinant re-
ceptor binding proteins from the C. jejuni bacteriophage
NCTC12673 to agglutinate in the presence of these species (276).

More recently, due to the reduced costs of bacterial genome
sequencing, the genomes of Campylobacter species and strains can
now be sequenced fully, and many of these are completed or
drafted. To date, the complete and draft genomes of over 100
Campylobacter species or strains—predominantly C. jejuni and C.
coli strains—are available in the NCBI database. Genome se-
quencing and assembly have become commonplace in research
labs for the characterization of isolates, and this will likely become
routine practice in diagnostic facilities in the future.

Antibiotic Therapies

Most Campylobacter infections are self-limiting and require no
therapeutic intervention other than supportive therapy, such as
maintenance of hydration and electrolyte balance. However, an-
tibiotics are employed in immunocompromised patients, patients
whose symptoms are severe or persistent, and those with extraint-
estinal infections (277, 278).

Ciprofloxacin, a fluoroquinolone, is often used for the em-
pirical treatment of gastroenteritis, particularly in travel-re-
lated cases. The major targets of quinolones in bacteria are
DNA gyrase and topoisomerase IV, which are enzymes essen-
tial for DNA replication, transcription, recombination, and re-
pair. However, in the case of campylobacteriosis, macrolides
are the preferred choice of therapy (279). Macrolides bind to
the 23S rRNA nucleotides 2,058 and 2,059 in the 50S ribosomal
subunit, which results in blockage of the translocation step of
protein synthesis, thereby preventing release of tRNA after
peptide bond formation and resulting in the termination of
peptide chain elongation. The reason for the increasing impor-
tance of macrolides for the treatment of Campylobacter infec-
tions is that the rates of ciprofloxacin resistance are relatively high
for Campylobacter species due to the use of antibiotics in the poul-
try industry and animal husbandry operations (discussed further
below) and, to alesser extent, the indiscriminate use of ciprofloxa-
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cin for treatment of human diseases (280). This is particularly
important in developing countries, where the use of fluoroquino-
lones is usually a suboptimal approach, for the above-mentioned
reasons. For example, a recent randomized double-blind trial
conducted in Thailand that compared macrolide regimens (sin-
gle-dose and 3-day azithromycin treatments) with a fluoroquin-
olone regimen (3-day levofloxacin treatment) for the empirical
management of traveler’s diarrhea, mainly caused by C. jejuni/C.
coli (64%), reported a cure rate of 96% with azithromycin, com-
pared to 71% with levofloxacin (281). Similarly, the rate of micro-
biological eradication was superior with azithromycin-based reg-
imens (96% to 100%) compared to the levofloxacin regimen
(38%) (P = 0.001) (281). The high efficacy of azithromycin was
supported by a further study comparing a single-dose azithromy-
cin regimen to a 5-day erythromycin treatment in children with
campylobacteriosis, which showed that azithromycin was signifi-
cantly superior to erythromycin in eradicating the pathogen and
accelerating the time to clinical cure (282).

A number of macrolides are also used in food animal produc-
tion for both growth promotion and therapeutic reasons (283),
and this has resulted in high levels of macrolide resistance being
reported in some countries (284, 285). Consequently, ciprofloxa-
cin has been recommended for the treatment of human infections
caused by macrolide-resistant Campylobacter species.

Another problem related to antibiotic resistance in Campylo-
bacter infections is the emergence of multidrug-resistant (MDR)
strains (defined as strains with resistance to three or more antibi-
otics), which have been isolated in many countries throughout the
world. The levels of MDR strains in humans are still relatively low
overall (<25%) (286), but an increase in these strains in domes-
ticated animals has raised concerns in relation to human disease
(287). These concerns are well placed given that infections with
Campylobacter species which are resistant to antibiotics have been
associated with a longer duration of illness, an increased risk of
invasive disease and death, and increased health care costs (288—
290). In the case of severe Campylobacter infection in humans,
treatment with aminoglycosides (e.g., gentamicin or kanamycin)
is commonly employed (291). The mechanism of action of amin-
oglycosides involves binding to the 30S ribosomal subunit, where
they interfere with the binding of formylmethionyl-tRNA to the
ribosome, preventing the formation of the initiation complexes
from which protein synthesis proceeds, and the rate of resistance
to these antibiotics remains relatively low for Campylobacter spe-
cies (3%) (286, 292).

RISK FACTORS, TRANSMISSION, AND ENVIRONMENTAL
RESERVOIRS

A number of risk factors contribute to the susceptibility of hu-
mans to campylobacteriosis. A recent meta-analysis revealed that
international travel was the most important risk factor for cam-
pylobacteriosis (OR, 4.9; 95% CI, 2.9 to 8.2), followed by con-
sumption of undercooked chicken, environmental exposure, and
direct contact with farm animals (293). In agreement with this,
another study revealed that international travel was a risk factor
for infection, with C. jejuni being one of six organisms that con-
tributed to 70% of all gastrointestinal infections acquired during
overseas travel between 1996 and 2005 (294). Moreover, campy-
lobacteriosis was found to be the main cause of travel-related dis-
ease in Canada from 2005 to 2009, being responsible for 27.6%
(123/446 cases) of cases (295). Similar levels have been reported in
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the United States, with 18% of Campylobacter infections being
estimated to be associated with international travel (296). Domes-
tic travel also plays a role in the transmission of human campylo-
bacteriosis (297). In Europe, the proportion of diarrhea cases
caused by Campylobacter species detected in travelers increased
from 7% in 2008 to 12% in 2010 (298). In England, 17% of Cam-
pylobacter infections were classified as being associated with travel
(299).

The level of risk for travel-related campylobacteriosis appears
to be associated with the travel destination. A meta-analysis in
2009 showed that the locations with the highest levels of risk are
Southeast Asia (32.4%; 162/500 cases), South Asia (7.8%; 39/499
cases), Africa (4.6%; 54/1,177 cases), and Latin America (2.5%;
51/2,031 cases) (300). More recently, Mughini-Gras and col-
leagues found that Dutch travelers visiting South Asia (OR, 28.9;
95% CI, 2.4 to 265.1), Southeast Asia and China (OR, 27.8; 95%
CI, 4.5 to 170.9), sub-Saharan Africa (OR, 25.4; 95% CI, 2.7 to
310.7), Latin America and the Caribbean (OR, 20.8;95% CI, 2.0 to
211.6), western Asia (OR, 10.6; 95% CI, 2.8 to 39.9), and northern
Africa (OR, 10.6; 95% CI, 2.3 to 49.0) were at higher risk of devel-
oping campylobacteriosis than those traveling to western Euro-
pean countries. While travel does contribute to the overall burden
of Campylobacter transmission, the transfer or spread of exotic or
antibiotic-resistant strains to previously unexposed populations is
a further concern. In addition, travel-related infections are often
associated with consumption of contaminated meat or water
(300), suggesting that a complex interrelationship exists between
risk factors.

Consumption of contaminated food, particularly poultry
products, unpasteurized milk, and water, is a risk factor for C.
jejuniand C. coli infection (Fig. 1) (18,301, 302). One approach to
estimate the source attribution of campylobacteriosis cases is
through the analysis of outbreak data. As expected, Campylobacter
infections are mainly attributed to poultry products by using these
techniques (303, 304). More recently, however, molecular tech-
niques, such as multilocus sequence typing, porA/flaA typing, and
gyrase subunit A typing, have played a more significant role in
source attribution (305-310), allowing further insights into the
contributions of the different reservoirs to the burden of campy-
lobacteriosis in humans and the subsequent transfer of Campylo-
bacter species to wildlife through environmental contamination.

Immunodeficiency is also a risk factor for campylobacteriosis
(101, 311). For example, human immunodeficiency virus (HIV)-
infected patients presenting with diarrhea are more frequently
infected with Campylobacter than uninfected individuals with di-
arrhea (311). In addition, the incidence of Campylobacter-related
illness among HIV-infected patients is higher than the incidence
found in the general population (312). Below, we further examine
the prevalence of Campylobacter species in the environment and
discuss how these reservoirs facilitate transmission of Campylo-
bacter to humans.

Poultry

Poultry is recognized as a primary source of food-related trans-
mission of Campylobacter species to humans (313). A major con-
tributing factor is the high carriage rate of Campylobacter within
broiler chickens. Therefore, Campylobacter species are found in
abundance on poultry farms and their surrounding environment,
including the soil, water sources, dust, building surfaces, and the
air (314). In addition to chickens, commercial turkeys and ducks
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can also serve as reservoirs of C. jejuni and C. coli (315-317).
Furthermore, poultry is also an important reservoir of other Cam-
pylobacter species, such as C. lari, C. upsaliensis, and C. concisus
(318, 319). Domesticated broiler chickens and imported chickens
both contribute to the overall burden of Campylobacter infections
(320).

It has been estimated that 71% of human campylobacteriosis
cases in Switzerland between 2001 and 2012 were attributed to
chickens (321, 322). A study investigating the prevalence of Cam-
pylobacter in crop (enlarged part of the digestive tract of birds that
serves as a temporary storage space for food) and cecal samples
from market-age broiler chickens found 62% of crop samples to
be positive, compared to only 4% of cecal samples (P < 0.001),
suggesting that the crop is an important niche for Campylobacter
and may represent a major source of contamination during pro-
cessing (323). Given that C. jejuni strains survive in chicken feces
for up to 6 days after excretion, chicken feces may also be a poten-
tial source of transmission to the environment or humans when
poultry manure is used as a fertilizer (324).

The UK Food Standards Agency reported preliminary findings
showing that 72.9% of fresh whole retail chickens surveyed during
2014 to 2015 were infected with Campylobacter, with 18.9% of
these harboring a level of >10,000 CFU/g, which is considered
highly contaminated (325). Data from Canada also support the
finding that broiler chickens are a major source of Campylobacter
species. There are, however, indications that chicken-associated
Campylobacter infections may be more common in urban dwell-
ers than in rural dwellers (326, 327). One study reported the levels
of thermotolerant Campylobacter species to be three times higher
in organic broilers than in conventional broilers (54.2% versus
19.7%) (328), suggesting that the likelihood of purchasing Cam-
pylobacter-contaminated broiler meat is higher for organic
sources than for conventional sources. Furthermore, the relative
risk of becoming ill from Campylobacter on a per-serving basis is
1.7 times higher for consuming organic carcasses than for con-
suming conventional carcasses.

Domesticated Animals

Domesticated animals are another reservoir of Campylobacter
species (313, 329). Fresh and frozen meats are frequently contam-
inated with Campylobacter, whereas commercial cooked products
are less affected (1, 330). C. jejuni, C. coli, and C. lari accounted for
69, 30, and 1% of the contaminating bacteria in these products,
respectively (330). In addition to consumption of contaminated
meat from domesticated animals, contact with domesticated and
companion animals poses a significant risk for the transmission of
Campylobacter species (1, 301, 302, 321, 331, 332).

Recent studies from Denmark showed that cattle were the at-
tributed source for 16 to 17% of the total cases of campylobacte-
riosis (320). Similarly, in Switzerland, cattle have been estimated
to be responsible for 19.3% of Campylobacter infections, which is
substantially higher than the contribution from pigs (1.2%) (321).
The prevalence of Campylobacter in cattle varies significantly
across studies, with rates ranging from 23% to close to 90% (333—
335). The species detected in cattle include C. jejuni, C. coli, C. lari,
and C. lanienae (335-337).

Campylobacter species are also prevalent in pigs and piglets.
These bacteria are capable of colonizing piglets as early as 24 h
after birth, asa result of exposure to contaminated feces (338). The
carriage rates of Campylobacter range from 32.8 to 85.0%, de-
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pending on the age of the pig (339, 340). Similar to the trend in
cattle, younger pigs tend to have higher levels of Campylobacter
than older animals (333, 339). However, in contrast to cattle, pigs
are more readily colonized by C. coli (340).

Sheep and goats have also been investigated for their rates of
carriage of Campylobacter species. In Nigeria, 6.8% of intestinal
samples from sheep were found to be positive for C. jejuni, C. coli,
or C. lari (341). A higher prevalence rate (17.5%) was reported for
cecal samples from sheep from Swiss abattoirs, with only C. jejuni
and C. coli being detected (342). In both studies, C. jejuni was the
major Campylobacter species detected (341, 342). Screening of
fecal samples from 222 dairy goats on 12 farms in Spain failed to
detect any Campylobacter species (343).

Dogs and cats are also carriers of Campylobacter species (344).
Up to 58% of healthy dogs and 97% of diarrheic dogs have been
determined to be positive for Campylobacter species (345). Inter-
estingly, C. upsaliensis appears to be one of the major Campylo-
bacter species colonizing dogs and cats (344); however, C. coli, C.
concisus, C. fetus, C. gracilis, C. helveticus, C. jejuni, C. lari, C.
mucosalis, C. showae, and C. sputorum have all been detected in
these animals (345). Other domesticated animals that have been
investigated as potential reservoirs of Campylobacter species in-
clude hamsters (346, 347), ferrets (348), pet reptiles (349), and
rabbits (350). Based on the low rates of carriage of Campylobacter
species in these animals, it is probable that they are not a major
source of transmission of Campylobacter species to humans.

Wild Animals

Wild animals are potential reservoirs of Campylobacter species.
Among all the host species studied, wild birds are most likely to
carry Campylobacter species. Indeed, 35% of the cecal contents
harvested from 445 wild ducks from Colorado tested positive for
C. jejuni (351). A study in Norway examined 540 wild birds of 40
different species and found that 28.4% were positive for C. jejuni;
crows, puffins, and gulls had the highest carriage rates, i.e., 89.8%,
51.3%, and 50.0%, respectively (352). A similar carriage rate was
observed in wild birds in Italy (74/217 birds; 34.1%) (353).

Studies of other types of wild birds have reported lower Cam-
pylobacter carriage rates. For example, Llarena and colleagues ex-
amined fecal samples from 924 barnacle geese and reported the
prevalences of C. jejuni to be 11.5% and 23.1% in 2011 and 2012,
respectively (354). In the same study, the prevalence of C. coli in
both 2011 and 2012 was only 0.2%. Furthermore, a study con-
ducted in Norway failed to detect C. jejuni in geese. In contrast,
3.0% (6/200 birds) of pigeons and 20.0% (1/5 birds) of mallards
carried C. jejuni (355). The prevalence of C. jejuni in waterfowl in
northeastern Spain (318 adult waterfowl of nine fowl species) was
12.6% (356). A further study in Spain isolated C. jejuni from 1.0%
(1/97 birds) of griffon vultures (357), while a study from the
United States, conducted over the period from 2009 to 2010, iso-
lated thermophilic Campylobacter species from 4.8% (9/188
birds) of captured wild birds (358). These results indicate that the
prevalence of Campylobacter species varies greatly depending on
the type of wild birds and their geographic regions.

Other wild animals tested for the presence of Campylobacter
species include small rodents, deer, moose, reindeer, boars, mang-
abeys, porcupines, duikers, and turtles—all were found to have
low levels or to be free of Campylobacter species (355, 358-362).
Furthermore, a number of studies have suggested that the impor-
tance of wild animals as a reservoir of infection is limited, as
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strains isolated from wild animals are usually not clonally related
to isolates from humans and chickens (317, 363, 364). This is in
contrast to a number of studies which reported that Campylobac-
ter strains isolated from wild bird feces around broiler houses can
be recovered from the ceca of broilers in those houses (365-367).
These studies provide evidence for the contribution of wild birds
to Campylobacter contamination during poultry production and
processing and suggest a potential role in human campylobacte-
riosis. Overall, current studies indicate that only some species of
wild birds have high rates of carriage of Campylobacter species and
that, currently, insufficient evidence exists to determine whether
these isolates play an important role in human disease.

Water

Water is an effective vehicle of transmission of Campylobacter spe-
cies to humans and animals, and contaminated water has been
responsible for a number of outbreaks in different countries (368—
371). Drinking undisinfected water is a leading risk factor for cam-
pylobacteriosis (372). Several studies have assessed the prevalence
of Campylobacter species in different water sources. For example,
Arvanitidou and colleagues isolated C. jejuni from 1.0% of drink-
ing water samples (5/500 samples) in northern Greece (373). In
Poland, Popowski and colleagues detected C. jejuni, C. coli, or C.
lari in 70% of water samples from rivers or lakes in the Warsaw
region (374), supporting a role for contaminated water in the
direct transmission of Campylobacter species to humans. Individ-
uals who utilize private wells rather than municipal surface water
systems as a drinking water source are at a higher risk of develop-
ing campylobacteriosis than other reportable enteric diseases
(375).

Farms that utilize private water supplies as a water source for
their cattle are more likely to have cattle that test positive for
Campylobacter, indicating that contaminated water can also serve
as a means of transmission of Campylobacter to domesticated an-
imals (334). Indeed, emptying and cleaning water troughs more
regularly have been shown to reduce the risk of colonization of
cattle by Campylobacter (334). Furthermore, it has been reported
that cattle were more likely to test positive for Campylobacter fol-
lowing an outdoor grazing period in spring, when the water sup-
ply was lake water, than when they were confined indoors in win-
ter, when their water supply was municipal chlorinated tap water
(376). Other sources implicated in the contamination of outdoor
water are wild bird feces and waste runoff from contaminated
domesticated animals (377).

Given that contaminated water may be a common factor in
transmission to different hosts, its role in the transmission cycle
and as a source of Campylobacter contamination or infection may
be underestimated. Indeed, Champion and colleagues showed
that C. jejuni isolates from different sources (humans, chickens,
bovines, ovines, and the environment) cluster into two clades: a
“livestock clade” and a “nonlivestock clade.” Of these, 55.7% of
human and 11.4% of livestock isolates were reported to group
within the nonlivestock clade (378), suggesting that the environ-
ment, and particularly water sources, may be an underestimated
reservoir for transmission of Campylobacter species.

Other Sources

Although it is not as common, another potential source of trans-
mission is person-to-person transmission (fecal-oral or via fo-
mites). The Health Protection Agency in the United Kingdom
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found that person-to-person transmission was the source of out-
breaks in 3% (5/143 cases) of the campylobacteriosis cases from
1992 to 2009 (31). Furthermore, a study conducted in New Zea-
land that combined detailed epidemiological and genotyping data
concluded that person-to-person transmission was responsible
for 4% of campylobacteriosis cases in that country (74). Other
studies, conducted in Australia and the Netherlands, provided
similar figures for the contribution of person-to-person transmis-
sion to campylobacteriosis (300, 379).

Unpasteurized milk sourced from dairy cattle has also been im-
plicated in a number of campylobacteriosis outbreaks (380-382).
The number of outbreaks in the United States associated with
unpasteurized milk increased from 30 in 2007 to 2009 to 51 in
2010 to 2012 (383). Unpasteurized milk may also serve as a source
of several other Campylobacter species, including C. hyointestinalis
subsp. hyointestinalis, C. fetus subsp. fetus, C. concisus, and C. ureo-
Iyticus (384, 385). Genomic analyses indicate that the presence of
Campylobacter species in milk can be attributed to fecal contami-
nation (386).

Several other transmission sources, including insects, have been
investigated as reservoirs of Campylobacter species. For example,
flies have been suggested to play a role in the transmission of
Campylobacter species from contaminated sources to broiler
chickens (387), and the lesser mealworm beetle, Alphitobius dia-
perinus, may act as a reservoir of C. jejuni (388). In one study, C.
jejuni was reported to survive on the exterior of the beetle for 12 h
and in the interior of larvae for 72 h, and it could be shed in the
feces of larvae for 12 h after exposure. In this study, 90% of birds
that consumed a single adult or larval beetle became C. jejuni
positive, while 100% of those that consumed 10 adults or larvae
became positive, a finding that suggests that beetles are capable of
passing viable bacteria to chickens (388). In contrast, Skov and
colleagues found that litter beetles, which are commonly present
in chicken houses, do not play an important role as reservoirs of
Campylobacter species (389). It is possible that only specific spe-
cies of beetles are carriers of Campylobacter species.

Studies have also suggested that microbial eukaryotes may act as
anonvertebrate reservoir of Campylobacter species in the environ-
ment. For example, in a study by Axelsson-Olsson and colleagues,
C. jejuni was found to survive longer when it was cocultured with
the protozoan Acanthamoeba polyphaga than when it was cultured
alone (390). Microscopically, C. jejuni was found to aggregate in
vacuoles within amoebae, and it could be detected following rup-
ture of the eukaryotic cells (390). Since a diverse range of micro-
bial eukaryotic organisms (73.5% yeasts and fungi and 26.5% pro-
tozoa) are found in the poultry drinking water systems on farms
(391), it is not surprising that eukaryotes infected with Campylo-
bacter may play a role in the transmission of this organism to
chickens.

IMPACT OF ANTIBIOTIC USAGE IN ANIMALS ON
CAMPYLOBACTER RESISTANCE

The discovery in 1950 that the addition of antibiotics to animal
feed at subtherapeutic levels could lead to increased growth rates
in husbandry animals resulted in research into methods to im-
prove or stabilize meat supplies to the consumer. Indeed, by the
turn of the 20th century, the majority of antibiotic usage in the
United States was for agricultural purposes. This approach has led
to a dramatic increase in antibiotic resistance in several human
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pathogens that originate from domesticated animals, including
Campylobacter species (392).

As early as 1999, Smith and colleagues reported an increase in
quinolone-resistant C. jejuni in Minnesota residents, whose ac-
quisition could be attributed to foreign travel and poultry prod-
ucts (393). Smith et al. proposed that the use of fluoroquinolones
in the poultry industry, which started in the United States in 1995,
was in part responsible for the increase in prevalence of quinolo-
ne-resistant C. jejuni (from 1.3% in 1992 to 10.2% in 1998; P <
0.001) (393). There is strong evidence to support the observation
that fluoroquinolone use in food animals is associated with in-
creased numbers of infections with resistant strains of Campylo-
bacter in humans. Indeed, therapeutic fluoroquinolone adminis-
tration to poultry flocks has been shown to select for
ciprofloxacin-resistant C. jejuni in poultry (394). However, an in-
crease in antibiotic resistance in Campylobacter isolates from
poultry is not restricted to C. jejuni. In 2013, Wieczorek and col-
leagues found that C. coli had higher levels of resistance than C.
jejuni, irrespective of the antimicrobial agents tested, including
ciprofloxacin, nalidixic acid, tetracycline, and streptomycin (395).

This increase in antibiotic resistance has also been observed in
Campylobacter isolates from cattle. For example, in a study by Di
Labio and colleagues, investigation of antimicrobial resistance in
202 Campylobacter isolates from Swiss veal calves showed 67.8%
of isolates to be resistant to at least one of the agents tested (396).
Importantly, resistance mainly corresponded to antimicrobial
agents that were utilized in the farming processes. In France, a
5-year survey of fecal samples from cattle between 2002 and 2006
recovered Campylobacter species from 16.5% of 2,255 samples (C.
jejuni from 12.8% and C. coli from 3.7%). Investigation of the
antibiotic susceptibility of these Campylobacter species showed an
increase in the rates of resistance to quinolones and fluoroquino-
lones from 2002 to 2006, with the fluoroquinolone resistance rate
rising from 29.7 to 70.4% (397). Interestingly, fluoroquinolones
are not utilized in Australian livestock, and as a result, Campylo-
bacter isolates from livestock in this region have negligible levels of
resistance to fluoroquinolones, which in turn correspond to low
resistance levels in human isolates (398). Low levels of resistance
to quinolones are also observed in Finland and Sweden (284).

Similar to the case for cattle and poultry, the rate of macrolide
resistance has been found to be high in C. coli isolates from pigs in
Switzerland, a finding that reflects the use of these antimicrobials
in Swiss livestock production (399). Indeed, the use of tylosin,
erythromycin, and tilmicosin in pigs is considered a major driving
factor of resistance to macrolides (400). While antibiotic use in
agriculture is still commonplace in many countries, a number of
countries have implemented bans on the nonmedicinal use of
antimicrobials in livestock. It remains to be seen if such bans will
result in a decrease in resistance rates in these countries.

CONTROLLING THE SPREAD OF CAMPYLOBACTERIOSIS

Current estimates suggest that transmission of 50 to 80% of all
human cases of campylobacteriosis is related to chickens (401).
The annual worldwide costs associated with Campylobacter infec-
tion are extremely high. For example, in the United States, the
estimated annual cost of campylobacteriosis is reported to be $1.3
billion, while in the Netherlands, it is estimated to be €21 million
(32,52). Given the association between chickens and campylobac-
teriosis, as well as the high costs associated with this disease, many
countries have invested in developing strategies to control the
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dissemination of Campylobacter species in the poultry industry
(27). These strategies target a number of key areas, including re-
ducing environmental exposure, reducing or removing Campylo-
bacter from colonized chickens, and increasing the resistance of
chickens to Campylobacter carriage. Based on an appraisal of all
the literature published between 1980 and September 2008, New-
ell and colleagues have written an excellent review on Campylo-
bacter and biosecurity on poultry farms, which outlines the differ-
ent routes of transmission that occur on poultry farms and the
degrees of success of strategies undertaken to prevent transmis-
sion of Campylobacter (402). We further highlight below the var-
ious methodologies that have been used to control Campylobacter
transmission.

Reducing Campylobacter Transmission in Chickens

Horizontal transmission of Campylobacter in the farm environ-
ment represents the usual route of transmission. Once Campylo-
bacter is introduced into a chicken flock, it spreads rapidly and
results in colonization of the intestinal tracts of the majority of
chickens within 1 week. The primary sites of colonization within
the intestine are the crop, ceca, and small intestine (402, 403). In
contrast, vertical transmission of Campylobacter from an infected
bird to its offspring via internal contamination of eggs within the
reproductive tract prior to shell formation is rare, although “pseu-
do-vertical transmission” of microorganisms from parent flocks
to their chicks via fecal contamination of shells can occur (402).
Once colonized, chickens remain colonized until they are slaugh-
tered. Although they are colonized by large numbers of Campylo-
bacter organisms (up to 10 bacteria/g), chickens usually exhibit
no clinical or other adverse effects (402). An interesting study,
however, recently showed that C. jejuni infection of some chicken
breeds can lead to prolonged inflammation, damage of the gut,
and diarrhea (404).

Human and vehicular traffic entering farms also appears to be
an important route for Campylobacter species to enter poultry
houses from the external environment. In particular, staff who
handle neighboring livestock, especially poultry, are associated
with an increased risk of Campylobacter-positive flocks, and the
number of staff employed to look after the house and the fre-
quency of visits per day are also associated with the level of risk
(402). Given the abundant source of Campylobacter species on
poultry farms and their environment, strict hygiene measures
have been introduced on the majority of farms in an attempt to
reduce Campylobacter colonization of chicks, although adherence
to these measures differs considerably from farm to farm. Based
on the current literature, the use of hygiene barriers at the en-
trance to poultry houses, the provision of hand-washing facilities,
the performance of boot dips, and the use of house-specific boots
and overshoes have all been shown to significantly decrease Cami-
pylobacter colonization of chicks (314, 402).

Although study results are conflicting, it appears that in some
countries flies play an important role in transmitting Campylobac-
ter species from fecal sources to poultry (402). For example, in a
recent study conducted in Denmark, the prevalence of Campylo-
bacter-positive flocks was reported to have reduced significantly,
from 41.4% in 2003 to 2005, before fly screens were introduced, to
10.3% in 2006 to 2009, after fly screens were installed (P < 0.001;
OR, 6.1; 95% CI, 3.1 to 12.4) (405). Furthermore, that study
showed that over the summer period, no rise in the prevalence of
Campylobacter species was observed in poultry houses with fly
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screens, while over the same period poultry houses without fly
screens showed significant increases. Based on their findings, the
authors estimated that if fly screens had been part of Danish bio-
security practices, the prevalence of Campylobacter-positive flocks
during summer months could have been reduced by approxi-
mately 77% nationally (405).

Another important source of Campylobacter on chicken farms
is fecal material from chickens already colonized with Campylo-
bacter living on the same farm; the risk of colonization in a flock is
associated with the presence of older birds (402). The number of
chicken houses on the farm also appears to be an important factor,
although the relationship between the number of houses and the
level of increased risk appears to differ by geographic location. For
example, in France, an increased infection risk was associated with
three or more houses on the same site, while in the Netherlands,
having five or more houses has been reported to give an elevated
risk (402). Based on the finding that identical Campylobacter flaA
types were present in isolates obtained from birds originating
from different hatcheries, it has been suggested that flocks are
colonized by C. jejuni following placement of chicks into broiler
chicken houses and that C. jejuni strains within the farm are those
carried over from the previous flock (406). Reductions in intesti-
nal colonization levels of broiler chickens have been reported to
lead to a considerable decline in the incidence of campylobacte-
riosis (407). Indeed, Rosenquist and colleagues reported that a
2-log,, reduction of Campylobacter levels on broiler carcasses re-
sulted in a 30-fold decline in the incidence of human campylobac-
teriosis (328). Given this, a number of strategies aimed at reducing
Campylobacter colonization in poultry, including the use of bac-
teriocins, bacteriophages, and probiotics, have been investigated.

Bacteriocins. One approach to reduce Campylobacter coloni-
zation in chickens is the use of bacteriocins. Bacteriocins are anti-
microbial peptides produced by a range of bacterial species. A
number of effective anti-Campylobacter bacteriocins have been
identified in commensal bacteria isolated from the intestines of
chickens and are currently being investigated for the ability to
control Campylobacter species at the farm level. For example, in a
study by Svetoch and Stern, treatment of chickens with the bacte-
riocin L-1077, produced by Lactobacillus salivarius strain L-1077
isolated from broiler chickens, resulted in decreases in cecal C.
jejuni counts of >4 log compared with those for untreated control
birds (408). In addition, the effects of three other bacteriocins,
OR-7 from Lactobacillus salivarius and E-760 and E50-52 from
Enterococcus faecium, have been investigated (409). Administra-
tion of these three bacteriocins to chickens resulted in dramatic
reductions of 5 to 8 log,, CFU in C. jejuni intestinal colonization
(409). Investigation of the development of resistance of Campylo-
bacter species to the E-760 bacteriocin in vitro indicated that low-
level but not high-level bacteriocin resistance can be developed.
Furthermore, in a chicken model of Campylobacter, the E-760
bacteriocin again selected only for low-level bacteriocin-resistant
C. jejuni mutants. In the absence of bacteriocin selection pressure,
this low level of bacteriocin resistance was shown not to be stable
either in vitro or in vivo. Collectively, these findings indicate that
bacteriocins may be promising agents for the control of C. jejuniin
commercial broiler chickens.

Bacteriophages. Bacteriophages have also been investigated for
use in the biocontrol of Campylobacter species. The use of bacterio-
phages to reduce Campylobacter cecal colonization of chickens has
shown encouraging results as far as reducing Campylobacter
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counts. A number of studies have reported that under experimen-
tal conditions, bacteriophage treatment of chickens which have
already been colonized with Campylobacter results in reductions
of 0.5 to 5.0 log,, CFU/g Campylobacter in the chicken gut (410—
414). For example, in a field trial by Kittler and colleagues, a phage
cocktail atlevels of 5.8 to 7.5log, , PFU/bird was added to the drinking
water of chickens colonized with Campylobacter, and the results
showed that, at slaughter, Campylobacter counts in the ceca of treated
birds were significantly reduced (>3.2 log,, CFU/g cecal content)
compared with those of the control group (P = 0.0011) (415).
While these results are encouraging, Campylobacter numbers
generally return to pretreatment levels over time (416). One ex-
planation for the lack of longevity in the reduction of Campylo-
bacter numbers is the development of resistance to phage therapy
(416). Given this, it has been suggested that bacteriophage treat-
ment immediately prior to slaughter might be a better approach,
as this has the potential to reduce the cecal Campylobacter load
and, as a result, reduce infection in humans (416). Evidence exists
to show that the rate of resistance to phage therapy can be reduced
by administering multiple phages at the same time. For example,
in a study by Fischer and colleagues, commercial broilers were
inoculated with 10* CFU of a C. jejuni field strain (417), after
which three groups of birds (n = 88 per group) were treated with
either a single phage, a four-phage cocktail, or solvent only. The
results showed that following treatment with the single phage and
the phage cocktail, Campylobacter levels were permanently re-
duced, with a significant reduction being observed between 1 and
4 weeks posttreatment and a maximum reduction level of 2.8 log;
CFU/g cecal content. Investigation of bacteriophage resistance
showed initial resistance rates of up to 43% in those treated with
the single phage, whereas a resistance rate of 24% was observed in
birds that had received the cocktail. These resistance levels, how-
ever, later stabilized at low levels (417). The feasibility of introduc-
ing phage therapy as part of poultry farming practices and the
costs associated with this process on a large scale are not known.
Probiotics. Probiotics have been shown in some studies to be
valuable for inhibiting C. jejuni colonization. For example, a study
by Ghareeb and colleagues demonstrated that Enterococcus fae-
cium, L. salivarius, Lactobacillus reuteri, and Pediococcus acidilac-
tici, originally isolated from the intestines of healthy chickens,
could inhibit the growth of C. jejuni in vitro (418). In their study,
they infected 1-day-old broiler chicks with 10* CFU of a field
strain of C. jejuni orally. The chickens were then randomized into
two groups, one of which received a multispecies probiotic (2
mg/chick/day) in their drinking water, while the other group re-
ceived no probiotic treatment. At both 8 and 15 days postchal-
lenge, cecal colonization by C. jejuni was shown to be reduced
significantly in chickens treated with probiotics (mean, 3.0 log
CFU/gand 2.5log CFU/g, respectively; P < 0.001) compared with
controls (mean, 6.8 log CFU/g and 8.0 log CFU/g, respectively;
P < 0.001) (418). In a similar study by Nishiyama and colleagues,
the ability of the probiotic strain Lactobacillus gasseri SBT2005
(LG2055) to reduce colonization in chicks was investigated (419).
Approximately 24 h following hatching, chickens were infected
with C. jejuni 81-176, and after 24 h, one group of chickens re-
ceived LG2005 daily for 14 days, while a second group received no
probiotic. At 14 days postinoculation, significantly increased lev-
els of Lactobacillus gasseri were observed in chicks receiving C.
jejuni plus LG2005 compared to those receiving C. jejuni alone
(P < 0.001). Furthermore, a significant reduction in C. jejuni lev-
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els was observed in the ceca of chicks treated with LG2055 com-
pared with the untreated controls (P < 0.001). Santini and col-
leagues also reported Bifidobacterium longum PCB 133 to have a
marked anti-Campylobacter activity in vivo (420). In their study,
they initially screened 55 lactic acid bacteria and bifidobacteria in
vivo for probiotic properties against three strains of C. jejuni, with
the ultimate goal of finding probiotics that could be used against
Campylobacter in poultry. Based on their high activity against C.
jejuni and their ability to survive in the gastrointestinal tract, Lac-
tobacillus plantarum PCS 20 and B. longum PCB 133 were used in
an in vivo trial in poultry. While L. plantarum PCS 20 showed no
effect, B. longum PCB 133 gave encouraging results. Following 2
weeks of daily administration of B. longum to the chicks, the level
of B. longum PCB 133 in chicken feces was found to have increased
significantly, and it remained high even after a wash-out period of
6 days. Importantly, over the same time frame, the level of C. jejuni
in chicken feces from chicks administered B. longum PCB 133
significantly decreased, showing a 1-log reduction (P < 0.05)
compared to the level in chicks not receiving the probiotic (420).

Vaccination. Clearly, if it were possible to successfully vaccinate
chickens against Campylobacter, it would not only reduce Campy-
lobacter levels in chickens but also reduce transmission to humans
and eliminate postharvest procedures (421). While studies have
investigated a range of vaccine candidates over the last 15 years,
including the use of flagellar proteins, formalin-inactivated C. je-
juni, C. jejuni inner membrane antigen, and killed C. jejuni, deliv-
ered intranasally, orally, orally using a Salmonella carrier, and
intraperitoneally, respectively, none of these vaccines have com-
pletely prevented Campylobacter colonization in chickens (422).
Interestingly, a recent study by Annamalai and colleagues which in-
vestigated the effect of nanoparticle-encapsulated outer membrane
proteins (OMP) of C. jejuni as a vaccine in chickens has shown sig-
nificant promise (422). In birds that received subcutaneous vaccina-
tion, C. jejuni colonization levels in cecal and cloacal contents at 7
days postchallenge were shown to be below the detection limit,
whereas the other groups showed various degrees of colonization.
Based on their study, Annamalai and colleagues considered the sub-
cutaneous route of vaccination, using encapsulated OMP or OMP
alone, to be efficacious in eliciting protective antibody responses and
preventing colonization of C. jejuni in chickens (422).

Strategies aimed at the processing level. Campylobacter in the
intestinal tracts of chickens at slaughter has the potential to con-
taminate the slaughterhouse and the food processing environ-
ment as well as food products bought by consumers. At the pro-
cessing level, treatment with organic acids, acidified sodium
chlorite, trisodium phosphate, or UV light during primary pro-
cessing, including the use of chemical dip tanks for carcasses,
would help to reduce the number of Campylobacter organisms
(423). Freezing or irradiating the entire poultry supply would fur-
ther reduce bacterial numbers by directly killing the pathogen
(423). While the postharvest measures outlined above have had
some success in reducing the transmission of C. jejuni to humans,
they do not completely eliminate transmission of Campylobacter-
related gastroenteritis. In addition, postharvest strategies are ex-
pensive and have been reported to degrade the quality of meat
(421). Nevertheless, Lake and colleagues have proposed that using
multiple interventions at the level of primary processing is the
most cost-effective approach to reducing poultry-related trans-
mission, while the use of an irradiation method alone during pri-
mary processing is the least cost-effective (423).
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Information describing safe food-handling procedures and risk
factors associated with campylobacteriosis could be provided to con-
sumers (423). This may help in limiting the level of cross-contamina-
tion in the kitchen that results from exposure to contaminated meat.
A particular highlight is the success observed in New Zealand follow-
ing regulatory interventions implemented by the New Zealand Food
Safety Authority to reduce Campylobacter transmission in the poul-
try sector. Following the advent of these interventions, the inci-
dence of campylobacteriosis in this country decreased by 50%
from 2006 to 2008 (from 383 to 157 cases per 100,000 population)
(73). As part of these interventions, poultry processers monitored
and reported the prevalence of Campylobacter species in poultry
flocks and levels of contamination in poultry carcass rinsates, after
which mandatory performance targets were introduced. Key im-
provements were made in regard to hygiene practices in production
and primary processing and modifications to the immersion-chiller
conditions. In addition, a recent paper found that the prevalence of
GBS in New Zealand also decreased as a result of the intervention
strategy (184). The successes observed in New Zealand will hopefully
encourage other countries which currently do not have regulated in-
terventions in the poultry sector to take action.

CONCLUSIONS

Our evaluation of the epidemiology of campylobacteriosis has re-
vealed an increasingly important role for Campylobacter infection in
public health. While global efforts to control the transmission of
enteric pathogens have been effective at reducing the incidence of
anumber of major foodborne pathogens, the prevalence of Cam-
pylobacter infection has nevertheless continued to increase across
most developed nations. This rise may be a consequence of many
factors, including but not limited to our improved ability to detect
these species and our failure to effectively prevent transmission
due to breakdowns in biosecurity. There are currently insufficient
epidemiological data to provide an accurate assessment of the
burdens of campylobacteriosis in Africa, Asia, and Central and
South America. However, it is clear that in many of these regions,
where data are available, Campylobacter species appear to be en-
demic in children.

The emergence of Campylobacter species other than C. jejuni
and C. coli clearly warrants additional investigation. Additional
research efforts focusing on their growth conditions, methods of
detection, and elucidation of their mechanisms of pathogenesis
could revolutionize our understanding of their global distribution
and impact on infectious diseases.

It is now well established that poultry, particularly fresh and fro-
zen chicken meat, is a major reservoir of Campylobacter species.
Other domesticated animals, such as cattle and pigs, and environ-
mental sources, such as contaminated water, also play a vital role in
the direct transmission of these organisms to humans. Moreover,
many cases of travel-associated Campylobacter infection can be at-
tributed to consumption of contaminated meat products or water.
Contaminated water contributes to transmission to domesticated
birds and other animals, whereas the use of manure from domesti-
cated animals may result in contamination of water sources, fulfilling
a cycle of dissemination between natural reservoirs.

The lack of standardized biocontrol methodologies in the
poultry sector, a principal source mediating Campylobacter trans-
mission to humans, substantially contributes to the global in-
crease in campylobacteriosis. This issue highlights the need for a
worldwide campaign to encourage interventions within the poul-
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try sector. The success achieved as a result of an intervention strat-
egy introduced in New Zealand will hopefully inspire other gov-
ernment regulatory bodies to adopt similar methods to combat
Campylobacter transmission. Without further action, Campylo-
bacter-related infection will remain an important infectious dis-
ease that challenges global health in the years to come.
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