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Abstract
Diffusion-weighted imaging (DWI), dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) and 
perfusion computed tomography (CT) are technical 
improvements of morphologic imaging that can 
evaluate functional properties of hepato-bilio-pancreatic 
tumors during conventional MRI or CT examinations. 
Nevertheless, the term “functional imaging” is 
commonly used to describe molecular imaging 
techniques, as positron emission tomography (PET) 
CT/MRI, which still represent the most widely used 
methods for the evaluation of functional properties of 
solid neoplasms; unlike PET or single photon emission 
computed tomography, functional imaging techniques 
applied to conventional MRI/CT examinations do not 
require the administration of radiolabeled drugs or 
specific equipments. Moreover, DWI and DCE-MRI can 
be performed during the same session, thus providing a 
comprehensive “one-step” morphological and functional 
evaluation of hepato-bilio-pancreatic tumors. Literature 
data reveal that functional imaging techniques could 
be proposed for the evaluation of these tumors before 
treatment, given that they may improve staging and 
predict prognosis or clinical outcome. Microscopic 
changes within neoplastic tissues induced by treatments 
can be detected and quantified with functional imaging, 
therefore these techniques could be used also for post-
treatment assessment, even at an early stage. The 
aim of this editorial is to describe possible applications 
of new functional imaging techniques apart from 
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or altered cellular membranes will present diffusion 
restriction, which is depicted as signal hyperintensity 
areas on high b-value DW images and hypointensity 
on the apparent diffusion coefficient (ADC) maps; 
ADC measurement can also quantify water molecules’ 
diffusion. As dedifferentiation or therapies may induce 
microscopic changes in neoplastic tissues that could 
modify water molecules’ diffusion, DWI can distinguish 
between different degrees of malignancy and can be 
also proposed for post-treatment monitoring. More
over, DWI can be performed in a single session with 
DCE-MRI, thus providing a comprehensive “one-step” 
morphological and functional evaluation of hepato-
bilio-pancreatic tumors.

Perfusion imaging techniques evaluate changes 
in signal intensity (DCE-MRI) or density (pCT) after 
contrast medium injection, being therefore able to 
assess microvascularization through the evaluation 
of the dynamics of contrast medium distribution from 
vessels to the neoplastic tissue. Perfusion parameters 
are therefore theoretically good candidates for the 
evaluation of microscopic vascular differences between 
lesions with different pathological grade and for the 
assessment of treatment response, especially after 
chemoembolization or during treatments with anti-
angiogenic drugs.

This editorial analyzes up-to-date literature data 
regarding the application of functional imaging 
techniques, apart from molecular imaging, to hepatic 
and pancreatic tumors, with particular emphasis on 
correlations to pathological features, prognostic stra
tification and therapeutic response assessment.

FUNCTIONAL IMAGING TECHNIQUES: 
TECHNICAL BASES
In 1965 Stejskal and Tanner[4] developed a modified 
T2-weighted MR sequence for the detection of water 
molecules’ diffusion. DWI enables the visualization 
of Brownian random motions of water molecules 
in the extracellular, intracellular, and intravascular 
spaces[5]. DWI provides information on tissue cellu
larity and integrity of cell membranes, since the 
degree of restriction to water diffusion in biological 
tissues is inversely correlated to these features[6-9]. 
Restricted diffusion is present in tissues with narrowed 
extracellular spaces as a consequence of a high cellular 
density, which increases the number of hydrophobic 
cellular membranes, whereas in cystic or necrotic 
lesions water diffusion is relatively ‘‘free’’[10]. The b value 
is a technical parameter that regulates the sensitivity 
of this sequence to water molecules’ diffusion. 
Generally, both low and high b values are used for DWI 
examination; nevertheless, the choice of the b value 
may vary from institution to institution. The intravoxel 
incoherent motion (IVIM) model is an advanced DWI 
technique developed by Le Bihan[11,12] that enables a 
separate quantitative assessment of all the microscopic 
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molecular imaging to hepatic and pancreatic tumors 
through a review of up-to-date literature data, with 
a particular emphasis on pathological correlations, 
prognostic stratification and post-treatment monitoring.
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Core tip: Diffusion-weighted imaging and perfusion 
imaging could add functional information to the 
morphological evaluation of hepatic and pancreatic 
tumors. Diffusion-weighted imaging findings seem to be 
correlated with pathological features and could predict 
the clinical outcome of hepatocellular carcinomas 
and pancreatic tumors, especially neuroendocrine 
neoplasms. Apparent diffusion coefficient quantification 
and perfusion techniques can be of value for the 
evaluation of response to ablative treatments, loco-
regional therapies and anti-angiogenic therapies, even 
at an early stage.
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INTRODUCTION
Functional imaging techniques include different methods 
that can detect or measure changes in metabolism, 
blood flow, and chemical composition. This group 
included both molecular imaging methods, as positron 
emission tomography (PET)-computed tomography 
(CT)/magnetic resonance imaging (MRI) or single 
photon emission computed tomography (SPECT), 
and radiological techniques, as diffusion-weighted 
imaging (DWI), dynamic contrast-enhanced MRI 
(DCE-MRI) and perfusion CT (pCT). Functional imaging 
techniques are technical improvements of conventional 
morphological techniques that can provide both 
qualitative and quantitative information on hepato-
bilio-pancreatic tumors[1-3], being therefore similar to 
molecular imaging techniques. Functional techniques 
can be performed during conventional imaging 
evaluations as CT or MRI, therefore they describe both 
morphological and functional features of solid tumors; 
moreover, they do not need radiolabeled agents as 
fluorodeoxyglucose (18F-FDG) or specific equipments.

DWI evaluate the random diffusion of water mole
cules: biological tissues with high cellular density 



translational motions that contribute to DWI signal. In 
biological tissues, these motions are represented by 
the molecular diffusion of water, expressed by diffusion 
(D) and pseudodiffusion (D*), and the perfusion effect 
caused by blood circulation in the capillary network 
(perfusion fraction - f). IVIM, therefore, can evaluate 
perfusion features without the need of contrast medium 
injection. Multiple b values must be used for IVIM 
evaluation.

DCE-MRI was developed to assess myocardial 
and pulmonary blood flow. This technique requires 
the intravenous injection of a gadolinium-based 
contrast agent, followed by rapid serial signal intensity 
measurements while the contrast agent enters 
tumor arterioles, passes through capillary beds and 
washes out of the tumor. Technical improvements 
have shortened the acquisition time and have led to 
the development of three-dimensional sequences, 
which replaced single-section examinations: as a 
consequence, DCE-MRI can be applied to abdominal 
imaging. The contrast kinetics features assessed by 
DCE-MRI reflect tissue perfusion, the concentration-
time curve in the arterial input vessel, the capillary 
surface area, the permeability and the volume of the 
extracellular extravascular space. As a consequence, 
several metrics can be derived from DCE-MRI 
evaluation: the volume transfer constant (Ktrans), the 
fractional volume of the extravascular-extracellular 
space (ve), the rate constant (Kep, where Kep = Ktrans/
ve), the fractional volume of the plasma space (vp), 
the area under the contrast agent concentration-time 
curve (AUC)[13]. In 1999, a consensus opinion agreed 
to standardize the terminology of DCE-MRI studies[13] 
and selected AUC60 and Ktrans as the preferred end 
points in clinical trials involving anti-angiogenic 
drugs[13,14]. Nevertheless, DCE-MRI end points can be 
tailored to the specific drug involved in the trial.

Perfusion CT has the same physical bases of 
DCE-MRI, as it is based on the evaluation of temporal 
changes in tissue density following intravenous admi
nistration of iodine contrast medium. By rapid sequential 
acquisitions during contrast medium passage, pCT 
allows the quantification of tissues’ vascularity. Per
fusion can be quantified using mathematical modeling 
techniques (mainly the compartmental and the 
deconvolution analysis) that use data derived both 
from the tissue and the vascular system[15-17]. The 
analytical methods and the acquisition protocols vary 
from institution to institution and between commercial 
vendors, leading to poor standardization. Many different 
metrics can be directly or indirectly derived from pCT 
studies: blood flow (BF), representing the flow rate 
through vasculature; blood volume (BV), representing 
the volume of flowing blood; mean transit time (MTT), 
representing the average time taken to travel from 
arteries to veins; perfusion, representing the flow 
rate through vasculature; permeability surface (PS), 
representing the total flux from plasma to interstitial 
space; peak enhancement image (PEI), representing 

the maximum enhancement in a tissue region of inte
rest; and time to peak (TTP), defined as the time from 
the arrival of the contrast medium in major arterial 
vessels to the peak enhancement). Other than poor 
standardization, another important drawback of pCT is 
the high radiation dose, even though technical improve
ments have recently led to the development of low-
dose pCT examination protocols[18].

CORRELATION WITH PATHOLOGICAL 
FINDINGS AND PROGNOSTIC 
STRATIFICATION
Primary liver tumors
The prognosis and management of hepatocellular 
carcinoma (HCC) depend on size, degree of dedifferen
tiation, presence of vascular invasion and intrahepatic 
metastases[19]. As advanced and poorly differentiated 
HCCs have a significantly worse prognosis than well 
and moderately differentiated lesions after surgical 
resection[20], preoperative staging and prognostic 
prediction play an important role, eventually sug
gesting wider surgical clearance margins and closer 
post-treatment surveillance.

As the pathological grade of HCC depends on 
cellular and structural atypia[21], increasing cellular 
density, nuclear-to-cytoplasmic ratio, and architectural 
complexity accompanying dedifferentiation may 
cause water diffusion restriction. DWI features can 
be assessed both with a visual (qualitative) and a 
quantitative analysis through ADC measurement. An 
et al[22] reported a linear correlation towards higher 
grades in HCCs showing diffusion restriction: the 
combination of absence of diffusion restriction (defined 
as no hyperintensity on high b-value DW images) and 
no arterial enhancement at conventional contrast-
enhanced MRI in predicting well differentiated HCCs 
had a 100% positive predictive value. The multistep 
nature of HCC dedifferentiation probably necessitates 
a quantitative approach rather than a simple visual 
analysis. Details on the main published studies 
regarding ADC measurement and correlations with the 
pathological grade of HCCs are reported in Table 1. 
Overall, literature data show that HCC dedifferentiation 
tends to be associated with a decrease of the ADC 
value, despite differences between studies[23-29]. Apart 
from the direct correlation with the pathological grade, 
Nakanishi et al[29] found that ADC quantification might 
have a clinical prognostic value, being significantly 
lower in patients with early recurrence after surgery 
than in those without early recurrence. One important 
aspect dealing with ADC measurement is the choice 
of the region of interest (ROI), given that a “whole-
tumor” ROI can be irrespective of lesion heterogeneity: 
as previously mentioned, necrotic areas have a 
relatively free diffusion and should be avoided during 
ROI placement because they may falsely increase the 
ADC value; ADC measurement should be therefore per
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would be ideal for the prediction of the pathological 
grade and clinical behavior of HCCs, but literature 
data at this regard are relatively poor. One single 
study[37] reported a significant negative correlation 
between the standardized uptake value (SUV) derived 
from 18F-FDG PET/CT and Ktrans in advanced HCCs. 
Some more studies have been conducted with pCT: 
while Ippolito et al[38] did not report any significant 
correlation between pCT-derived parameters and 
pathological grade, Sahani et al[39] found that well-
differentiated HCCs had significantly higher perfusion 
values than less differentiated lesions. Yang et al[40] 
reported that pCT could quantitatively assess the 
blood supply and particularly its distribution during 
hepatocarcinogenesis, with statistically significant 
correlations between BF, hepatic arterial perfusion 
(HAP) and microvascular density (MVD).

Few experiences, mainly focused to a qualitative 
visual assessment of DW images, have been reported 
regarding cholangiocarcinoma (CCC). Cui et al[41] 
found an inverse correlation between the pathological 
grade and ADC values; Park et al[42] reported that 
the addition of DWI to conventional sequences might 
improve the pre-operative assessment of hilar CCC, 
increasing the sensitivity for the evaluation of tumor 
extent along the bile ducts and liver invasion, thus 
improving T stage, a parameter that is directly related 
to prognosis.

Pancreatic tumors
Although the prognosis of patients with pancreatic 
ductal adenocarcinomas (PDACs) is related to the 
pathological grade, treatment choice mainly relies on 
clinical stage. Surgical resection is the only curative 
treatment for this neoplasm, therefore the pre-
operative prediction of the pathological grade may 
have a smaller importance for PDAC management as 
compared to other pancreatic tumors.

Some studies have tried to correlate DWI findings 
with the pathological grade, but results are contro
versial[43-45]. Details on the most relevant published 
studies are reported in Table 2. Overall, low-grade 
PDACs tend to present low ADC values[43-45], but it still 
not clear which  histological feature mainly contributes 
to diffusion restriction. Wang et al[43] and Muraoka 
et al[46] reported that tumors with limited glandular 
formation and dense fibrosis (i.e., paucicellular 
tumors) had lower ADC values as compared to well-
differentiated lesions characterized by neoplastic 
tubular structures; moreover, PDACs with dense 
fibrosis showed significantly lower ADC values than 
those with loose fibrosis. Fibrosis may be therefore the 
key factor contributing to diffusion restriction in PDACs, 
but these findings have not been confirmed by other 
studies: particularly, Klauss et al[47] reported that the 
difference between the IVIM-derived D value (diffusion) 
of moderate and severe fibrosis PDACs was significant, 
but the cellular complexes surrounded by fibrosis 

formed only on solid areas showing diffusion restriction.
Studies regarding IVIM imaging reported interesting 

results. Woo et al[30] found that the D value (diffusion) 
quantification had significantly higher AUC than ADC 
measurement for the differentiation between high-
grade and low-grade HCCs. Moreover, the percentage 
of arterial enhancement depicted at conventional 
contrast-enhanced MRI, which is directly linked to the 
degree of dedifferentiation of HCCs, was correlated 
with IVIM-derived f value (perfusion fraction).

As previously mentioned, the prognosis of patients 
with HCC depends also on other pathological features: 
DWI has been tested for the detection of malignant 
features of HCC, as vascular involvement or intra
hepatic metastases. It has been reported that ADC 
measurement has a high sensitivity and specificity 
(reaching up to 93.5% and 78.6%, respectively) for 
the prediction of microvascular involvement[31,32]. Portal 
vein involvement precludes most curative options[33], 
but its diagnosis may be hampered by the presence of 
a non-neoplastic thrombus in a cirrhotic liver. Few and 
controversial papers have been published regarding 
the ability of DWI in distinguishing malignant from 
non-malignant thrombi: Catalano et al[34] reported that 
most neoplastic thrombi were isointense to the primary 
tumor on DWI, whereas all bland thrombi were 
hypointense; it must be noted that blood degradation 
products present variable T2 signal prolongation and 
water diffusivity, therefore false-positives may be 
encountered at DWI[35]. Satellite nodules are important 
determinants of patients’ prognosis and influence the 
therapeutic approach. The high accuracy of DWI in 
detecting small HCCs, even smaller than 1 cm, may 
be assumed to be applicable to intrahepatic HCC 
metastases[36].

Arterial blood supply tends to increase during 
hepatocarcinogenesis. Perfusion imaging techniques 
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Table 1  Data derived from the main published studies that 
have tested correlations between apparent diffusion coefficient 
values and pathological grade of hepatocellular carcinomas

Study Number of 
patients

b  values
(s/mm2)

mean ADC value
(× 10-3 mm2/s)

Nasu et al[23] 99 0, 500 1.45 (WD); 1.46 (MD); 
1.36 (PD)

Piana et al[24] 99 0, 500 1.29 (WD); 1.22 (MD); 
1.21 (PD)

Saito et al[25] 32 100, 800 1.25 (WD); 1.12 (MD); 
1.13 (PD)

Muhi et al[26] 73 500, 800 0.91 (WD); 0.71 (MD); 
0.68 (PD)

Nishie et al[27] 80 0, 500, 1000 1.21 (WD); 1.14 (MD); 
0.76 (PD)

Heo et al[28] 27 0, 1000 1.20 (WD); 1.10 (MD); 
0.90 (PD)

Nakanishi et al[29] 44 0, 50, 1000 1.29 (MD); 1.07 (PD)

ADC: Apparent diffusion coefficient; WD: Well differentiated; MD: 
Moderately differentiated; PD: Poorly differentiated.
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might provide more structural limitations than fibrosis 
alone. Legrand et al[44] reported that mean ADC values 
did not significantly differ between tumors having < 
50% and those having > 50% of fibrotic stroma, or 
between tumors containing dense fibrosis and those 
containing loose fibrosis. Similarly, Rosenkrantz et al[45] 
reported no associations between ADC values and 
“adverse” pathological features as poor differentiation. 
Some authors have proposed a more practical role for 
functional imaging, testing correlations with clinical 
features as tumor stage or survival. Hayano et al[48] 
reported a significant negative correlation between ADC 
values, size and number of metastatic lymphnodes; 
PDACs with low ADC values presented also a high 
tendency to show portal system and extra-pancreatic 
nerve plexus invasion. The comparison of CT and DWI 
performed by Fukukura et al[49], instead, reported that 
only CT findings might be associated with the clinical 
behavior of PDACs. Some studies focused on the 
application of DWI to the detection and characterization 
of liver metastases from PDAC and reported high 
sensitivity and specificity using DWI alone[50] or DWI 
plus other sequences[51-53]: imaging features derived 
from conventional MR sequences should be always 
taken into account because of the possible presence of  
DWI false-positives.

Well-differentiated PDACs have a higher micro
vascular density as compared to less differentiated 
tumors[54]; perfusion imaging should therefore theore
tically be able to identify well-differentiated PDACs, 
which have better prognosis than poorly differentiated 
lesions. It has been reported that pCT-derived PEI and 
BV values could identify high grade PDACs with 100% 
specificity and 75% accuracy[55]. Ueno et al[56] reported 
that DCE-MRI might predict the survival of patients 
with advanced PDAC: all patients included in this study 

showed transient decreases in signal intensity [signal 
ratio (SR): 6.9%-55.7%]; high SR (cut-off 22%) 
significantly correlated with higher disease stage and 
presence of nodal metastases; patients with high SR 
had significantly short overall survival.

Pancreatic neuroendocrine tumors (PanNETs) can 
be divided into well/moderately differentiated and 
poorly differentiated lesions and their mitotic rate 
based on the quantification of the mitotic index (Ki67%) 
can distinguish three categories: G1, with a Ki67 ≤ 
2%, G2 (Ki67 3%-20%), and G3 (Ki67 > 20%)[57]. 
Several treatment options, ranging from surgery to 
systemic therapy or loco-regional treatments, have 
been proposed for PanNETs according to their grade of 
differentiation. The histological grade plays therefore a 
key role in the clinical management of PanNETs; many 
studies have been conducted regarding the application 
of functional imaging techniques to PanNETs, apart 
from nuclear imaging techniques. Details regarding 
ADC measurements correlations with the grade of 
differentiation are reported in Table 2. Overall, it seems 
that ADC values are correlated with the Ki67 labeling 
index: G3 PanNETs tend to present lower mean ADC 
values compared to well-differentiated PanNETs[58-60]. 
As for PDACs, staging plays a fundamental for 
treatment planning and prognostication of PanNETs. 
In most cases, liver metastases from PanNETs are 
hypervascular; nevertheless, in some cases they 
can be iso- or hypovascular and therefore difficult to 
detect and correctly characterize using conventional 
imaging techniques. Moreover, heterogeneity of liver 
metastases has been reported[61]. DWI is a good 
functional technique for the detection of PanNET liver 
metastases, with 71% sensitivity and 85%-100% 
specificity, equal or even higher than T2-weighted 
and contrast-enhanced images[62,63]. In a study that 
evaluated the role of DWI in the differentiation of 
hemangiomas from other hypervascular liver lesions, 
the mean ADC value of NETs metastases was found 
to be 1.43 × 10-3 ± 0.39 × 10-3 mm2/s[64], slightly 
higher than that reported by Schmid-Tannwald (1.23 
× 10-3 ± 0.31 × 10-3 mm2/s)[65]. Nevertheless, MR 
features derived from conventional sequences should 
be always taken into account, due to a wide overlap 
in ADC values among different liver lesions. DWI can 
also obtain images from the entire body in one single 
acquisition (whole-body diffusion-weighted imaging 
- WBDWI). Cossetti et al[66] reported two cases of 
NETs with distant metastases (bone and mediastinal 
lymphnodes) discovered by WBDWI and confirmed by 
Octreoscan. Etchebehere et al[67] compared WBDWI 
with 68Ga-DOTATATE PET-CT and 99mTc-HYNIC-
Octreotide SPECT-CT: WBDWI had a similar accuracy 
when compared to molecular imaging techniques 
for lung and liver lesions, while showed a higher 
false-negative rate for bone lesions. Schraml et al[68] 
reported that PET-CT and WBDWI had comparable 
overall detection rates for NETs metastases but 
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Table 2  Data derived from the main published studies that 
have correlated apparent diffusion coefficient quantification 
with the pathological grade of pancreatic ductal adenocar
cinomas and neuroendocrine tumors

Study n b  values
(s/mm2)

Histotype mean ADC value
(× 10-3 mm2/s)

Wang et al[43] 21 0, 500 PDAC 2.10 (WD-MD); 
1.46 (PD)

Legrand et al[44] 22 Multiple1 PDAC 1.43 (WD); 
1.94 (MD-PD)

Rosenkrantz et al[45] 30 0, 500 PDAC 1.78/1.75 (WD-MD); 
1.69/1.62 (PD)2

Wang et al[58] 18 0, 50, 500 PanNET 1.75 (G1); 1.00 (G3)
Jang et al[59] 20 0, 800 PanNET 1.48 (G1-G2); 

1.04 (G3)
Hwang et al[60] 44 Multiple3 PanNET 1.31 (G1); 

1.08 (G2-G3)

150, 200, 400, 600, 800 s/mm2; 2Two readers; 30, 25, 50, 75, 100, 150, 200, 
500, 800, 1000 s/mm2. n: Number of patients; ADC: Apparent diffusion 
coefficient; PDAC: Pancreatic ductal adenocarcinoma; WD: Well diffe
rentiated; PanNET: Pancreatic neuroendocrine tumor; MD: Moderately 
differentiated; PD: Poorly differentiated.
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significantly differed in organ-based detection rates with 
superiority of PET-CT for lymph node and pulmonary 
lesions and of WBDWI for liver and bone metastases.

Experimental applications of pCT to PanNETs 
reported interesting results. Rodallec et al[69] and 
D’Assignies et al[70] reported that pCT features were 
correlated with MVD; moreover, BF values of benign 
PanNETs were higher than those of uncertain behavior 
tumors and carcinomas, and significant correlations 
were reported between BF, MTT and proliferation 
index, microscopic vascular neoplastic involvement 
and presence of nodal or liver metastases. Regarding 
staging, Ng et al[71] reported that BF and hepatic 
arterial fraction were significantly higher in liver 
metastases from PanNETs than in healthy liver, 
thus reflecting an increased arterial blood supply to 
metastatic lesions; opposite relationships were found 
for MTT and PS. Guyennon et al[72] reported that pCT 
could provide additional information in respect to 
conventional CT; particularly, despite both hyperva
scular and hypovascular metastases presented higher 
hepatic arterial perfusion index as compared to the 
background liver, mean BF and BV values were higher 
in hyperdense metastases compared with hypodense 
lesions. All liver metastases showed higher BF, BV, PS 
and hepatic arterial perfusion index as compared to 
the background liver.

Functional parameters derived from pCT may 
therefore be useful for the characterization of suspect 
PanNET liver metastases when they present atypical 
morphological features, as hypovascularity.

Well- and poorly-differentiated PanNETs present 
different DCE-MRI features. Bali et al[73] reported that a 
signal intensity - time curve similar to that of the aorta 
was typical of well-differentiated PanNETs, while a curve 
characterized by a slow enhancement was present in 
non well-differentiated PanNETs, but also in PDACs. 
Moreover, a positive correlation was observed between 
the MVD and the distribution factor, which reflects the 
volume fraction of the tissue that is accessible to the 
contrast agent (i.e., the plasma and the extravascular 
extracellular space). Kim et al[74] found a significant 
difference in the perfusion characteristics of well-
differentiated PanNETs and neuroendocrine carcinomas: 
Ktrans values, representing tissue blood flow, were 
significantly lower in G3 tumors. Interestingly, the 
mean Ktrans of neuroendocrine carcinomas was higher 
than that of PDACs, thus reflecting the true histological 
features of PanNETs: even if poorly differentiated, they 
present higher MVD as compared to PDACs.

DCE-MRI has been tested for PanNETs staging. 
Koh et al[75] found three different patterns  of contrast 
enhancement for neuroendocrine hepatic metastases, 
with specific perfusional parameters. DCE-MRI is 
therefore potentially able to categorize metastases 
on the basis of their vascular characteristics, with 
prognostic and therapeutic consequences. Armbruster 
et al[76] reported that arterial flow fraction and 
intracellular uptake fraction have a high diagnostic 

accuracy for the distinction between NET liver 
metastases and normal hepatic tissue. DCE-MRI 
parameters are also partially correlated to SUVs derived 
from 18F-FDG- and 68Ga-DOTA-Tyr(3)-octreotate (68Ga-
DOTATATE-) PET/CT[77].

RESPONSE TO TREATMENTS
Primary liver tumors
Loco-regional therapies as percutaneous or intra-
operative ablation techniques [radiofrequency ablation 
(RFA), microwaves, irreversible electroporation or 
transarterial chemoembolization (TACE) and radioem
bolization (TARE)], have significantly contributed 
to the control of unresectable localized HCCs[78]. As 
these therapies may be repeated and interchangeably 
applied, early assessment of treatment response 
is crucial. Response Evaluation Criteria In Solid 
Tumors (RECIST) criteria are not applicable to HCC, 
as both loco-regional treatments and systemic 
therapy generally result in tumor necrosis rather than 
shrinkage. The European Association for the Study 
of Liver Diseases has proposed to assess response to 
loco-regional treatments by assessing the decrease in 
viable tumor volume, seen as a decrease in contrast-
enhancing areas at conventional contrast-enhanced 
CT/MRI[79]. However, the differentiation of viable tissue 
from treatment-induced changes as inflammation or 
granulation tissue can be difficult, as these non-tumoral 
changes can present contrast enhancement[80,81]. 
DWI and perfusion imaging techniques may have a 
potential role in the differentiation of viable tumor from 
treatment-induced necrosis. Viable neoplastic areas 
present high cellularity with intact cell membranes 
and show high vascularization; conversely, treatment-
induced necrotic and inflammatory changes present 
a reduced cellular density, an increased membrane 
permeability and poor vascularization.

Radiofrequency ablation (RFA) induces coagulative 
necrosis in tumor tissues. Lu et al[82] reported that 
the ADC values of HCCs successfully treated with RFA 
showed a predictable evolution and might help radio
logists to monitor tumor response, being significantly 
high starting from 1 mo after RFA. Ippolito et al[83] 
reported that pCT enabled the assessment of HCC 
vascularity after RFA, providing quantitative information 
about the presence of arterial vessels within viable 
residual neoplastic tissues: in this study, a significant 
difference in perfusion, arterial perfusion (AP), and 
hepatic perfusion index (HPI) values was found 
between treated lesions with residual tumor and those 
successfully treated. Eccles et al[84] reported statistically 
significant changes in ADC values of HCCs treated 
with radiotherapy (RT): in their study, the baseline 
median ADC of 1.56 × 10-3 mm2/s increased to 1.89 
× 10-3 mm2/s at RT week one, to 1.91 × 10-3 mm2/s 
during week two and to 2.01 × 10-3 mm2/s one month 
following treatment; early increases of ADC values were 
correlated with sustained tumor response. Kim et al[85] 
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reported that ADC values and DCE-MRI parameters 
acquired before concurrent chemoradiotherapy 
correlated with progression-free survival (PFS) and 
were valuable in the prediction of the clinical outcome. 
The best cutoff values for response prediction of ADC, 
Ktrans, Kep, and extravascular extracellular volume 
fraction (ve) were 1.008 × 10-3 mm2/s, 0.108 /min, 
0.570 min-1, and 0.298%, respectively.

Many studies have been conducted on the 
application of functional imaging techniques for HCCs 
treated with TACE and TARE; the most significant 
results are reported in Table 3. Overall, ADC values 
tend to increase after TACE, even at an early 
evaluation[86-89]. DWI can reliably assess the efficacy 
of trans-arterial treatments: Yuan et al[90] reported 
differences in the mean ADC values of the necrotic 
and vital tumor tissues after TACE (2.22 × 10-3 ± 
0.31 × 10-3 mm2/s and 1.42 × 10-3 ± 0.25 × 10-3 
mm2/s, respectively); a significant linear correlation 
was identified between the ADC value of the entire 
area of the treated mass and the extent of tumor 
necrosis (r = 0.58; P < 0.001). Mannelli et al[91] did 
not report differences between conventional MRI 
sequences and DWI for the assessment of post-TACE 
necrosis, although enhancement decrease on MRI 
subtraction images was more significantly correlated 
with pathological findings than ADC increase. Although 
quantitative analysis of diffusion restriction appears 
to be of value in assessing response to TACE, visual 
analysis seems to be less accurate: Goshima et al[92] 
reported that DW images were significantly less 
sensitive than contrast-enhanced images in detecting 
residual/recurrent tumor after TACE, and Yu et al[93] 
reported that the addition of DW images to contrast-
enhanced images reduced specificity and diagnostic 
accuracy in detecting perilesional recurrence. Probably, 
the presence of treatment-induced granulation tissue 
is the cause of DWI false positives.

Regarding pCT, Yang et al[94] reported a significant 
decrease of the HAP, total liver perfusion (TLP), and 

hepatic arterial perfusion index (HAPI) values 4 wk 
after TACE.

Braren et al[95] reported strong correlation between 
the extravascular extracellular volume fraction 
assessed with DCE-MRI and the percentage of 
residual tumor after TACE. Taouli et al[96] reported that 
untreated HCCs had higher arterial fraction and lower 
portal/venous hepatic blood flow values than chemo
embolized HCCs.

Trans-arterial yttrium-90 (90Y) radioembolization 
(TARE) aims to deliver a high radiation dose to 
HCCs[97]. Although a small study reported a 60% 
increase in the mean ADC value after TARE[98], other 
studies reported less conspicuous ADC increases 
(approximately 10%-20%)[99]. Rhee et al[100] reported 
that 1-mo response to TARE assessed with DWI 
significantly preceded size changes: the mean 
baseline ADC value (1.64 × 10-3 ± 0.30 × 10-3 mm2/s) 
increased to 1.81 × 10-3 ± 0.37 × 10-3 mm2/s at 1 mo 
(P < 0.05), and to 1.82 × 10-3 ± 0.23 × 10-3 mm2/s 
at 3 mo (P < 0.05), while the mean tumor size did not 
significantly modify at 1 or 3 mo. Functional imaging 
techniques may be helpful for response prediction to 
trans-arterial treatments. Park et al[101] reported that 
IVIM imaging could predict lipiodol uptake: the D* 
(pseudodiffusion) value was significantly higher in a 
“lipiodol-good uptake” HCC group than in a “lipiodol-
poor uptake” group. Mannelli et al[102] reported 
that ADC quantification could predict response to 
TACE: HCCs with poor/incomplete response (< 50% 
necrosis) had significantly lower pre- and post-TACE 
ADC values than lesions with good/complete response. 
Kubota et al[103] reported that the percent ADC value 
modification after therapy was significantly higher in 
non-relapsed HCCs (85.2% ± 12.4%) as compared 
to lesions with disease relapse (8.0% ± 56.7%, P < 
0.001). Konstantinidis et al[104] reported that DCE-MRI 
could predict treatment outcome after hepatic arterial 
infusion (HAI) of floxuridine and dexamethasone (with 
or without bevacizumab) in advanced intra-hepatic 
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Table 3  Data derived from the main published studies that have evaluated apparent diffusion coefficient values before and after 
trans-arterial treatments of primary and metastatic liver tumors

Study n b  values (s/mm2) ADC before treatment
(× 10-3 mm2/s)

ADC after treatment
(× 10-3 mm2/s)

Histotype Treatment

Kamel et al[86] 38 0, 500 1.51 1.70 HCC TACE
Sahin et al[87] 74 0, 50, 400, 800 1.10 1.27 HCC TACE
Kamel et al[88] 24 0, 50, 750 1.86 2.13 HCC TACE
Chen et al[89] 20 0, 500 1.56 2.09 HCC TACE
Yuan et al[90] 41 0, 500 2.22 1.42 HCC TACE
Deng et al[98] 6 0, 500 1.30 2.23 HCC TARE
Kamel et al[99] 13 0, 500 1.65 1.95 HCC TARE
Rhee et al[100] 20 0, 500 1.64 1.82 HCC TARE
Mannelli et al[102] 36 0, 50, 500 1.64 1.92 HCC TACE
Kubota et al[103] 25 0, 500   1.271 1.3571/1.2222 HCC TACE
Liapi et al[120] 26 0, 500 1.51 1.79 Metastases (PanNET) TACE
Li et al[121] 26 0, 750 1.31 1.59 Metastases (PanNET) TACE

1No disease relapse; 2Disease relapse. ADC values are presented as means. n: Number of patients; ADC: Apparent diffusion coefficient; HCC: Hepatocellular 
carcinoma; PanNET: Pancreatic neuroendocrine tumor; TACE: Trans-arterial chemoembolization; TARE: Trans-arterial radioembolization.
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CCCs: AUC90 and AUC180 were significantly higher in ≥ 
3-year survivors than < 3-year survivors.

The advent of anti-angiogenic therapies, including 
sorafenib and bevacizumab, greatly expanded treat
ment options for HCCs. As anti-angiogenic drugs 
frequently do not induce tumor shrinkage but acts on 
tumor vascularization, functional imaging techniques 
may be suitable for the evaluation of patients treated 
with these agents. Details regarding the most relevant 
studies on treatment assessment by means of func
tional radiological techniques are reported in Table 4.

Sorafenib, an oral multikinase inhibitor that sup
presses tumor cell proliferation and angiogenesis, is 
so far the only drug that has shown overall survival 
benefit in patients with advanced HCC[105] and 
represents the standard systemic therapy for patients 
with advanced (unresectable and/or metastatic) HCCs 
with well-preserved liver function and for intermediate-
stage HCCs with disease progression after local 
treatments[106]. As sorafenib inhibits neovascularization 
and decreases tumor vascularity, perfusion parameters 
should decrease in responding patients. Nevertheless, 
literature data are controversial. Lewin et al[107] 
reported a significant f (perfusion fraction) increase in 
responders at 2 wk and at 2 mo of sorafenib therapy, 
whereas a decrease was noted in non-responders at 
the same time intervals. Vouche et al[108] reported that 
ADC values did not change 1 and 3 mo after 90Y TARE 
or 90Y TARE plus sorafenib treatments. These results 
may be explained by the pleiotropic anti-angiogenic 

actions of sorafenib, which destroys tumor vessels 
and improves the integrity of basement membranes 
of the remaining microvessels, thus leading to less 
“water leakage” from the perfusion pool. Modifications 
during sorafenib treatment can be assessed also using 
perfusion-imaging techniques. Hsu et al[109] found 
good correlations between Ktrans values and survival 
in patients who received sorafenib plus metronomic 
tegafur/uracil therapy: baseline Ktrans was higher in 
patients with RECIST partial response (PR) or stable 
disease (SD) than in those with progressive disease 
(PD). Frampas et al[110] reported a non-significant 
decrease in all pCT-derived values between RECIST 
non-progressors and progressors treated with sorafenib.

Although not routinely used in clinical practice, 
other anti-angiogenic therapies are on study for HCCs, 
including bevacizumab (a monoclonal antibody directed 
against vascular endothelial growth factor - VEGF) 
and sunitinib (an oral multikinase inhibitor with VEGF-
receptor as one of its targets). Yopp et al[111] reported 
a significant decrease of AUC90, AUC180, and Ktrans in 
HCCs treated with bevacizumab; time to progression 
inversely correlated with AUC90 and AUC180 changes 
(P < 0.05 and P < 0.001). In one study focused on 
locally advanced HCCs receiving bevacizumab and 
cytotoxic therapy, high pretreatment Ktrans identified 
patients with RECIST response to therapy[112]. Sunitinib 
seems to induce Ktrans and Kep decrease and ADC 
increase[113,114]; these modifications can be assessed 
even at a very early stage (after 2 wk of treatment). 
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Table 4  Data derived from the main published studies that have correlated functional radiological techniques with response to 
systemic therapies of hepatic and pancreatic tumors

Study n Technique Imaging biomarker Histotype Treatment

Lewin et al[107] 12 IVIM f increase HCC sorafenib
Vouche et al[108] 15 DWI ADC increase HCC 90Y TARE ± sorafenib
Hsu et al[109] 31 DCE-MRI Ktrans decrease HCC sorafenib+metronomic tegafur/uracil
Yopp et al[111] 17 DCE-MRI AUC90/AUC180/Ktrans decrease HCC bevacizumab
Jiang et al[112] 23 pCT BF/BV/PS decrease HCC bevacizumab + cytotoxic agents

MTT increase
Kim et al[113] 10 DCE-MRI/DWI Ktrans/Kep decrease HCC sunitinib

ADC increase
Sahani et al[114] 23 DCE-MRI/DWI Ktrans/Kep decrease HCC sunitinib

ADC increase
Kim et al[123] 35 pCT BF decrease CRC metastases XELOX, FOLFOX, FOLFIRI
Schlemmer et al[124] 24 pCT Perfusion decrease PanNET metastases Tyrosine-kinase inhibitors
Anzidei et al[125] 18 pCT, DWI CP decrease CRC metastases Oxaliplatinum, capecitabine, 

bevacizumabADC increase
De Bruyne et al[127] 19 DCE-MRI AUC decrease CRC metastases Bevacizumab
Vriens et al[129] 23 DCE-MRI Ktrans decrease CRC metastases Cytotoxic therapy
Coenegrachts et al[130] 10 DCE-MRI Kep increase CRC metastases Bevacizumab + FOLFIRI
Deckers et al[126] 20 DWI ADC decrease CRC metastases Chemotherapy
Niwa et al[133] 63 DWI ADC decrease PDAC Gemcitabine
Cuneo et al[134] 12 DWI ADC increase PDAC Chemoradiation
Yao et al[135] 39 pCT BF decrease PanNET Bevacizumab ± everolimus
Miyazaki et al[132] 20 DCE-MRI Distribution volume increase PanNET metastases 90Y-octretotide

n: Number of patients; IVIM: Intravoxel incoherent-motion diffusion-weighted imaging; f: Perfusion fraction; HCC: Hepatocellular carcinoma; 90Y TARE: 
90Yttrium trans-arterial radioembolization; DWI: Diffusion-weighted imaging; ADC: Apparent diffusion coefficient; DCE-MRI: Dynamic contrast-enhanced 
MRI; Ktrans: Volume transfer constant; AUC90, AUC180: Area under the curve at 90 and 180 s; pCT: Perfusion computed tomography; BF: Blood flow; BV: 
Blood volume; PS: Permeability surface; MTT: Mean transit time; Kep: Rate constant; CP: Capillary permeability.
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Moreover, patients with larger Ktrans and Kep decrease 
might have a favorable clinical outcome; high baseline 
Ktrans and large decreases of the extracellular volume 
fraction were correlated with longer PFS. No significant 
changes at DCE-MRI have been reported after van
detanib treatment[115,116].

Liver metastases
Lu et al[82] reported that metastatic liver lesions 
successfully treated by RFA showed a predictable 
evolution of ADC values, with an up-and-down 
variation during follow-up. Szurowska et al[117] reported 
that low pre-treatment ADC values could predict 
complete response of colorectal adenocarcinoma 
(CRC) liver metastases treated with RFA. Meijerink 
et al[118] reported that pCT-derived BF distribution 
fully paralleled PET/CT images in showing either the 
absence or presence of local recurrence after RFA: 
high hepatic arterial perfusion (> 50 mL/min per 100 
g) and low portal venous perfusion (< 10 mL/min per 
100 g) areas represented viable neoplastic tissue. 
Marugami et al[119] reported that ADC quantification 
might be helpful for the early detection of response in 
CRC liver metastases treated with HAI chemotherapy 
with 5-fluorouracil: ADC increase was significantly 
greater in responders than in non-responders.

Chemoembolization induces an increase of ADC 
values in PanNET liver metastases[120-122]; response to 
TACE can be assessed even at an early stage, starting 
from three weeks after treatment[122]. Details on the 
main published studies regarding functional imaging 
applications after trans-arterial treatments are reported 
in Table 3. Functional radiological techniques have 
been tested for follow-up evaluations during systemic 
treatment of liver metastases; details are reported in 
Table 4. Kim et al[123] reported that pCT-derived BF and 
flow extraction product (FEP) could be used as early 
response predictors in patients with liver metastases 
from CRC, being both significantly different between 
responders and non-responders to XELOX, FOLFOX or 
FOLFIRI chemotherapy regimens. 

Schlemmer et al[124] reported that metastatic 
NETs with good response to tyrosine kinase inhibitors 
showed a significant tendency towards lower perfusion 
values assessed by pCT as compared to poor respon
ders. Anzidei et al[125] reported that both pCT and 
DWI could detect therapy-induced (oxaliplatinum, 
capecitabine and bevacizumab) modifications in CRC 
liver metastases vascularization before significant size 
changes became evident: capillary permeability was 
significantly higher in lesions with complete and partial 
response; moreover, ADC values were significantly 
higher in partial response lesions than in patients with 
stable disease. Deckers et al[126] reported that the 
increase of ADC values in responding liver metastases 
could occur even within days after the start of 
chemotherapy; unfortunately, as these changes were 
of smaller magnitude than the variability of ADC 

measurement, ADC quantification was not reliable 
enough to predict final response at such an early time 
point in individual lesions.

Many studies have been conducted with DCE-MRI, 
probably as a consequence of the standardization 
of DCE-MRI-derived endpoints. De Bruyne et al[127] 
reported that bevacizumab therapy could decrease 
DCE-MRI-derived AUC in patients with CRC liver 
metastases. Vriens et al[128] reported a large reduction 
in DCE-MRI-derived perfusion parameters and glucose 
metabolic rate at 18F-FDG PET/CT in CRC metastases 
treated with bevacizumab. The same author[129] 
reported also that cytotoxic chemotherapy did not alter 
DCE-MRI-derived properties of tumor vasculature. 
Coenegrachts et al[130] reported that a decrease of Kep 
allowed early identification of response after 6 wk of 
FOLFIRI and bevacizumab treatment. O’Connor et al[131] 
reported that the variance of CRC liver metastases 
shrinkage after bevacizumab and FOLFOX-6 treatment 
was mainly explained by the median values of ve, 
tumor enhancing fraction (EF), and microvascular 
uniformity. Miyazaki et al[132] reported that DCE-MRI-
derived liver distribution volume and tumor distribution 
volume were significantly increased in liver metastases 
with good response to radiolabeled octreotide; low 
pretreatment values of liver distribution volume and 
high tumor arterial flow fraction were associated with 
better response.

Pancreatic tumors
DWI has been tested for treatment response evaluation 
of pancreatic tumors: therapy seems to increase ADC 
values. Niwa et al[133] reported ADC differences among 
patients with advanced pancreatic cancer treated 
with gemcitabine: in particular, significant differences 
between patients with progressive disease and those 
with stable disease were found at 3- and 6-mo follow-
up. Tumor progression rate was significantly higher in 
patients with low ADC values than in those with higher 
values. Cuneo et al[134] reported a significant correlation 
between pre-treatment mean ADC values of surgically 
resected PDACs and the amount of tumor cell 
destruction after chemoradiation evaluated on surgical 
specimens, with a Pearson correlation coefficient of 
0.94 (P = 0.001): the mean pre-treatment ADC value 
was 1.61 × 10-3 mm2/s in responding patients (> 90% 
tumor cell destruction) compared to 1.25 × 10-3 mm2/s 
in non-responding patients (> 10% viable tumor).

Regarding PanNETs, Yao et al[135] reported that 
bevacizumab was associated with a 44% decrease in 
BF in patients with low-to intermediate grade tumors; 
the addition of everolimus induced a further 29% BF 
decrease. Everolimus alone was associated with 13% 
increase in MTT. Pretreatment PS (P = 0.009), post-
treatment MTT (P = 0.003), percent reduction in BF 
(P = 0.03), and percent reduction in BV (P = 0.002) 
were associated with high percent reduction in tumor 
diameters. Such perfusion changes occurred early 
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after treatment start and might be used as functional 
biomarkers of response to bevacizumab or everolimus 
treatment.

CONCLUSION
Literature data reveal that DWI can provide prognostic 
stratification of HCCs and PDACs, as DWI findings may 
reflect “adverse” pathological features associated with 
poor clinical outcome and prognosis. ADC values are 
generally low in poorly differentiated lesions, although 
different results have been reported regarding the 
direct correlation of ADC values and the pathological 
grade. Perfusion imaging techniques can theoretically 
depict microvascular changes related to dedifferen
tiation of HCCs and PDACs, but poor and controversial 
results have been reported.

Overall, it seems that functional radiological 
techniques find their most important applications in 
PanNETs: both DWI and perfusion imaging methods 
provide indirect information on their clinical behavior 
and improve their staging.

Functional imaging techniques can predict treat
ment outcome and assess response of primary and 
metastatic hepatic tumors to loco-regional therapies, 
particularly TACE: ADC increase seems to be asso
ciated with good clinical outcome.

Perfusion imaging can be of value in the post-
treatment assessment of patients treated with tyrosine 
kinases inhibitors: DCE-MRI and pCT can distinguish 
responders from non-responders using DCE-imaging.

Functional radiological techniques are therefore 
reliable and useful to evaluate patients with hepatic and 
pancreatic tumors; these “new imaging” techniques 
could be therefore considered and -whenever possible- 
adopted as a part of CT/MRI examination protocols.
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