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Abstract: The human retinoblastoma binding protein 6 (RBBP6) is implicated in 

esophageal, lung, hepatocellular and colon cancers. Furthermore, RBBP6 was identified  

as a strong marker for colon cancer prognosis and as a predisposing factor in familial 

myeloproliferative neoplasms. Functionally, the mammalian protein interacts with p53 and 

enhances the activity of Mdm2, the prototypical negative regulator of p53. However, since 

RBBP6 (known as PACT in mice) exists in multiple isoforms and pact−/− mice exhibit a more 

severe phenotype than mdm2−/− mutants, it must possess some Mdm2-independent functions. 

The function of the invertebrate homologue is poorly understood. This is complicated by 

the absence of the Mdm2 gene in both Drosophila and Caenorhabditis elegans. We have 

experimentally identified the promoter region of Snama, the Drosophila homologue, 

analyzed potential transcription factor binding sites and confirmed the existence of  

an additional isoform. Using band shift and co-immunoprecipitation assays combined with 

mass spectrometry, we found evidence that this gene may be regulated by, amongst others, 

DREF, which regulates hundreds of genes related to cell proliferation. The potential 
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transcription factors for Snama fall into distinct functional groups, including 

anteroposterior embryonic patterning and nucleic acid metabolism. Significantly, previous 

work in mice shows that pact−/− induces an anteroposterior phenotype in embryos when 

rescued by simultaneous deletion of p53. Taken together, these observations indicate the 

significance of RBBP6 proteins in carcinogenesis and in developmental defects. 

Keywords: retinoblastoma binding protein 6; RBBP6; SNAMA; p53; Rb; Mdm2 

 

1. Introduction 

The human retinoblastoma binding protein 6 (RBBP6) is overexpressed in esophageal, lung, 

hepatocellular and colon cancers [1–4]. Germline mutations, mostly in the p53 binding domain of 

RBBP6, are reported to cause predisposition to familial myeloproliferative neoplasms [5], thus 

implicating a p53-dependent pathway in pathogenesis. Furthermore, RBBP6 was identified as an 

independent prognostic marker for overall and for disease-free survival in colon cancer patients [3]. 

Taken together, these findings indicate that RBBP6 may be an important target for anti-cancer drugs,  

as well as a candidate diagnostic marker. 

The RBBP6 family is found in eukaryotes, but not in prokaryotes, and orthologues are known by 

different names. The human protein is known as RBBP6, the mouse as PACT or P2P-R [6,7], the fruit 

fly as SNAMA [8] and the worm as RBPL-1 [3]. Generally, in vertebrates, RBBP6 produces multiple 

isoforms by alternative splicing or from two promoters, as predicted in the case of the human gene [9]. 

These isoforms consist of the common domain with no name (DWNN), whose tertiary structure 

resembles that of ubiquitin together with various combinations of other domains and motifs [10,11]. 

Interestingly, the shortest isoform, which comprises the DWNN only is downregulated in human 

cancers, while the larger isoforms tend to be upregulated [1]. Essentially, this isoform comprises the 

DWNN, whose tertiary structure resembles that of ubiquitin [8,12]. A possible explanation for this 

may be found in new evidence showing that DWNN, as an independent module, antagonizes the larger 

isoforms by competition. This was evident when overexpression of this isoform resulted in inhibition 

of the 3' end pre-mRNA cleavage in a manner similar to siRNA-mediated knockdown of the  

full-length RBBP6 [13]. 

SNAMA is essential for embryonic development and appears to suppress cell death, as its deletion 

results in the abnormal occurrence of apoptosis during embryogenesis. Under normal physiological 

conditions, maternally contributed Snama transcripts decline in the embryo six hours into development, 

and adult expression is reduced in males when compared to females [8]. In the developing eye,  

Snama is required for cell proliferation and for cell survival anteriorly to the morphogenetic furrow 

and is regulated by hedgehog signaling. Furthermore, SNAMA controls nucleic acid metabolism 

profoundly [14]. Although the molecular interactions of the invertebrate orthologues are not known, 

some insight may be gained by observing the vertebrate genes. The PACT protein was shown to act by 

enhancing Mdm2 activity and to exhibit a similar phenotype to Mdm2. The Pact−/− phenotype is lethal 

and can be partially rescued by simultaneous deletion of p53. However, the Pact−/− p53−/− phenotype 
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is more severe than that of mdm2−/− p53−/−. Notably, these mutant mice develop a distinct  

anterior-posterior pattern [15], indicating that PACT may be involved in embryonic patterning. 

SNAMA and RBPL-1 are similar to the vertebrate counterparts in sequence features, but the 

absence of an Mdm2 homologue is profoundly enigmatic and has attracted scrutiny. This led to  

a conclusion that a Mdm2 homologue eluded the fruit fly and the worm [16]. Nevertheless, this status 

makes Drosophila and C. elegans attractive models for studies of Mdm2-independent functions of the 

RBBP6 family members. 

The invariable DWNN occurs independently or in combination with other domains and motifs,  

such as the p53-binding and pRB-binding domains, the RING-finger and zinc finger motifs. In addition 

there may be combinations of features, like proline-rich, lysine-rich, glutamic acid-rich or SR-containing 

regions or a nuclear localization signal [12]. It has been postulated, based on sequence comparisons, 

that SNAMA has a p53-binding domain [10], but this has not been demonstrated experimentally. 

Furthermore, the existence of a single Snama transcript was assumed until a second and shorter 

isoform was predicted by bioinformatics analyses. This is confirmed experimentally in the present study. 

The C. elegans RBPL-1 is essential for embryonic and germline development and for nutrient 

synthesis in the intestines. Interestingly, silencing RBPL-1 causes dramatic changes in the expression of 

more than 700 genes [17]. These data suggest multiple roles of the RBBP6 family in biological systems. 

Overall, the abovementioned facts indicate that RBBP6 proteins are nuclear proteins, which possess 

E3 ligase activity through the RING finger, are probably involved in pre-mRNA processing, including 

splicing and 3' polyadenylation cleavage, and act as part of macromolecular complexes. Moreover, 

RBBP6 proteins are localized in the nucleoli of interphase cells and at the periphery of chromosomes 

in mitotic cells, which lack nucleoli [18]. This is supported by their detection in nuclear speckles and 

their tendency to co-immunoprecipitate with nuclear matrix-associated proteins. Human RBBP6 also 

regulates DNA replication together with the Drosophila Krüppel homolog, ZBTB38 and MCM10.  

Its absence slows down replication fork progression, causing complete disruption of common fragile 

sites, which are the sites most susceptible to replication stress [19]. Thus, the accumulated data so far 

indicate that RBBP6 plays crucial roles in animal physiology, making it a druggable candidate. 

The present study confirms the existence of two Snama transcripts that are differentially expressed 

during embryogenesis. The putative promoter region is found to have potential binding sites for 

transcription factors that are required for anteroposterior axis formation, segment polarity during 

embryogenesis and for cell proliferation and differentiation. Moreover, putative binding sites for the 

key transcription factor for cell proliferation proteins, known as the DNA replication-related element 

factor (DREF), and for p53 are predicted. 

2. Results 

2.1. Transcriptional Start Site Mapping by 5' Rapid Amplification of cDNA Ends and Functional 

Analysis of the Promoter Region 

To identify the transcriptional start site (TSS) of Snama, 5' rapid amplification of cDNA ends  

(5' RACE) was conducted employing primers as indicated by the arrows in Figure 1A. The forward 

primers, GR 5' and GR 5' nested, are based on the GeneRacer™ RNA oligonucleotide that is ligated to 
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the 5' end of the full-length and decapped mRNA. The primer combinations produced two DNA 

fragments of about 650 and 850 base pairs long (Figure 1B). The fragments were cloned into pGEM® 

T Easy (Figure 1C) and sequenced. Both sequences were aligned with themselves and with the Snama 

genomic sequence containing the putative regulatory region to identify the transcriptional start site 

(TSS) (underlined in Figure 1C). The smaller band was ignored, as it is derived from an unrelated gene  

4.6 Mbp upstream of Snama, in the right arm of chromosome 2 of Drosophila, due to similarity with 

the RING finger (RF) tail primer. The RF tail primer used during 5' RACE was shown to be partly 

homologous with a gene upstream of SNAMA. Thus, the primer bound to both the SNAMA gene  

and the gene upstream, which were then both reverse transcribed and amplified. This also accounts for 

the virtual absence of this fragment when 5' RACE was performed using the RF tail internal primer 

(Lanes 2 and 4 in Figure 1B(i)). 

The Snama gene is flanked by CG16786 located approximately 500 bases upstream of the TSS and 

by genghis khan (gek) downstream and constitutes the putative regulatory region. We conducted the 

luciferase reporter assays using a series of recombinant plasmid constructs containing fragments of this 

region (Figure 1D) to show that this region can drive transcription. Promoter region 2 (−552) elicits the 

strongest activation of transcription. We therefore selected P2 and P3 to perform the electromobility 

shift assay (EMSA) to show that this region can bind cellular proteins. The observed stronger intensity 

of the signal in P2 suggests that more proteins bind to this fragment compared to P3. The biotin-labelled 

P2 and P3 fragments were also used to capture nuclear proteins on streptavidin agarose beads for 

identification by mass spectrometry. The eluted proteins were selected for mass spectrometry by 

comparison with proteins that were released during column washing (Figure 1F, Table 1). A number of 

proteins, including several nuclear proteins, including the DNA replication-related element factor 

(DREF), PHAX, heat shock protein 27 and hsp83 (hsp90) and the transcriptional co-activator pyruvate 

kinase, was identified by MS. 

The sequence of the putative promoter region was used to search the Transfac database for insect 

transcription factors (TFs) using the Patch program. This revealed the set of potential TF binding sites 

shown in Figure 1G and summarized in Table 2. The predicted transcription factors include proteins 

involved in embryonic patterning, cell proliferation, cell differentiation, germline development and in 

sex determination. Furthermore, the predicted factors associated with embryonic patterning appear to 

be proteins that mediate the anteroposterior axis formation. The potential binding sites for hunchback, 

two for caudal and one for bicoid were detected. 

Many proteins that are regulated by p53 often contain p53 DNA-response elements (p53REs), and 

mammalian RBBP6 proteins are known to interact with p53. We therefore investigated the putative 

promoter region for p53REs. The consensus sequence for the p53 response elements is degenerate and 

consists of two repeats of sequence 5'-PuPuPuC(A_T)-3', where (T_A)GPyPyPy is its inverted version. 

These 10-base palindromic sequences often occur in pairs separated by a spacer sequence. The p53 

protein binds as a tetramer to this sequence. While the degeneracy of the p53 binding sequence  

might allow efficiency when responding to a diversity of cellular signals and is therefore desirable,  

it is complex and is not predicted by many bioinformatics programs. Therefore, we used the p53MH  

program [20] to search potential p53REs. We found a potential site at position-654 (5'-TGGCTAGTTT... 

TTAGGAGCATCT ...ACGCAAGCGA-3') with a high score (79). 
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Figure 1. Analysis of the putative Snama promoter. (A) Schematic representations of the 

Snama genomic DNA starting at the putative transcriptional start site (TSS), the cDNA 
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expected from rapid amplification of cDNA ends (RACE) and the domain with no name 

(DWNN) catalytic module. Arrows indicate primers used as specified in the Materials  

and Methods; E = exon, I = intron (B) 5' RACE products using Drosophila mRNA:  

(i) Amplification using combinations of GeneRacer 5' nested and GeneRacer 5' forward 

primers together with the RING finger (RF) tail and RF tail internal as reverse primers 

gives rise to a ~800-bp product (Lanes 2 and 4), and a smaller product of ~650 bp 

(indicated by an asterisk) was amplified when the GeneRacer 5' nested and GeneRacer 5' 

forward primers are combined with RF tail reverse primer (Lanes 1 and 3). A positive 

control showing the amplification of the RACE-ready β-actin cDNA, created from HeLa 

RNA, results in a ~900-bp fragment, as expected (Lanes 5 and 6). The difference in size 

between the β-actin cDNA amplification product with GR 5' nested primer (858 bp) and 

GR 5' primer (872 bp) is only 14 bp; (ii) Cloning and PCR amplification of the 5' RACE 

products: Lane 1 shows the smaller ~650-bp cloned fragment (asterisk), whilst Lanes 2 and 

3 show the larger ~800-bp cloned fragment; (C) Sequence of the putative promoter region. 

The underlined nucleotide is the putative transcriptional start site; (D) (i) Schematic 

representation of fragments (P1–P3) of the promoter region showing base positions relative 

to the transcription start site (+1); (ii) Dual luciferase assay to determine the maximal 

promoter sequence. Measurement of luminescence activity of firefly and Renilla luciferase 

activity indicated that the maximal promoter sequence required to drive Snama 

transcription was Promoter 2; (E) Mobility shift assay of biotin-labelled and unlabeled 

DNA Snama promoter DNA. Lanes 1–3 indicate the Epstein–Barr nuclear antigen (EBNA) 

control system, biotin-EBNA control DNA, biotin-EBNA control DNA and EBNA extract 

and biotin-EBNA control DNA and EBNA extracted with excess unlabeled EBNA DNA, 

respectively. The biotin-EBNA control DNA shows no shift; the biotin-EBNA control 

DNA and EBNA extract shows a shift; and the biotin-EBNA control DNA and EBNA 

extract and excess unlabeled EBNA DNA show minimal shift due to competition. Lanes 

4–6 show the unlabeled DNA fragments P1, P2 and P3. Lanes 7–9 represent labelled 

promoters P1, P2 and P3 and a mobility shift due to the binding of nuclear proteins to the 

promoters; (F) Electromobility shift assay (EMSA) of biotin-labelled protein-DNA 

complexes separated from crude extracts by streptavidin affinity chromatography. 

Promoter 0 represents the −231 region. (i) Increasing concentrations of labelled Promoter 2 

DNA were used to elute binding proteins from embryonic nuclear extracts; (ii) Four 

micrograms of promoter DNA as indicated were used in order to select the best promoter 

to use in (i). Arrows indicate the bound nuclear proteins that were selected for 

identification by mass spectrometry; (G) Schematic representation of the (−673; +49) 

sequence shows the predicted transcription factor binding sites. 
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Table 1. Putative promoter-binding proteins (EMSA). Proteins were analyzed by MS/MS 

and by the ProteinPilot software, as described in the Materials and Methods. ProtScore is  

a relative score for determining and comparing the overall coverage of a protein. The score 

is based on the cumulative confidence scores of all peptide fragments detected for an 

individual protein. A score of ≥2 represents ≥99% confidence, while a score of ≥1 is 

representative of ≥90% confidence. 

Band MS Prediction Accession Number Size (AA) ProtScore 

TRANSCRIPTION FACTORS 

4 DREF transcription factor O96083 709 2.03 

TRANSCRIPTION CO-ACTIVATOR 

2c Pyruvate Kinase AAO24935  2 

OTHER NUCLEAR PROTEINS 

5 Heat shock protein 83 P02828 717 1.66 

14 Heat shock protein 27 HHFF27 213 2 

17 Ribosome biogenesis protein WDR12 homolog Q9VKQ3 420 1.11 

 Similar to PHAX Q8SYG4 479 1.17 

PROTEINS ASSOCIATED WITH PRE-MRNA PROCESSING 

3 CG4266 Q9W2K4 1215 2 

OTHER PROTEINS 

1a Mind-meld CG9163-PB Q7KUY7 783/840 0.93 

1c With coiled coil and lipase domain Q29QE3, GH19966p 482 2 

1d elongation factor 1alpha48D AAF58608  15.56 

 Actin 87E-fruit fly S04538  1.92 

  Q9VEV0, CG10405-PA 252 0.8 

1e Unknown (CG17374) Q7PLB8 2284 2 

 Tubulin Q9V7Y7,CG15611 508 1.6 

2a Unknown Q9VGU9 332 2 

2c CG9277-PA (Tubulin family) Q9V8V3  10 

 ATP synthase subunit β Q05825.3 505 3.2 

2d Unknown Q9VLX3 281 1.26 

 Hypothetical protein Q9NG77 81 1.06 

  Q7KQM6  0.74 

2e Unknown Q9VU21 308 2.04 

 Unknown Q4ABH1 11,707 0.77 

 Unknown Q9VQ84 124 2 

9 CG18063-PA, isoform A Q9VJM6 337 0.9 

11 Unknown Q1RKR2 270 2 

  Q9VEJ9 753 0.84 

13  Q9VP46  1.05 

16  Q9VJM6/ CG18063-PA 337 0.75 

17 Unknown Q9VQ84 124 1.64 

18 
With the Domain of Unknown Function and 

coiled coil 
Q9VQ83 559 1.52 
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Table 2. Putative transcription factor binding sites on the Snama promoter region. 

Group Genes References 

Embryonic patterning Caudal, bicoid, tailless, hunchback [21,22] 
Segment polarity Engrailed, LEF-1 (pangolin) [23,24] 

Regulation of development Adf-1 (Myb) [25] 
Germ-line development and sex determination dsxf/dsxm, sry- = β, CF-2 [26–28] 

Replication DREF [29] 
Myogenesis MEF2, twist, CF2 [27,30–33] 

Chromatin structure BEAF, GAGA [34–36] 

2.2. Differential Expression of Snama during Drosophila Development 

A recent update of the Flybase genome database predicted a second Snama transcript, referred to 

here as Snama B. These transcripts have distinct 5' UTRs (untranslated regions) and share exons 1 

through 7. The shorter isoform, called Snama B, is generated by alternative splicing. Consequently, 

Snama A consists of three additional exons, as shown in Figure 2A, and encodes a protein with multiple 

domains, including the p53 and Rb-binding domains in Figure 2B. Based on the exon structure of the 

two transcripts, primers that can distinguish between them were designed as indicated in Figure 2A. 

Reverse transcriptase polymerase chain reaction (RT-PCR) performed on mRNA obtained from various 

stages in the life cycle of the fly and performed on three independent experiments indicates that the  

two transcripts are maternally provided and are regulated differentially during development (Figure 2C). 

RT-PCR was performed on equal amounts of cDNA for each category of sample, so that differences in 

abundance of transcripts may be discerned semi-quantitatively. Although both transcripts are present in 

the early embryo, it is notable that Snama A is not detectable in the window representing 3–6 h 

embryos (e2) in several independent experiments. This probably reflects that the maternally-derived 

Snama B transcripts persist longer. On the other hand, the maternally-contributed Snama A transcripts 

are depleted within the first three hours of development. They are then replenished by zygotic 

transcription and persist abundantly throughout the life cycle of the fly. 

Since the two transcripts differ appreciably in their untranslated regions (UTRs), we used the 

UTRScan program (Available online: http://itbtools.ba.itb.cnr.it/) to evaluate them for conserved 

regulatory patterns (Figure 2D). Snama B has a larger 5' prime UTR containing three upstream open 

reading frames (uORFs). There are no plausible patterns detectable in the Snama A 5' prime UTR. 

Upstream open reading frames provide another level of posttranscriptional control of gene expression 

and are found to be particularly common in oncogenes and in genes involved in cellular growth and 

differentiation [37]. Unlike Snama B, Snama A has a cytoplasmic polyadenylation element (CPE) 

UUUUUAAU in the 3' prime UTR alongside the ubiquitous hexanucleotide polyadenylation signal 

(PAS) AAAUAA that is crucial for nuclear pre-mRNA cleavage and polyadenylation. The two cis 

elements are 31 nucleotides apart. This suggests that Snama A has a mechanism for translational 

control, as CPEs are found in dormant cytoplasmic mRNA that can be activated by specific signals [38]. 

CPE has recently been demonstrated in Drosophila [39]. However, trans factors are poorly known. 
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Figure 2. Differential expression of SNAMA during oogenesis and embryogenesis.  

(A) Schematic representation of the Snama genomic organization showing the exon 

structure of Snama A and B transcripts; (B) domain structure of SNAMA A and B 

(i) (ii) (iii) 

(vi) (v)(iv)

(vii) (viii) (ix) 

(x) (xi) (xii) 
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proteins; (C) differential expression of the SNAMA isoforms determined by RTPCR on total 

RNA obtained from embryos e1 (0–3 h), e2 (3–6 h) and e3 (6–9 h), larvae (L) pupae (P), 

adult males (Am) and adult females (Af); (D) an analysis of the untranslated regions of 

Snama A and B using the UTRScan program (Available online: http://itbtools.ba.itb.cnr.it/); 

(E) (i–v) spatial expression of SNAMA determined by immunocytochemical staining of 

embryos with anti-DWNN antibody. Pole cells are indicated by an arrow. vf indicates the 

ventral furrow and gb the germ band; (F) Subcellular localization of SNAMA protein during 

the blastoderm stage by immunocytochemical staining with anti-DWNN antibodies and 

viewed by confocal microscopy. (i–vi) Expression of SNAMA (green) and nuclei (red) 

during blastoderm embryo and a merged imaged of the two; (iv–vi) expression of SNAMA 

and nuclei and a merged image during the cellular blastoderm stage; (vii–xii) a magnified 

view of the posterior end of an embryo showing punctate staining; (xiii–xv) localization of 

SNAMA in an ovariole. 

We used an anti-DWNN antibody that does not cross react with SR-protein to determine spatial 

expression during embryogenesis. Although this antibody cannot distinguish between the two SNAMA 

isoforms, the staining pattern shows that SNAMA is expressed abundantly and ubiquitously in the 

blastoderm and reaches lower levels by the cellular blastoderm. However, by this stage, higher 

concentrations are localized in the ventral furrow and in germ cells (Figure 2E). 

We also used immunofluorescent staining and confocal microscopy to visualize the localization of 

the SNAMA protein in the blastoderm. SNAMA is present in all of the synchronous pre-blastoderm 

stage nuclei, but later, it is found in the cortical nuclei and absent in the mitotically inactive “yolk” 

nuclei (Figure 2F). Similarly, SNAMA is not expressed in nurse cell nuclei where endoreplication is 

known to occur during oogenesis (Figure 2F). It is notable also that nuclear staining is evident in 

mitotically dividing cells and not in endoreplicating syncytial blastoderm nuclei. Overall, the staining 

patterns observed by immunocytochemistry and confocal microscopy are both punctate and diffuse, 

suggesting cytoplasmic, as well as nuclear localization. 

2.3. Subcellular Localization of SNAMA and Potential Interacting Partners 

We analyzed 0–6-h embryonic extracts by Western blot using the chicken anti-SNAMA DCM 

polyclonal antibody. Aware that a small set of proteins are recognized by the pre-adsorbed pre-immune 

serum, indicating non-specific recognition (Figure 3A), we focus on the proteins that are detected 

exclusively by the anti-SNAMA DCM antibody (Figure 3B arrows), which all localize to the  

post-nuclear fraction. With the exception of the 55-kDa band, the remaining bands are likely to 

represent arginine-serine(RS)-domain-containing proteins (Figure 3C, Lane 6), because they can be 

precipitated by MgCl2+ and then re-dissolved in high salt with EDTA [40], a characteristic reaction for 

RS-domain-containing proteins. Antibodies to the orthologous mouse PACT are known to also cross-react 

with RS-domain-containing proteins [6], probably due to sharing epitopes with similar regions 

downstream of the DWNN. However, the approximately 55-kDa band indicated by an asterisk in 

(Figure 3B) is likely to be SNAMA B, because it is not detected by the pre-immune serum (negative 

control) (Figure 3A) and matches the expected size. Furthermore, this band is also present in the 
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untreated extract in (Figure 3C, Lane 4), but is absent from the fractions of the treated sample (Lanes 6 

and 7), which select for RS-domain-containing proteins, a domain that the shorter SNAMA B lacks. 

SNAMA A was not detected in all fractions, probably due to low expression levels. It was expected 

that SNAMA A would be present in the nuclear fraction, since it has a nuclear localization signal and 

is shown by immunocytochemistry to be associated with chromatin elements. However, it is likely that 

it occurs at levels that are undetectable by Western blot analysis. 

 

Figure 3. Subcellular localization of SNAMA and detection of interacting proteins.  

(A–C) Immunoblot analysis of fractionated sub-cellular extracts obtained from 0–6-h-old  

D. melanogaster embryos; two identical blots were probed with either (A) pre-adsorbed  

pre-immune serum or (B) anti-SNAMA DCM antibodies. Six unique bands are detected in 



Int. J. Mol. Sci. 2015, 16 10253 

 

 

Blot B (red arrows) and are all present in the post-nuclear fraction. The band with an 

asterisk matches the size of SNAMA B; (C) Immunoblot of acetylated protein extracts 

from 0–6-h D. melanogaster embryos. Samples were subjected to acetylation, phosphorylation 

and/or a selective precipitation procedure, as shown, and then detected with anti-SNAMA 

DCM antibodies. The SR-precipitated pellet fraction was re-suspended in HEPES buffer, 

prior to acetylation. The blot shows detection of a “ladder” of low molecular weight proteins. 

These are likely serine/arginine SR-proteins detected by the characteristic precipitation 

reaction for SR-proteins. SNAMA A is not detected, as expected. SNAMA B would not be 

detected in this procedure, since it is not an RS-domain containing protein. The negative 

control contains a bacteria containing the recombinant GST tag, and the positive control 

consist of the purified GST-SNAMA DCM fusion protein; (D–F) SDS-PAGE analysis of 

immune-complex proteins isolated from co-immunoprecipitation assays; (D) samples 

obtained from 0–6-h embryos (Lanes 2 and 3), combined larval stages (Lanes 4 and 5) and 

male-only flies (Lanes 6 and 7). For each stage of development, a negative control assay 

was performed (Lanes 2, 4, 6). The pre-immune serum was also included to exclude 

residual serum proteins when selecting bands for further identification (Lane 8). Equivalent 

bands between both test and control lanes, for a given stage of development, were negated. 

Unique bands were detected exclusively in the embryo sample (Lane 3); Lanes 2 and 3  

in (D) were stained with Coomassie blue (E) and with silver stain (F), and bands indicated 

by arrows were identified by mass spectrometry; (G) Representation of the relative 

percentages of transcription factors identified by tandem mass spectrometry as grouped by 

their biological function. 

To identify proteins that interact directly or that associate in multi-molecular complexes with 

SNAMA, we used crude extracts and anti-SNAMA DCM antibodies to create immune complexes and 

captured them on affinity columns, as indicated in Figure 3D. A pre-adsorbed pre-immune serum was 

used as a control to exclude non-specifically bound proteins. Because a distinct set of proteins was 

conspicuous in the 0–6-h embryo extract, this sample was chosen for identification of the proteins by 

mass spectrometry. The gels were stained by Coomassie Blue and by silver staining, and bands were 

selected for sequencing by tandem mass spectrometry, LC-MS/MS (Figure 3D–F). Mass spectrometry 

revealed proteins that are implicated in ribosome biogenesis, DNA replication, RNA transport,  

pre-mRNA splicing and transcription co-activators (Figure 3G; Table 3). Interestingly, some proteins 

that were detected in the EMSA were also identified in these co-immunoprecipitation experiments, 

indicating nucleic acid-dependent and -independent associations. These proteins include the DNA 

replication-related element-binding factor (DREF), heat shock protein 27, the phosphorylated adaptor 

for RNA export (PHAX) protein that transports U3 snoRNA from the nucleus after transcription, 

CG4266 and the ribosome biogenesis protein WD12 homolog. In addition to their involvement in 

apoptotic pathways (nucleic acid-independent process), RBBP6 family members have been shown to 

be part of large multi-protein complexes involved with pre-mRNA 3' end cleavage and polyadenylation, 

as well as in pre-MRNA splicing [13]. This implies that they form nucleic acid-associated protein 

complexes at the carboxy-terminal domain of RNA polymerase II and at spliceosomes. 
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Table 3. Proteins that are co-immunoprecipitated with anti-SNAMA antibodies. 

Sample 1 
UniProt Accession 

Code 
Name 

Molecular 

Weight (kDa) 
ProtScore 

CBB55 Q9TWZ1_DROME D-ERp60 (PDI) 55.373 2.26 

CBB35 Q9UAN1_DROME 60S RIBOSOMAL PROTEIN L22 30.611 2 

CBB43 RL4_DROME 60S RIBOSOMAL PROTEIN L4 45.026 2.37 

SS95 Q9VKQ3_DROME 
RIBOSOME BIOGENESIS PROTEIN 

WDR12 HOMOLOG 
47.222 1.47 

SS22 Q94883_DROME 
DNA REPLICATION-RELATED 

ELEMENT FACTOR (DREF) 
80.727 1.24 

SS95 HP1_DROME HETEROCHROMATIN PROTEIN 1 23.185 1.31 

TRANSCRIPTION CO-ACTIVATORS 

CBB90 PYG_DROME GLYCOGEN PHOSPHORYLASE 96.997 2 

CBB55 KPYK_DROME PYRUVATE KINASE 57.44 2.75 

SS18 and 

CBB33 
Q9W2K4_DROME CG4266-PA 130.427 1.74 and 0.89 

CBB28 HSP27_DROME HEAT SHOCK PROTEIN 27 23.617 4 

SS95 Q8SYG4_DROME 
PHOSPHORYLATED ADAPTER 

FOR RNA EXPORT (PHAX) 
53.965 1.17 

SS18 and 

SS26b 
Q9W1K4_DROME EGALITARIAN 112.129 1.43 and 1.15 

SS18, SS21 

and SS22 
Q24156_DROME STONEWALL 112.913 

0.87, 0.94 and 

1.08 

CBB28 VDAC_DROME 
VOLTAGE-DEPENDENT  

ANION-SELECTIVE CHANNEL 
30.55 8.13 

CBB43 VIT2_DROME VITELLOGENIN-2 49.66 14.35 

CBB55 TBB1_DROME TUBULIN Β-1 CHAIN 50.147 16.55 

CBB90 TERA_DROME 
TRANSITIONAL ENDOPLASMIC 

RETICULUM ATPASE TER94 
88.859 9.72 

SS95 Q9W003_DROME SPINOPHILIN 233.209 1.86 

SS22d Q4ABH1_DROME 
MUSCLE-SPECIFIC  

PROTEIN 300, isoform D 
1405.148 0.97 

SS33 Q9VXL1_DROME MIND-MELD, isoform C 150.547 0.87 

CBB28 ADT_DROME ADP, ATP CARRIER PROTEIN 34.215 5.64 

SS95b Q6IGH5_DROME HDC06258 17.442 0.78 

SS22 Q9VQ83_DROME CG10874-PA 35.041 1.57 

SS38 Q9VSY1_DROME CG4022-PA 57.294 2 

SS26 Q4V5H1_DROME 
PEPTIDYL-PROLYL  

CIS-TRANS ISOMERASE 
20.182 1.62 

CBB90 EF2_DROME ELONGATION FACTOR 2 94.459 27.74 

CBB43 EF1G_DROME ELONGATION FACTOR 1-GAMMA 48.968 6 

SS29 EF1A2_DROME ELONGATION FACTOR 1-ALPHA 2 50.663 2.5 
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3. Discussion 

RBBP6 is emerging as an attractive candidate for the development of anti-cancer drugs due to its  

role in cell proliferation and altered expression patterns associated with certain cancers. We have 

confirmed the existence of a shorter isoform of SNAMA and provide evidence that both isoforms are 

developmentally regulated. Promoter analysis suggests that RBBP6 may be involved in embryonic 

anteroposterior patterning and that it may be under the control of the DNA replication element, which 

is known as the “master key” for cell proliferation [29]. Interesting phenotypes observed in mammalian 

models indicate crucial roles played by this gene in patterning of the developing organism and in 

malignant pathologies. These data suggest that RBBP6 proteins are important players in carcinogenesis 

and in developmental defects. 

The regulatory region of Snama extends over approximately 400 bases upstream of the 

transcriptional start site. The theoretically-determined TSS in Flybase is located 37 nucleotides 

upstream of the position experimentally-determined in the current study. We used the GeneRacer™ 

method, because it promises full-length mRNA and elimination of truncated transcripts. 

Bioinformatics search reveals potential sites for binding of transcriptional factors that regulate  

cell proliferations, patterning along the anteroposterior axis, mesoderm development and sex 

determination. Notable amongst the proteins identified by EMSA, co-immunoprecipitation and MS 

were transcription-related proteins, such as the DNA replication element factor (DREF), CG4266 and 

heat shock protein 27 (hsp27). DREF is recognized as the “master key” for the coordinate expression of 

cell proliferation-related genes. It binds to the transcription regulatory DRE (5'-TATCGATA) on 

promoters of proliferation-related genes. Furthermore, DREF is downregulated by distinct mechanisms 

during differentiation, suggesting concomitant repression of cell proliferation via the DREF pathway [29]. 

DREF can also bind competitively to an overlapping sequence recognized by boundary element-associated 

factor (BEAF) [41]. It plays an important role in DNA replication, probably by acting on key 

molecules at the replication fork and on key elements of the chromatin. Ectopic expression of DREF 

targeted at the post-mitotic cells behind the eye morphogenetic furrow results in increased DNA 

content, apoptosis and a rough eye phenotype [42]. This is reminiscent of the role played by SNAMA 

at the eye morphogenetic furrow [14]. The detection of DREF in the band-shift assay, as well as  

in co-immunoprecipitation hints at the possibility that SNAMA is transcriptionally regulated by DREF 

and also interacts with it directly or indirectly in protein complexes. It is not unusual for transcription 

factors to be regulated by their targets in feedback loops. CG4266 contains the arginine- and  

proline-rich (RPR) and the RNA recognition (RRM) motifs typical of proteins that link gene 

transcription to pre-mRNA processing (capping, splicing and polyadenylation). Generally, 

macromolecular complexes, of which SNAMA could be part, recognize the carboxy-terminal domain 

of RNA polymerase II to enable pre-mRNA processing at the 5' end, as well as at the 3' end [43]. 

CG4266 may be a component of such complexes. The hsp27 protein is expressed in the absence of 

heat shock during Drosophila development and exhibits complex expression patterns during 

development, indicating multiple roles [44]. Hsp27 also associates with nuclear speckles independently 

of the nuclear localization signal, suggesting nucleo-cytoplasmic shuttling that is mediated by active 

transport [45]. The association of Snama with various aspects of nucleic acid metabolism and cell 

cycle control matches documented roles played by RBBP6 proteins. Although SNAMA possesses 
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putative E3 ligase activity, other enzymes involved in the ubiquitination system, such as the E1 

ubiquitin-activating enzyme and the E2 ubiquitin-conjugating enzyme, were not detected by  

co-immunoprecipitation. This is probably because E3 ligases bind to their substrates and only make 

transient catalytic associations with the components of the enzymatic pathway, particularly the  

E2-ubiquitin complex. 

The biological roles of some of the multiple isoforms of mammalian RBBP6 have been 

characterized to some extent. For example, isoform 3 of human RBBP6, which is essentially DWNN, 

is reported to control the cell cycle at G2/M transition, since reduced expression leads to fewer cells at 

G2/M. Alternatively, RBBP6 is induced exclusively during the G2/M transition [1]. SNAMA B, which 

is structurally closest to RBBP6 isoform 3, is expressed at higher levels during the blastoderm when 

the syncytial embryo undergoes the S/M cell cycle and not the full cell cycle. Unlike the RBBP6 

isoform 3, SNAMA B has a C-terminal extension with zinc finger and U-box motifs, but lacks the p53 

and Rb binding domains. Drosophila embryonic development is characterized by discrete spatiotemporal 

waves of mitosis. In the pre-blastoderm, there are rapid and synchronous divisions of the nuclei 

comprising cycles of DNA synthesis (S-phase) and mitosis (M) without gap phases. Later, during the 

cellular blastoderm stage, there are mitotic domains that are coordinated in elaborate spatiotemporal 

patterns [46]. In the interior of the cellular blastoderm embryo, endoreplicating cells are found. These 

cells undergo repeated S-phases without mitosis. The present study shows that SNAMA is expressed in 

the periphery of the cellular blastoderm, but not in the endoreplicating cells at the interior of the 

embryo. SNAMA is also absent in the endoreplicating nurse cells. Taken together, these results 

suggest that SNAMA proteins are required for mitosis, but not for replication of DNA. 

The prediction of binding sites for caudal, bicoid, hunchback and others suggests that Snama may 

be involved in anteroposterior (A-P) embryonic patterning, since these proteins are known to regulate 

the establishment of the A-P axis. These findings are reminiscent of the phenotype observed when the  

mouse PACT/P2P-R is perturbed. pact−/− mice die during embryogenesis with widespread apoptosis. 

This phenotype can be partially rescued by the concomitant deletion of p53 [15]. Similarly, mdm2 null 

mutants die at the implantation stage (around 5.5 days of development). This phenotype can be rescued 

by concomitant deletion of p53, resulting in viable offspring, albeit with subtle defects [47]. While 

these phenotypes are similar, the pact−/− mice appear to have more severe defects, indicating that PACT 

may have additional functions to promoting the activity of Mdm2, as suggested by Li et al. [15]. These 

partially rescued pact−/− embryos are characterized by a distinct anterior-posterior pattern, suggesting 

an important role for PACT in mouse embryonic patterning. The involvement of RBBP6 in embryonic 

development therefore requires careful attention, because lesions that affect developmental patterns are 

of clinical significance, as they may be associated with birth defects. 

The expression pattern produced by immunocytochemical staining suggests that SNAMA is 

upregulated in germ cells (pole cells). We also predicted potential binding sites for germline and  

sex determination transcription factors by bioinformatics analysis. Furthermore, some of the 

transcription factors detected by co-immunoprecipitation and EMSA provide further support for the 

involvement of SNAMA in germ-line development and in sex determination. Firstly, the RNA-binding 

maternal protein Egalitarian (Egl) (Table 3) is required for oocyte determination in complex with 

bicaudal (BicD) [48,49]. Secondly, co-IP experiments identified Stonewall, a transcription factor that 

is structurally similar to Adf-1 (Table 2) and known to be involved in germ cell development [50,51]. 
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In Drosophila, sex determination is controlled by a hierarchy of sex-specifically spliced genes 

culminating in the production of the terminal genes doublesex (dsx) and fruitless. The pre-mRNAs 

transcribed from these genes are sex-specifically spliced to produce DSXF for females and DSXM, 

whose binding sites on the Snama promoter are predicted here. In females, the hierarchy is initiated by 

sex lethal (Sxl), which regulates the alternative splicing of transformer (tra). Tra then regulates the 

alternative splicing of dsx to DsxF. In males, where Sxl is absent, dsx is alternatively spliced by default 

to DsxM and FruM for males. Thus, the dsx pre-mRNAs are expressed differentially between the  

two sexes and determine somatic differentiation, whereas FRU controls behavior associated with male 

courtship [52]. Amongst DsxF binding sites identified in 650 regions of the Drosophila genome, one is 

near CG16786. [26]. This gene, whose function is unknown, is located immediately upstream of 

Snama. The prediction of Serendipity (sry-β) binding sites provides evidence for potential involvement 

of SNAMA in germ-line development [53]. The presence of CF2 binding sites suggest that SNAMA is 

involved in follicle cell signaling during oogenesis [28]. 

4. Experimental Section 

4.1. Maintenance of Fly Stocks 

Wild-type Drosophila melanogaster (Canton S), were reared at 25 °C on apple juice agar plates  

with yeast. 

4.2. RNA Extraction and RT-PCR 

Total RNA was collected from all samples by using TRI Reagent® (Sigma-Aldrich, St Louis, MO, 

USA) following the manufacturer’s protocols. As the first step to PCR, complementary DNA (cDNA) 

was synthesized according to the protocol described in the Thermo Scientific RevertAid First Strand 

cDNA synthesis kit using specific (reverse) primers, as described below. Further, to distinguish 

between the two Snama transcripts, the cDNA was amplified by PCR using specific primers as follows: 

SNAMA A Fwd: 5'-TGAGGAATTCGGTGAACG-3', Rev 5'-CAACGGATCGTCAATGG-3'; and 

SNAMA B (Fwd): 5'-TGAGGAATTCGGTGAACG-3', Rev 5'-ATCCACATGGTAGCGGAT-3'.  

RT-PCR was performed using the DreamTaq PCR master mix according to the manufacturer’s 

protocol (Thermo scientific, Waltham, MA, USA) with appropriate adjustments for the primers.  

As a loading control the ribosomal protein (Rp49) primers were used; Rp49 Fwd: 5'-TGTTGT 

GTCCTTCCAGCTTCAA-3'; and Rp49 Rev: 5'-ACTGATATCCATCCATCCAGATAATG-3'. 

4.3. 5' Rapid Amplification of cDNA Ends 

A clone of the 5' region of Snama was obtained from total RNA by using the GeneRacer™ kit 

(Invitrogen) following the manufacturer’s protocol with slight modifications. Approximately 5 μg total 

RNA were treated with calf intestinal phosphatase (CIP) to remove 5' terminal phosphates. The “cap” 

from mRNA was then removed by treatment of the total RNA with tobacco acid pyrophosphatase 

(TAP), thereby exposing the 5' terminal phosphates. This facilitated the ligation of the RNA 

oligonucleotide (5'-CGACUGGAGCACGAGGACACUGACAUGGACUGAAGGAGUAGAAA-3') to 

the TAP-treated mRNA using T4 RNA ligase. This was then followed by RT-PCR. All steps were 
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carried out as described in the GeneRacer™ kit using the following oligonucleotide primers: 

GeneRacer™ 5' (GR5'): 5'-CGACTGGAGCACGAGGACACTGA-3'; GeneRacer™ 5' nested 

(GR5nested): 5'-GGACACTGACATGGACTGAAGGAGTA-3'; RING finger (RF) reverse: 5'-CGAA 

CAAAGCTTCTCCTTGCAATCG-3'; RF tail: 5'-AGTGAGTGCCCCGATTGCAAGGAG-3'; and RF 

tail internal: 5'-CCGCAGCAGGGTATCATGACAGCAT-3'. The ImProm-II™ or SuperScript™ II 

reverse transcription systems were used to generate cDNA from Drosophila mRNA and from the 

HeLa control mRNA. The RF tail primer was used as a gene-specific primer during the reverse 

transcription reaction, while an oligo(dT) primer was used for the HeLa control mRNA. Extension 

temperatures for these reactions were 55 and 42 °C, respectively. 

4.4. Preparation of Reporter Constructs and Assays 

A series of three 5' truncated fragments were created by PCR amplification from genomic  

DNA isolated from wild-type Drosophila melanogaster using the following primers that are based  

on the region stretching up to 672 bases upstream of the transcription start site (underlined in the 

reverse primer): Promoter 1 (Fwd): 5'-GACTAAATTAGATCTGCATCGA-3'; Promoter 2 (Fwd):  

5'-GCAAAGATCTAAAAGGCGGTG-3'; Promoter 3 (Fwd): 5'-GCCTCCTTAAGATCTATTCG-3'; 

reverse primer: 5'-GAACGTGACGCCAAAGCCC-3'. The PCR products were cloned into the pGL3 

basic vector, and recombinant constructs were used to transiently transfect Cos7 cells using the 

SuperFect Transfection Reagent (Qiagen, Limburg, The Netherlands) according to the manufacturer’s 

instructions. We used the Dual luciferase system (Promega, Madison, VA, USA) to measure the firefly 

and Renilla luciferase activities sequentially. Cells were cultured until they reached a density of  

1 × 105 cells/mL (in 5 mL), after which, they were transfected with 5 μg of DNA. The ratio of the 

experimental vector to the control vector was 1:20. 

Assays were carried out in triplicate, and the data were used to plot the graph using relative ratios  

as follows: ܺ ൌ ݕ݈݂݁ݎሺ݂݈݅ݎݐ݊ܿ ݈݈ܽ݅݊݁ݎሺ݈ݎݐ݊ሻܿ݁ܿ݊݁ܿݏ݁݊݅݉ݑ݈ ሻ݁ܿ݊݁ܿݏ݁݊݅݉ݑ݈  (1)

ܻ ൌ ݕ݈݂݁ݎሺ݂݈݅ܽݐ݊݁݉݅ݎ݁ݔ݁ ݈݈ܽ݅݊݁ݎሺ݈ܽݐ݊݁݉݅ݎ݁ݔሻ݁݁ݏܽݎ݂݁݅ܿݑ݈ ሻ݁ݏܽݎ݂݁݅ܿݑ݈  (2)

݁ݒ݅ݐ݈ܴܽ݁ ݅ݐܽݎ ൌ ܻܺ
 (3)

Generally, a total of 5 µg of DNA (recombinant pGL3 basic vector and pRL-TK 1:20) was added to 

growth medium lacking both antibiotic and serum to a volume of 150 µL followed by 30 µL of the 

SuperFect Transfection Reagent. After incubation for 10 min at 25 °C, 1 mL of medium with fetal 

bovine serum (FBS) and penicillin-streptomycin (PenStrep) were added. This mixture was added to 

cells that had been washed in 1× PBS and incubated for 3 h at 37 °C in 5% CO2. Fresh growth medium 

was then added, and the cells were incubated further under normal growth conditions (37 °C and 5% 

CO2) for 48 h. The luciferase assay was performed by using the Dual-Glo Luciferase Assay System 

(Promega) in 96-well luminometer plates following the manufacturer’s instructions. The luciferase and 

Renilla luminescence activities were then measured in the GloMax® 96 Microplate Luminometer. 
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4.5. Fractionation of Cell Extracts 

Nuclear extracts from 0–6 h embryos were prepared according to the method of Tie et al. [54].  

The extract remaining after removal of the nuclei was fractionated into post-nuclear and cytosolic 

fractions by differential centrifugation at 4 °C at 3000× g and at 18,000× g for 10 and 30 min, 

respectively. The post-nuclear extract contains small organelles and macromolecular structures, such 

as ribosomes, the Golgi apparatus and the endoplasmic reticulum and sediments at 3000–18,000× g, 

while the remaining cellular content in the post 18,000× g fraction constitutes the cytosolic fraction. 

4.6. Modification of RS Domain Proteins: Acetylation and Phosphorylation and Mg+2-Precipitation 

Acetylation was performed as described by [6], which was based on [55]. Phosphorylation and 

subsequent Mg2+-precipitation were performed as described by [40]. The basis for this selective 

precipitation technique is phosphorylation of serine-rich tracts constituting the RS-domain, with Mg2+ 

then forming intra- and-inter ionic cross-links between phosphoserines and resultant precipitation. 

4.7. Electromobility Shift Assays and Streptavidin Chromatography 

Labelled Promoter Fragments 1, 2 and 3 were generated by PCR using biotin-tagged primers.  

A nuclear extract obtained from 0–6 h embryos was added to PCR products to enable protein-DNA 

interactions according to the Lightshift EMSA kit (Thermo Scientific Catalogue#20148). The resulting  

protein-DNA complexes were added to streptavidin agarose beads that were pre-washed in the binding 

buffer provided in the kit followed by incubation for 30 min. The beads were pelleted by centrifugation 

and washed in the washing buffer also provided in the kit. Typically, bound proteins were separated on 

a 12% SDS-PAGE gel. 

4.8. Preparation of Antibodies against SNAMA-DCM 

Recombinant proteins were purified from extracts of E. coli BL21(DE3)pLysS that was induced to 

express either the 26-kDa GST and HIS-tag proteins or the tags fused with SNAMA-DCM. Polyclonal 

antibodies (immunoglobulin Y (IgY)) were raised in chickens against a recombinant fusion protein 

containing the first 260 amino-terminal residues comprising the DWNN catalytic module (DCM)  

fused to a glutathione S-transferase (GST)-tag and flanked by two His-tag peptides. The recombinant  

protein was confirmed by peptide sequencing using MALDI-TOF to be SNAMA DCM. To purify the 

anti-SNAMA DCM antibodies, two affinity columns were created by reductive amidation, employing 

sodium cyanoborohydride (Sigma-Aldrich) as the reducing agent and aldehyde-agarose (Sigma-Aldrich)  

as a support matrix: one with the SNAMA DCM fusion protein immobilized on the matrix and  

the other with the recombinant GST/HIS protein. Anti-SNAMA DCM antibodies were selected from 

the post-immune IgY on the first column and the contaminating antibodies on the second column to 

exclude anti-GST and anti-His-tag antibodies. The pre-immune IgY was also pre-adsorbed on the 

second column for use as a negative control. 
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4.9. Co-Immunoprecipitation Assays 

Co-immunoprecipitation assays were performed according to [56], with some modifications. 

Duplicate experiments, containing one milligram of crude protein extracts from either 0–6 h embryos, 

mixed stages of larvae or male flies were conducted. In each, 15 µg of anti-SNAMA DCM antibody or 

the same amount of pre-adsorbed pre-immune serum were added. Immune-complexes were captured 

on 20 µL of chicken IgY precipitating resin (GenScript, Piscataway, NJ, USA) washed several times, 

solubilized in sample buffer and separated by SDS-PAGE. Gels were then scanned by a densitometer 

(Bio-Rad, Hercules, CA, USA, Model GS800). Band identification and analysis were performed by 

using the accompanying Quantity One® software package. 

4.10. Preparation of Proteins from Gels and Identification via Tandem Mass Spectrometry 

Coomassie-stained samples were stored in 5% acetic acid, whereas silver-stained samples were first 

destained according to [57], except for minor changes. Briefly, the bands were destained with 1 mL 

destaining solution (500 µL 30 mM potassium ferricyanide and 500 µL 100 mM sodium thiosulfate) 

for 2–2.5 h. They were then washed twice with 1 mL distilled water for 10 min each time. Having 

transferred them into Eppendorf tubes, 0.5 mL 200 mM ammonium bicarbonate was added to each 

sample followed by storage at 4 °C. 

Selected protein bands were in-gel trypsin digested as described in [58]. In short, the bands were 

destained using 50 mM NH4HCO3/50% methanol followed by in-gel protein reduction (50 mM DTT 

in 25 mM NH4HCO3) and alkylation (55 mM iodoacetamide in 25 mM NH4HCO3). The proteins were  

then digested overnight at 37 °C using 5–50 µL, 10 ng/µL trypsin, depending on the size of the gel  

piece. Digests were resuspended in 35 µL, 2% acetonitrile/0.2% formic acid and analyzed using a 

Dionex Ultimate 3000 Rapid Separation Liquid Chromatography (RSLC) system coupled to a QSTAR 

ELITE mass spectrometer. Peptides were first de-salted on an Acclaim PepMap C18 trap column  

(75 μm × 2 cm) for 8 min at 5 μL/min using 2% acetonitrile/0.2% formic acid, then separated on an 

Acclaim PepMap C18 RSLC column (75 μm × 15 cm, 2-µm particle size). Peptides were eluted using 

a flow-rate of 500 μL/min with a gradient: 4%–60% B in 30 min (A: 0.1% formic acid; B: 80% 

acetonitrile/0.1% formic acid). Nano-spray was achieved using a MicroIonSpray head assembled with 

a New Objective, PicoTip emitter. An electrospray voltage of 2.0–2.8 kV was applied to the emitter. 

The QSTAR ELITE mass spectrometer was operated in information-dependent acquisition using an 

exit factor of 7.0 and a maximum accumulation time of 2.5 s. MS scans were acquired from m/z 400–1500, 

and the three most intense ions were automatically fragmented in Q2 collision cells using nitrogen as 

the collision gas. Collision energies were chosen automatically as a function of m/z and charge. 

ProteinPilot™ v4.0.8085 using the Paragon search engine (AB SCIEX) was used for comparison  

of the MS/MS spectra against Drosophila melanogaster protein sequences in the Microsoft system 

database (msdb). Generally, proteins with a threshold close to 90% confidence and higher were reported. 

4.11. Western Blot Analysis 

Proteins were separated by SDS-PAGE and transferred to a Hybond-P PVDF membrane 

(Amersham Bioscience, Sunnyvale, CA, USA) in a semi-dry blotter. Non-specific binding was 
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prevented by blocking with SuperBlock™ Dry Blend Blocking Buffer (Pierce, Rockford, IL, USA). 

The blot was probed with a 1:5000 dilution of chicken anti-SNAMA DCM antibody. A 1:10,000 

dilution of anti-chicken IgY peroxidase conjugate was used as a secondary antibody. The signal 

generated by the SuperSignal® Chemiluminescent substrate kit (Pierce) was visualized by exposing the 

blot to X-ray film. 

4.12. Immunocytochemical Staining of Whole Mount Embryos and Ovaries 

Embryos were collected over apple juice agar and were prepared for immunolabeling as described 

by White [59], except that they were devitellinized with ethanol. SNAMA was detected with 1:500 

dilution of rabbit anti-SNAMA antibody followed by incubation in 1/100 dilution of HRP-labelled  

anti-rabbit antibody (Sigma Aldrich). The peroxidase reaction was visualized with diaminobenzidine 

tetrahydrochloride (DAB) enhanced with a solution of 5% NiCl2·6H2O and 5% CoCl2·H2O in ddH2O. 

Embryos were then washed three times in PBTX (PBS, 0.1% BSA, 0.1% Triton X-100), three times in 

PT (PBS, 0.1% Tween 20) and passed through 30%, 50% and then stored in 80% glycerol in PBS. 

Ovaries were dissected, prepared for immunolabeling and stained with the above antibodies as 

described by [60]. Egg chambers were dissected before the staining procedure. 

4.13. Immunofluorescence and Confocal Microscopy 

Embryos were fixed, stored in methanol at −20 °C and stained as described previously by White [59]. 

Ovaries were prepared as described by Verheyen and Cooley [60]. A 1:500 dilution of the polyclonal 

anti-SNAMA antibody was used, followed by 1:500 dilution of anti-rabbit antibody conjugated with 

FITC (green) (Sigma-Aldrich) as the secondary antibody. The embryos were mounted in glycerol with 

p-phenylenediamine (Sigma-Aldrich) as an anti-fade agent. Nuclei-containing samples were treated 

with RNase A (Biobasic Inc., Markham, ON, Canada) and counterstained with propidium iodide, 

which is responsible for the red color. Anti-fade was not applied to ovary samples. Confocal images 

were captured on a Zeiss 510 META Confocal Laser Scanning Microscope. 

4.14. Bioinformatics Analysis 

The Patch program was used to search the Transfac database for insect transcription factors.  

Potential p53 binding sites were detected by using the special algorithm designed for p53 [20]. 

5. Conclusions 

We have shown that Snama is expressed as two developmentally regulated transcripts that are 

produced by alternative splicing. The promoter region was defined, and putative transcription factor 

binding sites were predicted. These results are consistent with the general understanding that RBBP6 

family members play key roles in cell proliferation and in pre-mRNA processing. Furthermore, these 

data suggest that SNAMA may be associated with embryonic patterning, especially of the 

anteroposterior axis. These functional features reinforce the current view that members of the RBBP6 

family are important and play crucial roles that have implications for diseases such as cancer. 
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