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Over the past 15 years, a number of behavioral studies
have shown that the human visual system can extract
the average value of a set of items along a variety of
feature dimensions, often with great facility and
accuracy. These efficient representations of sets of items
are commonly referred to as summary representations,
but very little is known about whether their
computation constitutes a single unitary process or if it
involves different mechanisms in different domains.
Here, we asked participants to report the average value
of a set of items presented serially over time in four
different feature dimensions. We then measured the
contribution of different parts of the information stream
to the reported summaries. We found that this temporal
weighting profile differs greatly across domains.
Specifically, summaries of mean object location
(Experiment 1) were influenced approximately 2.5 times
more by earlier items than by later items. Summaries of
mean object size (Experiment 1), mean facial expression
(Experiment 2), and mean motion direction (Experiment
3), however, were more influenced by later items. These
primacy and recency effects show that summary
representations computed across time do not
incorporate all items equally. Furthermore, our results
support the hypothesis that summary representations
operate differently in different feature domains, and
may be subserved by distinct mechanisms.

Introduction

The human visual system is constantly confronted
with a large, complex, and dynamic stream of
information that far outstrips its processing capacity.
One way the visual system is thought to deal with this
problem is through the use of summary representations
(also referred to as ensemble representations, summary
statistics, or set representations), wherein a central

tendency is extracted from a set of stimuli that vary
along one or more feature dimensions. Recent behav-
ioral studies show that participants can accurately
report summary representations for mean size (Ariely,
2001; Chong & Treisman, 2003, 2005a, 2005b), mean
orientation (Dakin, 2001; Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001; Robitaille & Harris, 2011),
mean position (Alvarez & Oliva, 2008; Greenwood,
Bex, & Dakin, 2009; Spencer, 1961, 1963), mean color
of a group of objects (de Gardelle & Summerfield,
2011), and even the mean expression or identity
contained in a set of faces (de Fockert & Wolfenstein,
2009; Haberman, Harp, &Whitney, 2009; Haberman &
Whitney, 2007, 2009). Given the accuracy, efficiency,
and automaticity with which they appear to be
computed, some have speculated that summary repre-
sentations are an important contributor to our
subjective impression of a complete visual world, since
they could potentially provide a rough sketch of areas
or objects we’re not currently focusing on (Whitney,
Haberman, & Sweeny, 2013).

Extracting summaries across time

Most studies of summary representations have used
static arrays, where all the samples that participants are
expected to summarize are presented concurrently.
However, real world visual input is inherently dynamic,
and the properties of objects that we wish to know
about often change across time. For example, the
expression on a friend’s face evolves as he or she listens
to what we say. If the physical object is unchanging, the
retinal input may still change, as the visual angle of the
retinal image changes with depth and the color and
brightness of objects shift with lighting or viewpoint
changes. Finally, even for a static visual stimulus,
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information is effectively sampled serially in time
through shifts in visual attention and eye position.

While several studies have shown that it is possible to
extract a summary representation from stimuli pre-
sented across time, (Albrecht & Scholl, 2010; Albrecht,
Scholl, & Chun, 2012; Corbett & Oriet, 2011; Haber-
man et al., 2009; Piazza, Sweeny, Wessel, Silver, &
Whitney, 2013), very little is known about how the
summary is built in this case. How are the individual
stimuli incorporated into a summary? Work by Juni
and colleagues (Juni, Gureckis, & Maloney, 2012) has
demonstrated that summary-like judgments are sensi-
tive to manipulations of how informative early and late
items are, with more reliable items contributing more to
subjects’ judgments than less reliable ones. But it still
remains to be seen how a summary is constructed from
a set presented over time in the default case where all
items carry equal information. Do all items or parts of
the information stream contribute equally to the
perceived mean, or do early items or late items
contribute more heavily?

Unequal weighting of information over time, here
referred to as primacy and recency, might be conse-
quences of underlying neuronal processes or mecha-
nisms, or might reflect optimal behavior for a particular
task. For example, if making a decision rapidly is
important and the first few items provide sufficient
information for the task, one might expect primacy.
The costs of time and cognitive resources to incorpo-
rate later items might outweigh any additional accuracy
they might contribute. On the other hand, one might
expect recency if an accurate representation of the most
recent state of the world is desired, or if early
information is lost due to memory or attentional
limitations.

Extracting summaries across feature domains

Summary representation has been invoked to de-
scribe behavior across a wide variety of visual features,
but surprisingly little is known about how summari-
zation mechanisms might or might not differ across
those domains. Is summary extraction a general
cognitive mechanism that operates similarly across
stimulus domains, or does it depend on the feature
domain of interest?

Some studies have attempted to address this question
by comparing various properties of summaries across
different feature domains, but reports on these properties
are generally few, unclear, or conflicted. For example,
some researchers have compared the accuracy of
summary representations in two or more domains
(Albrecht et al., 2012; Emmanouil & Treisman, 2008),
but using accuracy measures may not be optimal since, as
Albrecht et al. note, it is likely highly dependent on the

statistical properties of the particular stimuli used. One
can also compare domains by examining how summary
accuracy varies with the number of items present, but
even within a domain accuracy sometimes increases with
set size (Ariely, 2001; Chong & Treisman, 2003, 2005b;
Parkes et al., 2001) and sometimes does not (Robitaille &
Harris, 2011; Solomon, Morgan, & Chubb, 2011).
Finally, one could compare domains by examining what
portion of items in a set are incorporated into a
summary. However, not enough is known about this
property to understand whether it differs across domains.
Most researchers are only able to conclude that more
than two but fewer than all items present are used to
summarize (Dakin, 2001; Morgan & Glennerster, 1991;
Piazza et al., 2013; Solomon, 2010; Solomon et al., 2011;
Watamaniuk & Duchon, 1992). Comparing how sum-
maries are computed across time in different feature
domains may help to address this unresolved issue.

The present study

Here, we explored both how summary statistics are
constructed when stimuli are presented serially across
time and whether such summary computation differs
across feature domains. We found that not all items
contribute equally to summary representations built
across time, with different temporal weighting profiles
appearing in different feature domains. In particular,
judgments of mean object position appeared special,
apparently operating differently from those of mean
object size, mean facial expression, and mean motion
direction. These differences in how information is used
over time to compute a summary representation imply
that different mechanisms are associated with different
feature domains.

Experiment 1: Averaging position
and size across time

To understand how summary representations are
constructed when the items are presented serially across
time, we presented participants with a sequence of small
white dots, asked them to report either the mean size or
the mean position of the group. We then quantified the
influence of the temporal position of each dot on the
participants’ estimates across many trials.

Method

Participants

Twenty-five students at the University of Washington
were recruited from the Department of Psychology’s
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undergraduate participant pool, where students may
volunteer as participants for studies in exchange for
course credit. This number of participants to recruit was
decided upon after initial simulations conducted based
on pilot testing showed that approximately 20 partic-
ipants would result in relatively stable estimations of
group-level weights (see Results section) in both tasks.
All participants had normal or corrected-to-normal
vision. Recruitment and study procedures in all
experiments presented here were conducted in accor-
dance with the ethical policies set forth by the
University of Washington’s Human Subjects Division,
and those in the Declaration of Helsinki.

Apparatus

All study procedures took place in a dimly lit room,
with the participants seated 50 cm from a CRT monitor
subtending 40.48 3 30.88 of visual angle. A chinrest was
used to ensure constant viewing distance to the
monitor, on which all stimuli were shown against a
black background. A faint grey grid pattern was always
present as part of the background in order to provide
spatial reference. All stimuli were generated by custom
software written using the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997) for MATLAB (The
Mathworks, Natick, MA).

Stimuli and procedure

As shown in Figure 1, participants were precued at
the beginning of each trial with the word ‘‘Location’’ or
‘‘Size’’ presented slightly above a white central cross
approximately 0.88 in width and height. Despite the
presence of the central cross, no instructions about
fixation were given and participants were free to look

wherever they wished over the course of the experi-
ment. This word precue was present for a random
period of time between one and two seconds and
indicated what the participant would be asked to report
at the end of the trial.

Each trial consisted of a series of ten white dots that
varied in their position and size. Each dot was shown
for 150 ms and was followed by a 50 ms blank inter-dot
interval, resulting in a dot presentation rate of 5 Hz
(Figure 1). On a given trial, dot locations were chosen
by sampling ten times from a bivariate Gaussian
probability distribution with a standard deviation of
2.38. The center of the bivariate Gaussian distribution
was drawn randomly on each trial from a square-
shaped uniform probability distribution centered on
the middle of the screen and subtending 21.18 3 21.18,
corresponding to 70% of the vertical height of the
screen. If a dot’s sampled location was outside the
borders of the screen, it was moved to the point on the
screen nearest to its originally sampled location. Dot
radii were similarly sampled from a Gaussian distri-
bution, the center of which was sampled on each trial
from a uniform distribution ranging from 0.38 to 1.58.
The standard deviation of the Gaussian distribution
was always exactly 0.3 times the center of the same
distribution in order to minimize the possibility of
sampling dot radii below zero. If a dot’s radius was
sampled to be below zero, it was resampled until it was
above zero. The series of ten dots was followed by a
blank period of 300 ms, followed by a response period.

During the response period, participants were
reminded what to report by text appearing near the
middle of the screen. On location trials participants
reported the ‘‘average location’’ or ‘‘center’’ of the dots
seen on that trial by moving the mouse cursor and
clicking on their perceived center. The mouse cursor

Figure 1. Trial schematic from Experiment 1. After task instruction period (1000–2000 ms), ten dots were presented over 2000 ms,

with a 50 ms blank after each dot, followed by the response period, which lasted until participant response. On location trials,

participants reported the ‘‘average position’’ or ‘‘center’’ of the dots shown by clicking on a point on the screen. On size trials,

participants reported the ‘‘average size’’ of the dots shown by adjusting a test dot. Dots varied in both position and size on all trials.

Trial type was blocked.
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was visible to the participants only during the response
period of location trials. On size trials participants
reported the ‘‘average size’’ of the dots seen on that trial
by adjusting the size of a centrally-presented test dot,
the radius of which varied with the horizontal location
of the mouse. Participants clicked to submit their
response when the perceived mean size was obtained.
The test dot’s initial radius was chosen randomly on
each trial from 0.18 to 3.28, which also served as the
limits of possible responses. The response period ended
when the participant submitted his or her response, and
was followed by a 1500 ms inter-trial interval.

Each participant received full instructions from an
experimenter and then completed approximately ten
practice trials in view of the experimenter before
beginning the experimental trials. Each participant
completed 320 experimental trials in blocks of 40 trials.
Blocks alternated between all location trials and all size
trials, with the first block type seen counterbalanced
across participants. The participants were free to take
breaks after each block, but could also do so at any
point during the experiment by simply waiting to
submit their response for a given trial. A full
experimental session lasted about an hour.

Results

Weights that quantified the relative influence of each
dot number (one through ten) on participants’
responses were obtained by fitting a weighted average
model (as used in Juni et al., 2012) to each participant’s
data separately for size and location trials. The model
took the form

Rj ¼
X10

i¼1

wixij ð1Þ

where Rj is the participant’s response for trial j, xij is the
position or radius of the dot at temporal position i and
trial j, and wi is the weight for temporal position i.
Linear regression was used to obtain the least-squares
best fitting set of weights for each participant for each
task. The model fit the data well in all participants in
both location (model R2: mean¼ 0.98, SD¼ 0.02; all p
, 0.001) and size (model R2: mean¼0.74, SD¼0.10; all
p , 0.001) trials. Mean weights across participants for
both trial types in Experiment 1 are shown in Figure 2.

The dashed line in Figure 2 shows the weight that
would be obtained for each dot if all dots contributed
equally to participants’ responses and no other source
of noise or bias were present. It is clear that
participants did not weigh each of the ten dots evenly in
either feature domain. Instead, we found primacy for
participants’ mean position judgments, with dots that
appeared early in the sequence contributing more to the
perceived mean position than later dots. The pattern
was reversed for judgments of mean dot size, where
participants showed clear recency; later dots contrib-
uted more to the perceived mean size. The size of the
effect was considerable for both feature domains, where
the most-weighted dots contributed approximately two
to three times as much as the least-weighted dots.
Additionally, the effect was relatively smooth in both
cases, with weights gradually increasing or decreasing
as the dot number increased, though pooling across
many trials may have averaged out more discrete
effects. A two-way ANOVA on the weight data showed
a significant dot number x trial type interaction,
F(9,216) ¼ 10.40, p , 0.001, gp

2 ¼ .30, and one-way
ANOVAs performed separately on location, F(9,216)¼
23.15, p , 0.001, gp

2 ¼ .49, and size trials, F(9,216)¼
3.10, p ¼ 0.002, gp

2 ¼ .11, showed significance in both
cases.

A set of five additional experiments were conducted
separately in the two feature domains to test for the
replicability of these findings. Under a variety of
experimental manipulations, we consistently found
primacy for mean position judgments and recency for
mean size judgments (see Supplemental Material for
methods and results). Together, these results indicate
that summary representations of mean size and mean

Figure 2. Results from Experiment 1. Mean weights as a

function of temporal position across all participants. X-axis

indicates the temporal order of the dots shown, where 1 refers

to the first dot presented on each trial and 10 refers to the last

dot presented on each trial. Y-axis indicates the relative

influence of each dot on participants’ responses in each task.

These weights were obtained by fitting a weighted average

model to the data (see Results text for details). Dashed line

indicates the weights expected if all dots contributed equally to

responses and no other source of noise or bias were present.

Weights from the size trials have been displaced rightward for

readability. Error bars indicate 95% confidence intervals across

participants.
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position extracted from items presented across time do
not incorporate all presented items equally. Instead, we
find that perception of mean size and position across
time favor different portions of the information stream,
with mean size favoring more recently presented items
and mean position favoring earlier presented items.

Experiment 2: Averaging facial
expression across time

Results from Experiment 1 suggest that how
summary representations are computed across time
may differ across feature domains. Experiments 2 and 3
explored this possibility by extending the method to
two new feature domains. In Experiment 2, we used
emotive face stimuli created by Haberman and Whitney
(2007, 2009) to explore how summary representations
of mean facial expression are generated across time.

Method

Participants, apparatus, stimuli, and procedure in
general mirrored those of Experiment 1, except where
otherwise noted.

Participants and apparatus

A new group of twenty participants was recruited
from the University of Washington undergraduate
student body using different participants from the same
Department of Psychology participant pool as before.
The decision to use this smaller number of participants

than used in Experiment 1 was made ahead of data
collection since in Experiment 2 all trials (rather than
half) would contribute to a single set of weights per
participant. The apparatus as in Experiment 1 was
used, except that stimuli were presented on a medium
gray background instead of black, and no grid was
present.

Stimuli and procedure

Each trial began with the presentation of a black
central cross approximately 0.48 in width and height,
though participants were free to look wherever they
wished over the course of the trial. After 500 ms, the
cross changed color to red as a trial start warning and
was present for a random period of time between one
and two seconds. A series of eight faces was then
presented.

Face stimuli consisted of eight human faces,
presented one after another in the center of the screen.
Each face was present for 252 ms and was followed by
an 82 ms blank inter-face interval, resulting in a
presentation rate of 3 Hz. The set of faces used was a
subset of stimuli used by Haberman and Whitney
(2007, 2009) in a series of experiments showing that
humans can accurately and efficiently extract the mean
emotional expression contained in a set of human faces,
and consisted of fifty faces from the same person. The
extreme two faces were actual photos, one showing a
happy expression and one showing a sad one. The
remaining 48 faces were regularly-spaced interpolations
between the two emotionally extreme ones, created
with image morphing software. See Haberman and
Whitney (2009) for further details on the generation
and properties of the faces, and see Figure 3 for
example faces. For the purposes of stimulus sampling
and modelling, each face in the stimulus set was
assigned a number from 1 to 50, such that the distance
between sequential faces is defined as one ‘‘eu,’’ or
emotional unit. When presented, the face stimuli
subtended 6.08 vertically and 4.58 horizontally. The
exact faces shown on each trial were chosen by
sampling eight times from a Gaussian distribution
(rounding to the nearest eu) with a standard deviation
of 6 eu and a center that was itself drawn on each trial
from a uniform distribution over face space between
faces 11 and 39, inclusive. Any face that was sampled
outside of the range 1 to 50 was resampled until it fell
within the showable range.

The series of faces was followed by a blank period of
500 ms, followed by a response screen (see Figure 3)
containing a horizontal line with fifty evenly spaced
vertical tick marks in it, corresponding to the fifty
possible response faces. Seven of the tick marks
(numbers 4, 11, 18, 25, 32, 39, and 46) were larger than
the others and had images of their corresponding face

Figure 3. Response screen used in Experiment 2. Participants

used this screen to indicate the ‘‘average expression’’ of the
faces shown on that trial. Participants chose one of fifty vertical

ticks by moving the indicator (the bold tick shown here at face

number six) with the mouse and clicking. Seven ‘‘landmark’’
faces were always visible under their corresponding ticks (the

black ticks at 4, 11, 18, 25, 32, 39, and 46) for participants to

use as reference. Landmark faces did not change from trial to

trial. Participants were encouraged use the non-landmark ticks

if they thought the average lay between two landmark faces.
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displayed below them. The purpose of these ticks and
faces was to act as landmarks that participants could
use to base their responses on. Once the response screen
appeared, participants were asked to report the
‘‘average expression’’ in the faces shown on that trial by
clicking the mouse cursor on the tick mark that most
closely matched their estimate. Participants were
explicitly instructed to not limit themselves to the
landmark ticks or faces and to select one of the ticks in
between if they thought the correct answer was between
two landmark faces. The initial cursor position was
chosen randomly at the start of each response period.
The response period ended when the participant clicked
on a tick mark, and was immediately followed by the
start of the next trial.

Each participant completed 320 trials in blocks of 40
trials. The break, instruction, and practice procedures
used in Experiment 1 were also used here. A full
experimental session lasted about 50 minutes.

Results

The same weighted average model used in Experi-
ment 1 was fitted to the present data and a set of eight
weights was obtained for each participant that quan-
tified the average contribution of the eight temporal
positions to the participants’ responses. The model

once again described a significant portion of the
variance, though the amount explained was in general
lower and more variable than seen in Experiment 1
(model R2: mean ¼ 0.63, SD ¼ 0.17; all p , 0.001).
There are a number of possible reasons for this. Both
the stimulus and response space resolution were lower
in Experiment 2, where only fifty unique values were
possible compared to the virtually unconstrained
response spaces of Experiment 1. Another potential
source of noise is the fact that participants were
presented only a subset of all possible face images while
making their selection. Indeed, inspecting the frequency
of subject responses across the fifty possible faces
reveals that subjects tended to choose ticks at the seven
sample faces more often than ticks in between. While
this tendency may add to the overall variability of the
results, it should not affect the profile of weights over
time. Finally, it is possible that the weighted average
model simply describes the cognitive operation under-
lying facial expression averaging less well than for
location or size.

Mean weights as a function of temporal position
across all participants are shown in Figure 4. Just as
with estimates of mean size and mean location, not all
faces contributed equally to the participants’ responses.
Instead, as in the size domain, estimates of mean facial
expression exhibited clear recency, where the later faces
influenced participants’ reports of the mean more than
the earlier ones. Again, the size of the effect was
relatively large, with each of the last two faces
contributing, on average, between 1.5 and 4 times more
than each of the first two faces. The effect was once
more relatively smooth, with the average weight
increasing gradually from face number one to eight. A
one-way ANOVA confirmed the statistical significance
of the effect, F(7,133)¼ 9.12, p , 0.001, gp

2¼ .32.

Experiment 3: Averaging motion
direction across time

Results from Experiment 2 suggest that computation
of a summary representation for facial expression uses
a temporal weighting profile similar to that used in
computation of mean dot size, and distinct from that
used in computation of mean dot location. Experiment
3 extended the method from Experiment 2 into a fourth
feature domain: motion direction.

Method

A new group of twenty participants was recruited
just as in Experiments 1 and 2, and the apparatus,

Figure 4. Results from Experiment 2. Mean weights as a

function of temporal position across all participants. X-axis

indicates the temporal order of the faces shown, where 1 refers

to the first face presented on each trial and 8 refers to the last

face presented on each trial. Y-axis indicates the weight of each

temporal position on participants’ responses. Weights were

obtained using linear regression to fit a weighted average

model to the data (see Results for details). Dashed line indicates

the weights expected if all faces contributed equally to

responses and no other source of noise or bias were present.

Error bars indicate 95% confidence intervals across participants.
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stimuli, and procedure used closely mirrored those of
Experiment 2, except where otherwise noted.

Stimuli and procedure

Each trial began with the presentation of a central
red square marker approximately 0.58 in width and
height, though once again participants were free to
look wherever they wished over the course of the trial.
After 200 ms, the square disappeared as a trial start
warning. After a random period of between one and
two seconds, a moving dot fields was then presented.

The moving dot field consisted of a square region
(width ¼ 88) with a circular aperture (diameter¼ 88)
overlaid on it, both centered on the screen. Ten small
(width¼ 0.128) black dots moved within a square field,
though only those inside the circular aperture were
visible to the participant. The ten dots always moved
with 100% coherency at 108/s. Each dot had a
maximum lifetime of 200 ms (12 frames at a 60 Hz
monitor refresh rate) and was initialized with a random
starting ‘‘age’’ between 0 and 11 monitor refresh
frames. Initial dot location in the field was also
random. When a dot reached the maximum age, it was
destroyed and a new dot with age zero was created at a
random point in the field. Whenever a dot’s motion

carried it outside the square field, its location was
wrapped around to the opposite edge of the field.

Over the course of a single trial, the dot field moved
in eight distinct directions, one after another, for 333 ms
in each direction. Transitions between motion directions
were abrupt, though dots persisted through the
transition if their age permitted it. The set of eight
motion directions were chosen on each trial by sampling
from a Gaussian distribution with a standard deviation
of 308 and a center that was itself sampled on each trial
from a uniform distribution across all possible direc-
tions.

After the sequence of eight dot fields (lasting 2667 ms
in total) there was a blank period of 300 ms, followed
by a response screen. The response screen contained a
central red square marker with a red line of length 28
radiating from it in a random initial direction. Once the
response screen appeared, participants were asked to
report the ‘‘average’’ or ‘‘overall’’ direction of motion
present during that trial by using the mouse to adjust
the radial direction of the red line until it pointed in the
direction of the perceived average motion. The
response period ended when the participant submitted
their response with a mouse click and was followed by a
1000 ms inter-trial interval.

Each participant completed 320 trials in blocks of 40
trials. The break, instruction, and practice procedures
used in Experiments 1 and 2 were also used here. A full
experimental session lasted about 40 minutes.

Results

Though the dot motion parameters were chosen to
maximize, for any given motion direction, the likeli-
hood of perceiving coherent motion in that direction,
some participants found the task very difficult,
apparently due to the motion reversal illusion. Of the
20 initial participants, data from 3 were discarded due
to clearly outlying mean absolute response errors
(MAEs). The discarded participants’ MAEs were 24.58,
33.58, and 39.08, compared to an average MAE of 14.48
(SD ¼ 3.58) in the rest of the participants. Within the
remaining 17 participants, high error trials were
removed from the data, where high error was defined as
a response error greater than three standard deviations
from the mean response error for that participant. This
resulted in discarding, on average, 1.2% of the data
(;3.7 trials) from each participant, with 2.2% of the
data (7 trials) being removed in the most affected
participant.

Best-fitting weights describing the average influence
that each of the eight motion direction epochs had on
participants’ responses were obtained by fitting the
same model described in Experiments 1 and 2 to the
remaining data. Just as in Experiment 1, the data were

Figure 5. Results from Experiment 3. Mean weights as a

function of temporal position across all participants. X-axis

indicates the temporal order of the motion directions shown,

where 1 refers to the first motion direction epoch shown on

each trial and 8 refers to the last direction epoch on each trial.

Y-axis indicates the relative influence of each motion direction

epoch on participants’ responses. Weights were obtained by

fitting a weighted average model to the data (see Results text

for details). Dashed line indicates the weights expected if all

motion direction epochs contributed equally to responses and

no other source of noise or bias were present. Error bars

indicate 95% confidence intervals across participants.
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described very well by the model (model R2: mean ¼
0.98, SD ¼ 0.01; all p , 0.001).

Mean weights from the 17 included participants are
shown in Figure 5. As was seen in Experiments 1 and 2,
weights deviated from even weighting across temporal
position. A one-way ANOVA confirmed this, F(7,112)
¼ 2.90, p ¼ 0.008, gp

2¼ .15. In particular, the last
motion direction appeared to contribute somewhat
more (;1.5 times) than the rest of the individual
motion directions, in an apparent recency effect.
Interestingly, and in contrast to our findings in other
domains, the average weight given to the first motion
direction seen on each trial also appeared to be
relatively large, suggesting some degree of primacy.
However, pairwise t-tests between weights for the first
motion direction and motion directions two through
seven showed that no pairs were statistically different,
with all six ps . 0.13 before multiple comparisons
correction. These results suggest that summary repre-
sentations for average motion direction over time (at
least when the motion directions are discrete and
separated in time) are computed more like those of size
than location.

General discussion

Our primary finding is that the influence an item has
on a summary statistic depends on its temporal
position in the information stream. Specifically, sum-
mary representations of mean position were more
strongly influenced by earlier items (primacy) and
summary representations of mean size, mean facial
expression, and mean motion direction were more
strongly influenced by later items (recency). Across the
experiments, the effect was reasonably large, with the
most influential items in the stream contributing on
average about 1.5 to 3 times more than the least
influential items. Below, we consider a variety of
explanations for the particular pattern of results we
observed.

Strategies for summary computation

One argument for why primacy was observed in the
mean location task is that it can be a highly functional
strategy. Kiani and colleagues (Kiani, Hanks, &
Shadlen, 2008) found a form of primacy in a task where
nonhuman primates had to integrate motion informa-
tion across time. The dot motion stimulus they used
moved with 0% coherence on average, but over the
course of each individual trial there were fluctuations in
the moment-to-moment motion direction. The investi-
gators found that motion information in the early

portion of the stimulus influenced the monkey’s
eventual decision more than that in the later portion.
They and others went on to show that monkey and
human behavior in this task is consistent with a model
of information collection where the cost of sampling
additional information increases as more and more
evidence is accrued (Drugowitsch, Moreno-Bote,
Churchland, Shadlen, & Pouget, 2012). In other words,
if an observer is optimizing for energy or time
expenditure in addition to accuracy, primacy might be
an optimal strategy. Later information in a stream
might not be worth integrating into the summary if the
benefit to the estimate is outweighed by the cost of
collecting it. This framework might explain why we
found primacy for judgments of mean location, but it
does not explain why we found recency in the other
feature domains.

However, recency can also be understood as a
functional behavior. Recency might reflect the way the
brain makes predictions about what the next item in a
series will be based on previous items. For example, if
previously shown facial expressions predict the facial
expression that is likely to come next, then it makes
sense to be most sensitive to the predicted incoming
expression and less sensitive to unpredicted expres-
sions. It has been shown that this type of adaptive gain
control leads to recency when observers are asked to
integrate samples over time (Cheadle et al., 2014). In
this account recency is produced because, by the time
the last sample arrives, observers have a strong
prediction about its value and are thus highly sensitive
to even small deviations from that prediction. Again
however, such an account cannot explain the totality of
our results, since the model Cheadle et al. describe
cannot naturally produce the primacy we observed for
mean location.

It should also be noted that recency becomes an
attractive strategy if the underlying process generating
the samples is non-stationary. Many things in the real
world that humans might want to summarize, such as a
conversation partner’s face or a moving car, change in
their properties over time. In this case, a summary
representation that discards old information and
reflects the most up-to-date state of the world is
obviously valuable. However, two problems exist for
this as a satisfying explanation of our recency findings.
First, the underlying processes generating the stimuli in
our experiments were stationary over the course of a
trial in all cases. Second, it is unclear why the
presumption of non-stationarity would apply to size,
facial expression, and motion direction but not to
location, where primacy was found.

Finally, related recent work on serial dependence
has shown that the perceived orientation of a stimulus
is systematically biased toward the orientation of
recently seen stimuli (Fischer & Whitney, 2014). This
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result has been interpreted as evidence of a ‘‘continuity
field’’ that promotes visual stability over time by
effectively acting as a low-pass temporal filter that
biases the current perception of the world towards
recent events (Liberman, Fischer, & Whitney, 2014).
On its face, the serial dependence effect is reminiscent
of our recency effect, but it seems instead to predict
primacy for judgments of the mean in our tasks, since
the perception of the later samples would in theory be
pulled towards those of the early samples. This would
presumably result in earlier samples being represented
more than later ones in the overall mean judgment. So
it is possible that this newly-documented perceptual
bias from recent events affects or supports the
perception of the mean in our tasks, but more work
would be needed to determine the exact nature of its
role.

Visual memory

All of the present experimental tasks involve
maintaining visual memory representations, either of
specific items presented in the sequence or a running
belief of the average, over the course of a trial. Given
this, it is important to consider explanations for
primacy and recency that involve characteristics of or
limitations in visual working memory.

Though not unopposed, the traditional view of
visual working memory is that it is composed of at least
partially separated subsystems that are involved in
storing different types of visual information. Specifi-
cally, considerable behavioral (Hyun & Luck, 2007;
Logie & Marchetti, 1991; Woodman & Luck, 2004;
Woodman, Vogel, & Luck, 2001), electrophysiological
(Goldman-Rakic, 1996), and neuroimaging work
(Courtney, Ungerleider, Keil, & Haxby, 1996, 1997;
Smith & Jonides, 1997; Smith et al., 1995) supports the
existence of subsystems for spatial- and object-based
working memory representations. If the spatial work-
ing memory subsystem is primarily recruited in our
mean location task and the object-based working
memory subsystem is recruited in our mean size and
mean facial expression tasks, then it is possible that
primacy and recency are the result of differential
characteristics of those systems. Motion direction as a
visual feature, however, is inherently spatial and thus
poses a problem for this account, since we found
recency in that domain. However, since our motion
stimulus was 100% coherent and changed abruptly
from one direction to the next, the motion sequences in
our task may have been encoded and summarized as a
series of orientations, a feature more strongly associ-
ated with object-based processing systems than spatial-
based systems. While there is some alignment between
working memory subsystems and our findings across

domains, this alone does not constitute a satisfying
explanation for our effects. The relative lack of
information about the differential properties and
functioning of spatial- and object-based working
memory subsystems makes it difficult to explain why
one would lead specifically to primacy and the other to
recency in a summarization task, for example. This
problem is exacerbated by the fact that the most
popular visual working memory tasks measure memory
for objects that are defined by a binding of location and
either color or orientation (Luck & Vogel, 1997; Zhang
& Luck, 2008), confounding spatial- and object-based
memory.

Could primacy and recency in our summarization
task be driven by serial position effects in short-term
memory? As in, do our results reflect more about
memory quality for items presented in sequences than
summarization processes themselves? There are indi-
cations of serial position effects in short term memory
in at least two of the domains that we investigated here:
location (Farrand & Jones, 1996; Farrand, Parmentier,
& Jones, 2001; Guérard & Tremblay, 2008; Jones,
Farrand, Stuart, & Morris, 1995) and faces (Hay,
Smyth, Hitch, & Horton, 2007; Ward, Avons, &
Melling, 2005). In these tasks, subjects were shown a
series of to-be-memorized objects (usually 5–12 items at
0.5 Hz) and are asked to reconstruct the sequence after
some retention interval (usually 0–30 s). However, little
evidence of domain differences in recall as a function of
position in the sequence is noted. Instead, both primacy
and recency of recall are seen in nearly all face and
location experiments, with several of the researchers
noting that the strength of primacy or recency seems to
depend more on the specific testing or recall method
used than on the feature domain (Farrand et al., 2001;
Jones et al., 1995; Ward et al., 2005). While these
findings are clearly related to the present results, this
lack of domain differences makes it difficult to
conclude that serial position effects in memory are
solely responsible for our summarization findings, in
particular the differences we observed across domains.

Finally, a related explanation for our findings of
primacy and recency in summary computation is that
one or both of them are due to capacity limitations in
visual working memory. In this hypothesis, primacy is
produced when the limited capacity of visual working
memory is filled with memory representations from the
early items and little to no resources are left to store the
later items. Alternatively, recency might be produced
by the same limited capacity if later items push
representations of earlier items out of memory. The
effect of memory capacity limitations on summary
computation could in theory be tested by adding a
sequence length manipulation to the experiments we
report on here. If either or both of primacy and recency
significantly diminish or disappear with shorter se-
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quences, this would constitute evidence that capacity
limits play a strong role in our findings. But if either
primacy or recency are still observed with sequence
lengths below the traditional visual working memory
capacity (about 3–4 items according to Luck & Vogel,
1997), then the contribution of memory capacity to
either effect is likely limited. It should be noted,
though, that even if capacity limitations are involved in
our findings, it is not immediately clear how this
explanation alone would produce primacy in one
feature domain and recency in the others.

Implications for summary representation across
domains

Since it was reported in 2001 that human observers
appeared to extract the mean size of an array of discs
with surprising speed, precision, and automaticity, the
concept of summary statistics has been invoked to
describe reports of perceptual averaging across a wide
variety of stimulus domains. Size, orientation, position,
brightness, color, motion direction, speed, facial
expression, facial identity, biological motion, and
frequency of tones have all been discussed as features
across which summary statistics might be computed.
However, a priori, it seems unlikely that averaging in
all of these domains shows the same characteristics that
made summary perception of mean size so intriguing
when it was first reported, especially considering that
the physiology underpinning representation of these
various features and objects in the brain is very
different, and in some cases still not well understood.
Despite this, the extent to which averaging across these
domains reflects the same computation has not been
well-studied. In fact, to the best of our knowledge, the
experiments reported here are the first to directly
compare how summary representations are computed
across a set of different feature domains.

Here we provide evidence that summary represen-
tation behaves differently in different feature domains,
but do our results constitute evidence for distinct
mechanisms for summary computation across time in
different feature domains? Summaries that look dif-
ferent do not necessarily come from distinct mecha-
nisms. A single mechanism that combines perceptual or
memory representations into a summary could in
theory produce different-looking results given different
input. This is implied in our discussion of the role of
visual memory above; perhaps the quality of early
versus late item representations that are fed into a
summarization mechanism simply varies across do-
mains. This possibility combined with the lack of
previous comparative work in summary representation
domains makes it difficult to argue conclusively that
distinct mechanisms are involved in summarizing in

location and non-location domains, even if the
summary computed is meaningfully different across
domains.

In conclusion, it perhaps should not be surprising
that the way in which summary representations are
computed varies across feature domains. Just as other
perceptual judgments fall along a continuum from low
to higher-level processing, summary computation may
do the same. Some feature domains are summarized at
the sensory level. For example, a photoreceptor
computes a weighted average of the spectrum of
incoming light over a fixed period of time and space.
Other feature domains are likely to require different,
higher level cognitive processes, as in judging some-
one’s overall moral character by his or her deeds. By
understanding what similarities and differences exist
between different types of summary representation, we
will be better equipped to search for their underlying
mechanisms, which is a major goal for this promising
area of research. But until then, we conclude that not
all summary statistics are created equal.

Keywords: summary statistics, ensemble coding,
integration across time, size perception, face perception,
motion perception
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