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Estimating the anomalous 
diffusion exponent for single 
particle tracking data with 
measurement errors - An 
alternative approach
Krzysztof Burnecki1, Eldad Kepten2, Yuval Garini2, Grzegorz Sikora1 & Aleksander Weron1

Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in 
biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, 
which is usually performed through the time-averaged mean square displacement (TAMSD). In this 
paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model 
for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD 
estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize 
dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy 
model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to 
the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to 
enable new measurement regimes for single particle tracking (SPT) experiments even in the presence 
of high measurement errors.

The field of biophysics and biomedicine has seen an immense increase in single particle tracking tech-
niques and experimental results1,2. In the past decade, trajectories have been obtained for almost all 
biological entities, including in vivo3,4 and in vitro5 measurements that cover dynamics from the cell 
membrane6,7 to the nucleoplasm8,9. Biological trajectories are usually stochastic and affected by a great 
deal of randomness arising from thermal motion of surrounding molecules, spatial constraints, complex 
molecular interactions, water molecules on cell membranes and more10–15. While all these sources of sto-
chasticity give rise to diffusive motion, each source has different characteristics, which can give important 
information regarding the biophysical system16.

The most popular theoretical models for the anomalous diffusion17 present in biophysical experiments 
are: continuous-time random walk (CTRW)18,19, obstructed diffusion (OD), fractional Brownian motion 
(FBM), autoregressive fractionally integrated moving average (ARFIMA), and fractional Langevin equa-
tion (FLE)2,20. These models can be divided into two categories: with short memory (CTRW, OD) and 
fractional with long (power-law) memory (FBM and ARFIMA). In this paper we concentrate on the 
latter class.

A common tool by which the anomalous diffusion of a single particle can be classified is the 
time-averaged mean square displacement (TAMSD):
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defined here for a trajectory x(t) of length T and the averaging window is τ. One of the fundamental 
properties is the scaling of TAMSD, i.e., MT τ τ( ) α~ . For normal diffusion the scaling is linear, α =  1, 
and anomalous diffusion shows a power law behaviour, with α >  1 termed superdiffusion and α <  1 
called subdiffusion. The anomalous exponent α is connected to target finding times21, cellular organiza-
tion16, reaction rates22 and more. In addition, the anomalous exponent can be connected to many other 
stochastic characteristics of the random walk, such as self similarity and long range correlations of dis-
placements. Specifically, if we take an H-self-similar process with stationary and Gaussian increments, 
then α =  2H and the memory parameter d =  H −  1/223.

Unfortunately, the estimation of α for single trajectories is not a simple task. Usually the TAMSD is 
fitted to a power law – a method that is prone to estimation errors due to two main effects. The first 
arises from the fact that displacements in TAMSDs are not independent, and the central limit theorem 
does not work for a single trajectory24,25.

The second error arises from the inherent measurement error in any experimental procedure26. This 
has been shown to insert a bias towards lower α values at short times27. Thus fitting single particle 
TAMSDs results in anomalous exponents lower than the true physical process. It has been shown that 
this bias continues even to times where the TAMSD is larger than the measurement noise standard devi-
ation. This effect cannot be corrected through ensemble averaging or measurement of longer trajectories 
and can be mitigated only under special conditions28.

Measurement errors, in the common stationary case, are a series of i.i.d. values added to the true 
location of the tracked particle. Thus the incremental process of the paricle is highly dependent between 
consecutive time points. If δϵ(t) and δϵ(s) are the increments of the error at time t and s, then they are 
strongly dependent for t s 1− ≤  and independent otherwise. This leads to the possibility of separating 
the measurement error from the actual diffusion process, by distinguishing the transient short time 
correlation of the error from the long time correlation of the physical process.

We introduce the following toy model for experimental data with significant measurement noise. Let 
{BH(t), =  1,2,…,T} be a fractional Brownian motion (FBM) with the self-similarity index 0 <  H <  1. This 
process will serve us as a basic model for a SPT. The choice of the FBM is well justified in the litera-
ture2,12,13,29–32. Now, we assume that a measurement error is given in the form of white Gaussian noise, 
namely i.i.d. random variables ϵ(t) with the normal distribution N(0, σ). As a consequence, the observed 
process is

A t B t t t T1 2 2H( ) = ( ) + ( ), = , , … . ( )

In all cases we take the variance of the increments of BH(t) to be equal to one. We also assume that BH(t) 
and ϵ(t) are independent. Thus for this process MT

H2 2τ τ σ( ) = +  which deviates from the pure 
power law behaviour H2τ  of the FBM. The difference can be clearly observed for small τ’s or large σ’s, 
and it influences the estimation of the anomalous exponent. It can also mimic the transient anomalous 
diffusion pattern. Moreover, the variance of the increments of A(t) is 1 +  2σ2. The autocorrelation func-
tion of the increments of A(t) equals
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where ρ(h) is the autocorrelation function of the increments of FBM for a time lag h.
In this paper we investigate a new approach for the estimation of α under the presence of measure-

ment errors. We approximate the toy model by the FIMA process which can be treated as a first order 
approximation of ρA(h). This approximation takes into account the power law decay of the function con-
trolled by the memory parameter d =  H −  1/2 and the negative first lag correlation induced by the noise 
sequence, for h =  1 see equation (3). We also present a comprehensive comparison of the new estimator 
αFIMA which is obtained by equation (11), with the classical estimator αTAMSD, given by equation (6), 
based on the time-averaged mean square displacement. To this end we analyze four representative cases 
of anomalous diffusion: strong subdiffusion α ∈  {0.4, 0.5, 0.6}, weak subdiffusion α ∈  {0.7, 0.8, 0.9}, weak 
superdiffusion α ∈  {1.1, 1.2, 1.3} and strong superdiffusion α ∈  {1.4, 1.5, 1.6}; and the case of the classical 
(normal) diffusion.

We compare the performance of the FIMA estimator to that of the common TAMSD for varying tra-
jectory lengths, noise levels and all α regimes. The quality of the estimation of the anomalous exponent 
α is dependent on the the magnitude of the measurement error, σ, the length of the trajectory, T, and the 
value of the anomalous exponent itself. First, we study an influence of the noise parameter, σ, on the esti-
mation error in Figs 1–5. To this end, we simulate a thousand of trajectories for σ’s from 0.25 to 2 with 
step 0.25 and α’s from 0.4 to 1.6 with step 0.1 and estimate α for each trajectory. The trajectories consist 
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of T =  512 time points. Second, in Figs 6–10, we study an influence of the length of the trajectory, T, on 
the estimation error. To this end, we simulate a thousand of trajectories for T ∈  {256, 512, 1024, 2048} 
and α's from 0.4 to 1.6 with step 0.1 and estimate α for each trajectory. The noise parameter σ is fixed 
and equal to 1. We find that the FIMA estimator is superior to the TAMSD in most cases.

We would also like to draw the attention of the reader to popular methods to determine α of single 
trajectories of FBM, namely the detrended fluctuation analysis (DFA)33 and detrending moving average 
(DMA) (34,35, where an interpretation of the possible intrinsic origin of the error in the moving average 
estimators is given in terms of an excess term in the Shannon entropy). For the extensive comparison of 
the DFA and DMA methods see36. In contrast, we concentrate here on the toy model A(t), which takes 
into account the measurement noise and propose the FIMA process as the appropriate approximation 
of the model.

Results
This paper’s new topic is the extraction of anomalous diffusion exponent from raw single-particle tra-
jectories for different anomalous diffusion regimes. The study’s benchmark is a comparison between the 
recovered parameters using the FIMA model and the classical TAMSD fit approach.

For both estimation techniques we calculate here the average estimated values: FIMAα  and TAMSDα , 
and the biases:

B Band 4FIMA FIMA TAMSD TAMSDα α α α= − = − . ( )

In Figs 1–5 we depict the average estimated values and biases for σ’s from 0.25 to 2 with step 0.25 and 
α’s from 0.4 to 1.6 with step 0.1. To this end, we simulated a thousand of trajectories of T =  512 time 
points. First, let us notice that both methods often underestimate true values of the anomalous expo-
nent. We can also observe that the FIMA estimator is superior to the TAMSD in the weak subdiffusion, 
diffusion and superdiffusion regimes. For the classical diffusion and superdiffusion cases the difference 
is striking for all σ’s, and growing rapidly with the measurement error. In the strong subdiffusion case 
for α =  0.4 TAMSD yields slightly better results. For α =  0.5 and α =  0.6 TAMSD gives more accurate 
estimates only for small sigmas, namely σ ≤  0.6.

Next, in Figs 6–10 we present the effect of trajectory length on the results. We simulate a thousand 
of trajectories for T ∈  {256, 512, 1024, 2048} and α’s from 0.4 to 1.6 with step 0.1, estimating α for each 
trajectory. The noise parameter σ is fixed and equal to 1. For the strong subdiffusion case, for α =  0.4 
TAMSD produces better results than the FIMA for all considered lengths of trajectories, but the differ-
ence between them is getting smaller as T grows. For α =  0.5 and α =  0.6 TAMSD yields better estimates 
only for T =  256. For the weak subdiffusion, classical diffusion and superdiffusion cases the FIMA esti-
mator is always superior to the TAMSD and the differences become dramatic in the classical diffusion 
and superdiffusion regimes. Let us notice that the FIMA estimator, contrary to the TAMSD, clearly 
converges to the true values with increasing T.

We have also analyzed the relation between the magnitude of the measurement error and the moving 
average parameter ψ in both the subdiffusive (α =  0.8) and superdiffusive (α =  1.2) domains. The results 
are presented in Supplementary Fig. S1. For both anomalous cases with increasing variance of ϵ(t) the 
coefficient ψ grows monotonously. Therefore, we may claim that the moving average part contains the 
information about the measurement error. In the future, it may be possible to conclude the magnitude 
of the measurement error from ψ without experimental calibration.

Finally, in the supplementary material we provide an extensive statistical analysis of the estimators 
in the form of box plots, see Supplementary Figs S2–S11. This statistical analysis confirms the previous 
findings from Figs  1–10. In particular, the range between whiskers in box plots provides information 
about variability in a distribution of the estimator. We can see that the variance of the TAMSD estimator 
is lower than that of FIMA in many cases, which is especially visible in the strong subdiffusion regime. 
Moreover, in this regime the variance of the FIMA estimator grows as σ increases. The situation changes 
as we proceed to the weak subdiffusion and further to superdiffusion regimes. In the weak subdiffusion 
case, the variance of the introduced estimator becomes comparable to the TAMSD for small σ’s. For the 
superdiffusion regimes, the variance of the FIMA estimator is comparable to the TAMSD’s for almost 
all possible σ’s.

While the variance of the TAMSD estimator is lower than that of FIMA in many cases, the large bias 
deems it inaccurate. In many cases, the quartile intervals for TAMSD and FIMA are even disjoint, which 
statistically disqualifies the TAMSD method.

Discussion
In this paper we showed how to apply an anomalous diffusion exponent estimation algorithm based on 
the FIMA model. For a toy model representing a typical measurement, we compared the FIMA estima-
tion results with those obtained by the popular TAMSD estimation.

The FIMA model is a special case of the ARFIMA process37–41 (the acronyms “ARFIMA” and 
“FARIMA” are often used interchangeably in the literature) which, from the physical point of view, is a 
discrete time analogue of the fractional Langevin equation that takes into account the memory parameter 
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d42. ARFIMA have been already studied in the physical literature43–50. However, interpretation of the 
various parameters in an experimental context, to the best of our knowledge, is still missing.

The main finding of this paper is that the FIMA approach leads to more accurate values of the anom-
alous exponent in SPT experiments than by using standard TAMSD data fitting. This was confirmed for 
trajectories with α ≥  0.5, σ ≥  0.5 and T ≥  512, see Figs 1–10. The idea put forward in the paper is that 
the FI part of the process gives rise to long memory effects, while the MA part mimics the short memory 
effects that appear due to measurement errors. As a consequence the FIMA(d,1) model can identify 
measurement errors in such experiments. The estimated parameters α and ψ provide information about 
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Figure 1.  Strong subdiffusion case. Estimation of the anomalous exponent for different σ’s and α’s for 
1000 trajectories of 29 time points using the FIMA (marked with circles) and TAMSD frameworks. Average 
estimated α (left panel) and average bias (right panel).
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Figure 2.  Weak subdiffusion case. Estimation of the anomalous exponent for different σ’s and α’s for 
1000 trajectories of 29 time points using the FIMA (marked with circles) and TAMSD frameworks. Average 
estimated α (left panel) and average bias (right panel).
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the magnitude of the error, see Supplementary Fig. S1. Identification of the measurement error magni-
tude can be realized by a calibration surface which will be discussed elsewhere.

We showed that the FIMA framework can extract accurate α values even under high measurement 
error with smaller bias than the common TAMSD technique. It allows a richer modelling scheme than 
other common models such as FBM29, once the physical interpretation of the parameters is understood. 
The analysis of stochastic trajectories below the error threshold, reduces the experimental limitations on 
particle localization, enabling the measurement of biophysical trajectories in faster frame rates and longer 
trajectories. Moreover, our methodology can be extended to physical and biological systems described 
by Lévy stable distribution23,51.
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Figure 3.  Classical diffusion case. Estimation of the anomalous exponent for different σ’s and α =  1 for 
1000 trajectories of 29 time points using the FIMA (marked with circles) and TAMSD frameworks. Average 
estimated α (left panel) and average bias (right panel).
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Figure 4.  Weak superdiffusion case. Estimation of the anomalous exponent for different σ’s and α’s for 
1000 trajectories of 29 time points using the FIMA (marked with circles) and TAMSD frameworks. Average 
estimated α (left panel) and average bias (right panel).
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Finally, we find that the ARFIMA framework is a promising tool in the analysis of anomalous diffu-
sion processes, especially when physical intuition is coupled to its mathematical components. From an 
experimental point of view, the FIMA model enables more accurate analysis of trajectories with higher 
measurement error levels without the need for calibration. This in turn is expected to enable longer and 
faster measurements and hopefully the study of new phenomena and biophysical entities.

Methods
TAMSD estimation algorithm.  If the trajectory comes from a FBM, then

M 5T
H2 MSDτ τ τ( ) = = , ( )α
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Figure 5.  Strong superdiffusion case. Estimation of the anomalous exponent for different σ’s and α’s for 
1000 trajectories of 29 time points using the FIMA (marked with circles) and TAMSD frameworks. Average 
estimated α (left panel) and average bias (right panel).
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Average estimated α (left panel). Average bias (right panel).
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and consequently αMSD =  2H. For the Brownian motion (H =  1/2) we arrive at the diffusion case, namely 
MT τ τ( ) = . If H <  1/2, so in the negative dependence case, the process follows the subdiffusive 

dynamics, if H >  1/2, the character of the process changes to superdiffusive.
Hence, in order to estimate the anomalous diffusion exponent α, we calculate the following equation:

Mln ln 6T MSDτ α τ( ( )) = ( ), ( )

where 1 maxτ τ= , …,  and T 20maxτ = / . For other possibilities see52.

FIMA framework.  The field of econometrics has a long history of analyzing random motion in order 
to extract controlling parameters and predicting future behaviour37–39. While many of the mathematical 
models and their basic approach are different than what is common in physical or biological sciences, it 
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trajectory lengths for 1000 trajectories using the FIMA (marked with circles) and TAMSD frameworks. 
Average estimated α (left panel). Average bias (right panel).
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is worthwhile to look upon them as a source for novel techniques. In this paper, we study a fractionally 
integrated moving average FIMA(d,q) process X(t), which is a special case of the general ARFIMA(p,d,q) 
process38,40,41. FIMA is represented by the fractional difference equation:

B X t Z t Z t Z t q1 1 7d
q1ψ ψ( − ) ( ) = ( ) − ( − ) − … − ( − ), ( )

where t =  0,± 1,…, and B is the shift operator: BX(t) =  X(t −  1). In addition − 1/2 <  d <  1/2, taking frac-
tional values, either positive or negative, and {Z(t)} is a white noise sequence53.

The fractional difference operator (1 −  B)d is defined by means of the binomial expansion, namely 
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Figure 9.  Weak superdiffusion case. Estimation of the anomalous exponent for σ =  1 and different α’s 
and trajectory lengths for 1000 trajectories using the FIMA (marked with circles) and TAMSD frameworks. 
Average estimated α (left panel). Average bias (right panel).
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polynomial B B B b B1q q
q

1 2
2ψ ψΨ ( ) = − − − … −  has no roots in the closed unit disk. It corresponds 

to the moving average (MA) part.
Hence, the model combines two broad classes of time series, namely the fractionally integrated (FI) 

models, and the moving average (MA) models40,41,54. The latter reconstructs a short-term memory struc-
ture given by the autocorrelation function for short lags, whereas the former a power-law behaviour for 
large lags, which leads to the notion of long-term dependence. The MA part provides also a mechanism 
of transformation of uncorrelated inputs to correlated outputs in many physical systems, see55,56.

In many applications FIMA(d,1) model is sufficient to describe the data well, see, e.g.44. FIMA(d,1) 
can be considered a first-order approximation of the arbitrary short memory structure (q lags) taking 
into account only the first lag. In this case the model reduces to:

B X t Z t Z t t1 1 0 1 8d ψ( − ) ( ) = ( ) − ( − ), = , ± , …, ( )

The basic building block of FIMA(d,1) model is the MA(1) process: X t Z t Z t 1ψ( ) = ( ) − ( − ), 
which is a special case of the MA(q) model40,41. It appears that if X(t) is a stationary 1-correlated time 
series, i.e., X(s) and X(t) are independent whenever t s 1− >  (in contrast to an i.i.d. sequence, which 
is zero-dependent), then it can be represented as the MA(1) process40,41. The dependence is only one lag 
long and it’s intensity is fully controlled by the parameter ψ. Hence, the MA model introduces a short 
memory of the process. In general, the MA(q) process may reconstruct any arbitrary short time (finite 
lag) correlation structure from the experimental data. The fractional integration introduces the long 
(power-law) memory, which is defined by the memory parameter d. The FIMA(d,1) process is well-defined 
for − 1/2 <  d <  1/2. Such processes are asymptotically H-self-similar with the parameter H =  d +  1/2. The 
rate of decay of the autocovariance function of the FIMA(d,1) model is

r k X X k k s k0 a 9d2 1( ) = ( ) ( ) , → ∞. ( )−~

Therefore, for d >  0 we have r kk 0∑ = ( ) = ∞=
∞ . This serves as a classical definition of long memory 

and is equivalent to the case of FBM with H >  1/2. Similarly, for d <  0 we arrive at the negative power 
law decay, which corresponds to FBM with H <  1/2. The case d =  0 leads to the moving average (MA) 
model, which has exponentially decaying autocorrelation function40,41,43.

Furthermore, Brownian motion (BM) corresponds, in the limit sense57, to FIMA(0,0). Similarly, FBM 
corresponds to FIMA(d,0) with d =  H −  1/2, where H is the self-similarity parameter. The FIMA pro-
cesses offer flexibility in modelling long power-law and one-lag dependencies by choosing the memory 
parameter d and the appropriate moving average coefficient ψ in equation (8). Hence, it is possible to 
model and characterize more complex processes than using FBM alone.

FIMA estimation algorithm.  To make the FIMA(d,1) model feasible in applications, we need an 
efficient estimator of its parameters. Modifying58,59, we estimate the vector dβ ψ,= ( ). For a sample 
{x1,x2,…,xN} we denote the normalized periodogram by

I
x e

x 10
N

t
N

t
i t

t
N

t

1
2

1
2(λ) =

∑

∑
, − π ≤ λ ≤ π.

( )
=

− λ

=



The estimator of the parameter vector β is defined as the vector argument β, for which the following 
function attains its minimum value:

g
I

W
d

11
N

0∫β
β

( ) =
(λ)

(λ, )
λ,

( )

π 

where

W
1 2 cos

2 2 cos 12d

2

β
ψ ψ

(λ, ) =
( + λ + )

( − λ) ( )

is the spectral density of the FIMA process. The idea of the estimator is to find a parameter vector β for 
which the spectral density W β(λ, )  is the closest to its empirical counterpart, namely the periodogram 
I N(λ) . Such vector minimizes the value of the integral. The idea is similar to the standard maximum 
likelihood technique. In order to calculate β, we have used fminsearch function implemented in Matlab, 
which applies the simplex search method of60.
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