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Aims. To optimize and verify the regulatory pathway of p42.3 in the pathogenesis of gastric carcinoma (GC) by intelligent algorithm.
Methods. Bioinformatics methods were used to analyze the features of structural domain in p42.3 protein. Proteins with the
same domains and similar functions to p42.3 were screened out for reference. The possible regulatory pathway of p42.3 was
established by integrating the acting pathways of these proteins. Then, the similarity between the reference proteins and p42.3
protein was figured out by multiparameter weighted summation method. The calculation result was taken as the prior probability
of the initial node in Bayesian network. Besides, the probability of occurrence in different pathways was calculated by conditional
probability formula, and the one with the maximum probability was regarded as the most possible pathway of p42.3. Finally,
molecular biological experiments were conducted to prove it. Results. In Bayesian network of p42.3, probability of the acting
pathway “S100A11→RAGE→P38→MAPK→Microtubule-associated protein→ Spindle protein→Centromere protein→Cell
proliferation” was the biggest, and it was also validated by biological experiments. Conclusions.The possibly important role of p42.3
in the occurrence of gastric carcinoma was verified by theoretical analysis and preliminary test, helping in studying the relationship
between p42.3 and gastric carcinoma.

1. Introduction

The occurrence and development of gastric carcinoma is a
multifactor, multistage, and multistep process [1]. A large
number ofmolecules have been involved in it and constituted
a complex regulatory network [2]. Finding and identifying
the key biomarkers of high-risk warning, early diagnosis, and
effective treatment of gastric cancer are a focus of gastric can-
cer research [3]. So far, studies have confirmed that multiple
antioncogenes such as PTEN [4], p16 [5], p21 [3], Smad4 [2],
Fas [6], and RECK [3] and oncogenes such as, Ras [7], c-myc
[1], and MMPs [8] are associated with the development of
gastric carcinoma. p42.3 is a novel gene, cloned by applying
synchronization,mRNAdifferential display and bioinformat-
ics. Researchers have proved that p42.3 may play a vital role
in the occurrence and development of gastric carcinoma [9].
Some studies indicate that p42.3 has the characteristic of
oncogenes and tumor markers and it may be one of the early

molecular events in the development from gastric mucosa
lesion to gastric carcinoma [10]. However, these results did
not explain systematically the specific function of p42.3 in it.

According to our early study, p42.3 may be involved in
the regulatory pathway in the occurrence and development
of gastric carcinoma and the regulatory pathway is as
follows: Ras→Raf-1→MEK→MAPK kinase→MAPK→
microtubule-associated protein→ spindle protein→ cen-
tromere protein→ cell proliferation [11]. Nevertheless, it has
not been verified by molecular biological experiments. On
the basis of our previous study, through improvement of the
similarity algorithm between the reference protein and p42.3
protein, this study investigated the biological features of p42.3
by means of the regulatory network of the reference protein,
optimized the regulatory network of p42.3, modulated the
maximum possible pathway correspondingly, and verified it
by preliminary molecular biological experiments.
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2. Materials and Methods

2.1. Materials. Gastric carcinoma cell lines BGC823,
MGC803, SGC7901, AGS, N87, and GES1 were provided by
Beijing Cancer Hospital (the original sources were from
Shanghai Bioleaf Biotech Co., Ltd.) and were cultivated in
DMEM culture media with 5% fetal bovine serum in a 5%
CO
2
cell culture box at 37∘C.

2.2. Methods

2.2.1. Structural Features of p42.3. After obtaining the amino
acid sequence of p42.3 (GenBank: NP 848543) from NCBI
database, the spatial structure of protein was predicted by
the threading prediction tool Phyre2 (http://www.imperial.ac
.uk/phyre/, Imperial College London) [12]. Then, relevance
to cell proliferation in terms of function was set as the
restrictive condition, based onwhich the proteinwith the two
structural domains were searched and constituted the data
set of reference proteins. Whereby, the possible biological
property of p42.3 was studied.

2.2.2. Similarity Calculation of the Reference Protein and
p42.3 Protein. Multiparameter weighted sum method was
put to use in calculating the similarity of reference protein
and p42.3. First select several parameters in which the two
proteins have similarity to calculate the degree of similarity of
each parameter, and then add the weight trained by artificial
neural network. Finally, obtain the degree of similarity after a
weighted summation.

2.2.3. Selection of the Parameters. According to the literature
data, the following nine parameters of protein similarity were
selected: protein spatial structure, the number of atoms inside
the molecule, the number of amino acids in each protein, the
species of amino acids, the location of element P and element
S in the protein molecule, and the proportion of the number
of atoms C, N, and O in the protein molecule [13–16].

2.2.4. Similarity Calculation of the Spatial Structure of Protein.
Before calculating similarity values, the coordinates of each
atom in the protein structure file (pdb file) were determined
and Euclidean coordinates were used as spatial coordinates,
with the geometrical center of the protein as the origin. The
distance from each atom to the origin was then calculated.
According to these distances, the protein was divided into
layers and the structure similarity of two proteins in corre-
sponding layers was analyzed by stratified analysis. It was
found that the distances between most of the atoms of p42.3
protein and the origin were in the range of 0∼80 nm and a
small portion of the distance were within 80∼100 nm, and
also, very few of them were above 100 nm. Therefore, based
on the length of radius, p42.3 protein was divided into 10
layers from the center to outer edge. The distances of each
layer were as follows: the first layer 0∼10 nm; the second layer
10∼20 nm; the third layer 20∼30 nm; the fourth layer 30∼
40 nm; the fifth layer 40∼50 nm; the sixth layer 50∼60 nm;
the seventh layer 60∼70 nm; the eighth layer 70∼80 nm;

the ninth layer 80∼100 nm; and the tenth layer beyond
100 nm. The number of atoms in each layer was counted
for each of the proteins being compared and stored in array
vector data 1 and data 2, respectively. The similarity in atom
numbers in each layer was then compared using the formula:
sim = 1 − (|data 1 − data 2|/data 1), wherein sim represents a
ten-dimensional vector that has stored the similarity of each
layer.

Weights were then added to the similarity of each layer
and the overall density similarity was calculated by the
weighted summation method. It is reasonable to suppose
that the layers that contain the most atoms will be more
likely to determine properties of the protein. Based on this
assumption, the more atoms the layer owns, the higher the
weight of this layer is, so the proportion of the atoms number
in each layer determined the weight of this layer. Of course,
it is maybe different in every layer for two proteins, so the
averagewould be taken.Hence, each layerwasweighted as the
following formula:𝑤

𝑖
= ((𝑙
1𝑖
/𝑛
1
)+ (𝑙
2𝑖
/𝑛
2
))/2, 𝑖 = 1, 2, . . . , 10,

where 𝑛
1
is the total number of atoms of the first protein, 𝑛

2
is

the total number of atoms of the second protein, while 𝑙
1𝑖
and

𝑙
2𝑖
are the number of atoms in the 𝑖th layer in protein 1 and

protein 2, respectively. Thus, the spatial structure similarity
of the two proteins was obtained.

2.2.5. Similarity of the Total Number of Atoms and the Number
and Type of Amino Acids. Similarity algorithms of the three
parameters were alike.Thenumber of atoms and amino acids,
and the number of amino acid types in the two proteins were
calculated by textread function in MATLAB software. Then,
the number of atoms and the number and type of amino acid
can be read from the pdb file of the two proteins. The total
number of atoms of the two proteins was recorded as 𝑛

1
and

𝑛
2
, respectively, and then the formula used to calculate the

similarity in atom numbers was sim
𝑎
= 1 − (|𝑛

1
− 𝑛
2
|/𝑛
1
).

Likewise, the similarity of the number of amino acids and its
types could be also obtained.

2.2.6. Similarity of Each Element. This study was mainly to
analyze elements C, N, O, P, and S. Firstly, the proportion
of the number of C, N, and O to the total number of
atoms in each protein was calculated. Then, the similarity
was calculated among C, N, and O in accordance with the
formula: sim element = 1 − (|𝑛

1
− 𝑛
2
|/𝑛
1
). In addition,

in protein molecules, the number of elements P and S was
usually small, but they both play crucial roles in the function
of protein. While in p42.3 protein, there was only one S atom
and no P atoms. Therefore, it is obviously not scientific to
calculate the degree of similarity according to the number of
atoms of the two elements. Instead, similarity of the location
between atoms P and S was set as the criteria for calculation.
In this algorithm, it was assumed that if the two elements
P and S were in the same layer, the similarity was regarded
as 1.0; if they were in adjacent layers, the similarity was
0.8; otherwise, the similarity was 0. Therefore, the similarity
parameter of each element in proteins was achieved.

2.2.7. Calculation of the Weight of Each Parameter. Based on
the similarity of each parameter of protein that had been
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Table 1: Similarity weights for each parameter.

Parameter Similarity weight
Q1: Protein density 0.3183
Q2: Total number of atoms in each proteins 0.0343
Q3: Number of amino acids 0.0204
Q4: Amino acid type 0.0603
Q5: C 0.0653
Q6: N 0.1062
Q7: O 0.1002
Q8: P 0.1477
Q9: S 0.1480

figured out, the overall similarity was worked out by the
weighted summation method. Before this, data of 100 pairs
of similar protein pairs had been collected. According to the
methods described above, the similarity of each parameter
in each pair of proteins had been calculated: S1–S9. Then,
BLASTp was used to search the homology of each pair
of proteins, which was regarded as the overall similarity.
Therefore, for each pair of proteins, a similarity data vector
of 1∗10 can be achieved: [𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7, 𝑆8, 𝑆9, 𝑆].
Then the similarity data of the 100 pairs of proteins was
input to BP (back propagation) artificial neural network for
training; thus, the weights of each parameter Qi had been
achieved (Table 1).

Therefore, for each pair of proteins, their overall similarity
can be calculated by formula: 𝑆 = 0.3183𝑆

1
+ 0.0343𝑆

2
+

0.0204𝑆
3
+ 0.0603𝑆

4
+ 0.0653𝑆

5
+ 0.1062𝑆

6
+ 0.1002𝑆

7
+

0.1477𝑆
8
+0.1480𝑆

9
. In this formula, 𝑆 is the overall similarity

of the two proteins. 𝑆
𝑖
represents the similarity of each

parameter. 𝑖 = 1, 2 . . . , 9 were spatial structure (density),
number of atoms in the protein, number and type of amino
acids, number and proportion of C, N, and O atoms [8], and
spatial position of P and S atoms in the protein, respectively.
On the basis of this formula, the similarity of the reference
protein and p42.3 was thus figured out and the data set of the
reference proteins was composed.

2.2.8. Construction and Optimization of a Bayesian Regu-
latory Network. In condition of cellular proliferation, the
reference protein set obtained by the similarity calculation
was screened out. Then, with a reference protein as the
starting point and cell proliferation as the ending point, the
acting pathway and node of each reference protein were
collected. There are crosses between different pathways, thus
constituting a regulatory network [11]. In the network, “+”
indicates a positive role in promoting the regulation; “−”
represents a negative role in inhibiting the regulation. The
similarity of each reference protein and p42.3 was set as
the initially prior probability. By applying knowledge of
conditional probability, the probability of occurrence in each
node was worked out. The formula is

𝑃 (𝐸) = 𝑃 (𝐴𝐵𝐶) + 𝑃 (𝐴𝐵𝐷) + 𝑃 (𝐴𝐵𝐶𝐷) . (1)

Bayesian networks are Directed Acyclic Graphs (DAGs),
which describe the joint probability distribution of a finite

set of variables 𝑈 = {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
}. Bayesian networks

can be symbolized by the element pair 𝐵 = (𝐺, 𝜃), where
𝐺 is a DAG in which the nodes represent random variables
𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
. It can symbolize gene expression vectors in

expression profiling data, while 𝜃 represents the conditional
probability of each variable. DAG showed the independent
relation under the following conditions. It was the Markov
assumption; each variable𝑋

𝑖
was independent of its nonchild

node in the prerequisite that it was the parent node in 𝐺.
Based on the assumption of independence, the Bayesian
network 𝐺 had only one joint probability distribution for set
𝑈 was 𝑃(𝑋

𝑖
, . . . , 𝑋

𝑛
) = ∏

𝑛

𝑖=1
𝑃 (𝑋
𝑖
| Pa(𝑋

𝑖
)), where Pa(𝑋

𝑖
)

symbolizes the parent node of 𝑋
𝑖
. In order to determine the

joint probability above, all the conditional probabilities in this
formula need to be confirmed.

In the Bayesian network in this paper, after obtaining
the probability of occurrence in each node and pathway, the
Bayes theorem was used to inverse the probability of protein
in acting their roles in each node, thus finding the highest
possible regulatory pathway of p42.3 protein.

2.2.9. The Molecular Biological Test of the Optimal Path.
After obtaining the highest possible acting pathway of p42.3
protein through calculation and prediction, some basic bio-
logical experiments were carried out for initial validation.
To begin with, Trizol (invitrogen, America) method was
used for extraction of the total mRNA in the six cell lines:
BGC823, MGC803, SGC7901, AGS, N87, and GES1. Through
reverse transcription, cDNA was synthesized (cDNA reverse
transcription kit, Thermo fisher scientific company, United
Kingdom). According to the gene sequence of the reference
proteins and p42.3, the primers were designed. The sequence
of the primers was shown in Table 2. In contrast with 𝛽-actin,
the RT-PCRwas used to amplify, respectively, (PCR amplifier,
Eppendorf Company, Germany). After PCR products were
detected by agarose gel electrophoresis, the expressions of
various proteins in different cell lines were compared.

3. Results

3.1. Structural Features of the EF-Hand and CC-Domain. The
spatial structure of protein was predicted by the threading
prediction tool Phyre. A three-dimensional ligand-binding
model of the characteristic of p42.3 in EF-hand region was
predicted by using 3DLigandSite (http://www.sbg.bio.ic.ac
.uk/∼3dligandsite/, Imperial College London) [17].Themetal
ion binding sites of p42.3 were ALA78, SER79, TYR81, and
ARG86, as shown in Figure 1. The protein data set that had
high structural homology with EF-hand and CC-domain
(p42.3 molecule) was searched. Some of them with the same
structure of EF-hand were shown in Table 3. Then, proteins
relating to cell proliferation functionally were screened out as
the reference protein.

3.2. Similarity Calculation of the Reference Protein and p42.3.
The similarity algorithm of protein was compared by the sim-
ilarity of nine parameters mentioned above. The MATLAB
software (MathWorks, America) was used for programming.
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Table 2: Primers sequence of PCR.

Name Primer sequence Amplification length Renaturation temperature

S100A11 F: 5󸀠-ATCGAGTCCCTGATTGCTGT-3󸀠 331 bp 59∘C
R: 5󸀠-AGAAAGGCTGGAAGGAAAGG-3󸀠

S100A2 F: 5󸀠-CGCGAATTCATGTGCAGTTCTCTGGA-3󸀠 294 bp 56∘C
R: 5󸀠-CCGGGATCCCTCAGGGTCGGTCTGG-3󸀠

𝛽-actin F: 5󸀠-TTCTGACCCATACCCACCAT-3󸀠 508 bp 56∘C
R: 5󸀠-ATTACAGTGCGTGCTAAAGG-3󸀠

Table 3: Structural data set of EF-hand that is similar to the partial structure of p42.3 molecule.

SCOP code 𝐸 value Estimated precision Fold/PDB descriptor Superfamily Family
d1iq3a [18, 19] 0.51 80% EF hand-like EF-hand EH domain
d1s6ja [20, 21] 0.52 80% EF hand-like EF-hand Calmodulin-like

c2pmyB [22, 23] 0.61 80% PDB header: structural
genomics, unknown function

PDB molecule: ras and EF-hand
domain-containing protein

PDB title: EF-hand domain
of human rasef

d1sw8a [24–26] 0.71 75% EF hand-like EF-hand Calmodulin-like
d1c7va [27, 28] 0.76 75% EF hand-like EF-hand Calmodulin-like
d1hqva [29] 0.85 75% EF hand-like EF-hand Penta-EF-hand proteins
d1tiza [30, 31] 0.89 75% EF hand-like EF-hand Calmodulin-like
d1g33a [32, 33] 0.91 75% EF hand-like EF-hand Parvalbumin
d1fw4a [34] 1 75% EF hand-like EF-hand Calmodulin-like
d1f54a [35] 1 75% EF hand-like EF-hand Calmodulin-like

ARG86

SER79
ALA78
TYR81

Figure 1: Ligand combination model of EF-hand structural domain
in p42.3 molecule.

The similarity of the reference protein and p42.3 was calcu-
lated. After screening by “cell proliferation,” the results were
displayed in Table 4.

3.3. Bayesian Regulatory Network. Cell proliferation was set
as the restrictive condition, and the acting pathways and
nodes of different reference proteins were worked out by
literature collection.With different acting pathways crossing,
the regulatory network was thus formed, shown in Figure 2.
The roundnodes represent the reference proteins and they are
the initial nodes.The relation between each node is upstream
and downstream regulation. Arrows indicate the direction of
action. “+”: a positive regulation and “−”: a reverse regulation.

The similarity of the reference proteins and p42.3 was
treated as prior probability of the initial parent nodes.
According to formula (1), the probability of occurrence in

each node downstream was calculated until figuring out
the final results of cell proliferation. The final one is the
probability of occurrence of that pathway. The results were
shown in Figure 3. The probability of the path in thick line
was 0.9781, higher than that of other pathways. Connected
with the results of protein similarity comparison, it can
be initially verified that the pathway “S100A11→RAGE→
P38→MAPK→Microtubule-associated protein→ Spindle
protein→Centromere protein→Cell proliferation”waswith
the highest possibility.

3.4. The Molecular Biology Test. Based on the analysis of the
spatial structure of p42.3 and Bayesian regulatory network,
expressions of S100A11 (the protein with the largest positive
maximum weighted value) and S100A2 (the protein with the
shortest negative acting path) in gastric carcinoma cell lines
were examined, respectively, for preliminary valediction of
the correlation of p42.3 and S100A11. The results showed that
when p42.3 showed normal expression, both S100A11 and
S100A2 had shown expressions. In Figure 4, it was indicated
that expression of S100A11 was extremely similar to that
of p42.3, while the expression of S100A2 was considerably
different from that of p42.3. By referring to the analysis of the
protein structure, it could be concluded that the regulatory
pathway of p42.3 may be consistent with that of S100A11, or it
may be involved in the regulatory pathway.

4. Discussion

The occurrence and development of gastric carcinoma
involve changes in the structure and expression of multiple



Computational and Mathematical Methods in Medicine 5

Table 4: Protein data set gained by using the spherical coordinate space hierarchical similarity algorithm.

Protein name Number of
atoms

Number of
amino acids

Type of amino
acid C N O S P Spatial structure Overall

similarity
Weight allocation 0.0343 0.020 0.0603 0.0653 0.1062 0.1002 0.1480 0.1477 0.3183 —
S100A11 0.9708 0.9083 0.5294 0.9704 0.8677 0.9226 0.8000 1.0000 0.7384 0.8102
RASEF 0.6557 0.6881 0.9412 0.9929 0.9497 0.9069 0.8000 1.0000 0.6515 0.8068
GCN4 0.6241 0.2752 0.8235 0.9615 0.9271 0.9972 0.8000 1.0000 0.6231 0.7624
FKBP −0.0255 0.9817 0.7647 0.9655 0.9067 0.9589 1.0000 1.0000 0.5055 0.7334
CENP-B 0.1144 0.4587 0.7647 0.9478 0.9172 0.9488 1.0000 1.0000 0.5535 0.7312
S100A2 0.2032 0.8532 0.5882 0.9611 0.8015 0.8642 0.8000 1.0000 0.5756 0.7046
CIB 0.1034 0.0826 0.8235 0.9497 0.8854 0.9778 0.8000 1.0000 0.5765 0.7026
GPD1 −0.5864 0.6789 0.7647 0.9561 0.8754 0.9505 0.8000 1.0000 0.5905 0.6944
PAK1 0.1521 −0.0275 0.6471 0.9575 0.8543 0.9398 0.8000 1.0000 0.5647 0.6716
ACTN1 −0.2701 −0.3761 0.8235 0.9596 0.9004 0.9721 1.0000 1.0000 0.5902 0.6883
APC 0.9720 0.5046 1.0000 0.9902 0.8994 0.8022 0 1.0000 0.4929 0.6709
GP41 0.4489 0.4128 0.7647 0.9504 0.9527 0.9699 0 1.0000 0.4517 0.6166
S100A12 0.2007 0.8257 0.2941 0.9603 0.8809 0.9300 0 1.0000 0.5668 0.6058
MACF −0.7944 −0.3578 0.5294 0.9641 0.8395 0.8972 0.8000 1.0000 0.4992 0.5691
MST3 −0.4866 −0.5963 0.2941 0.9407 0.8296 0.9467 0 1.0000 0.5876 0.4997
CHP1 −1.7798 0.1376 0.8824 0.9796 0.9118 0.9021 0 1.0000 0.4568 0.4969
S100A1 −1.5122 0.8532 0.8824 0.5230 0.4119 0.5927 1.0000 1.0000 0.3412 0.4923
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Figure 2: Primary regulatory networks.

related genes [9]. In particular, the activation of oncogenes
and inactivation of tumor suppressors play important roles
in it [10]. So far, many studies have tried to disclose the
molecular regulatory mechanisms of gastric carcinoma in
order to find biomarkers for the diagnosis and treatment of
gastric cancer, which is expected to be an effective adjuvant
therapy of surgery and chemoradiotherapy.

p42.3 expression is dependent onmitosis and is expressed
at low levels or not at all in normal gastric mucosa but is
highly expressed in gastric carcinoma tissues. It has the effect
of promoting cellular proliferation and tumor metastasis [9].
Changes of p42.3 gene expression that occur during the
development of gastric carcinoma indicate that p42.3 might
be a direction of gastric carcinoma diagnosis and treatment
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Figure 3: The most possible acting pathway of p42.3 protein by optimization of Bayes theorem.
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Figure 4: Expressions of p42.3, S100A11, and S100A2 in the cell lines
of gastric carcinoma.

[10, 11]. It was found that an EF-hand structural domain
existed in the N-terminal amino acid sequence of p42.3
protein, which also presented in the S100 family of proteins
[36]. The EF-hand structure consists of a typical helix-loop-
helix structural unit; that is, two alpha helixes linked by
a Ca2+ chelate ring [37]. In all the reports about EF-hand
structures, the majority of EF-hand structural domains are
even number and form structural domain pairs, separated by
connexin, or homologous or heterologous dimmers, such as
S100 family proteins with two EF-hand structural domains
[38, 39]. Proteins with odd number of structural domains
usually need to form homologous or heterologous dimers
and their activity is presented in the form of dimer. CC-
domain is a kind of super-secondary structure of protein,
intertwined by two to seven 𝛼 helices (most commonly two
or four) to form a braided structure [40]. Many proteins with
coiled helical structures have significant biological functions,
such as the transcription factor in the regulation of gene
expression [40]. The most well-known proteins containing
coiled helical structures are oncoprotein and tropomyosin. To
study the action mechanism of p42.3, a similarity algorithm

withmultiparameter calculation was adopted to find proteins
with high structural similarity to p42.3. As a result, proteins
that might be related to the occurrence of gastric carcinoma
were screened and treated as gene regulatory path nodes [11].
By a series of probability calculation, it was found that the
possible action mechanism of p42.3 in the pathogenesis of
gastric carcinoma was S100A11→RAGE→P38→MAPK→
Microtubule-associated protein→ Spindle protein→ Cen-
tromere protein→Cell proliferation (Figure 3). And the
initial molecule experiments also confirmed the consistency
of p42.3 and S100A11 gene expression in gastric carcinoma cell
(Figure 4).The study of gene regulatory networks can be used
to quantitativelymine information regarding gene expression
regulation from one side. Through extracting and analyzing
this information, gene function and genetic networks can
be understood, and the pathogenesis of the disease will be
clear. The study of gene regulatory networks aids in the
exploration of gene function in the overall framework [11].
Genes’ functions should be studied not only from a structural
level but also from a network level. Genes affect each other
and work together in intricate networks, which consequently
contain new functions that cannot be fully revealed by the
DNA sequence.

The S100 proteins are a group of calcium-binding pro-
teins with low molecular weight (10–12 kDa). Its amino acid
sequence is highly conserved in vertebrates [41]. S100 proteins
share a high degree of homology with calmodulin and other
EF-Hand calcium binding proteins [41]. From the biological
function, specific expression and chromosomal localization
in tumor of S100 protein family and the intimate relation
between S100 protein and tumor can be found. Recently,
studies have indicated that S100A11 (S100C) can serve as
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a tumor suppressor protein in some tumors and a tumor pro-
moter in other tumors [42]. S100A11 is upregulated in breast
cancer, prostate cancer, and nonsmall cell lung cancer, where
it promotes tumor metastasis and invasion [43, 44]. On
the contrary, S100A11 acts as a tumor suppressor in urinary
bladder and renal carcinoma [45]. Our experimental results
present an upregulated expression of S100A11 in gastric can-
cer. As a candidate tumor suppressor protein, the expression
of S100A2 is significantly lower in a variety of malignancies,
such as breast, liver, prostatic, and esophageal cancer [46–49].
Studies have indicated that S100A2 can inhibit cell prolifer-
ation and invasion and act as a tumor suppressor involved
in the occurrence and metastasis of gastric carcinoma [50],
which is in agreement with our findings. Through analysis
of expression of S100A11 and S100A2 in gastric cancer, both
of which contained EF-Hand structure, it was verified that
p42.3 could participate in the occurrence and development of
gastric cancer from both consistent and opposite to the p42.3
effect direction.

Currently, there are various ways to compare protein
structures, each with their own advantages and disadvantages
[51]. By analyzing the structure of the proteins, most of
them calculate the similarity value of a pair of proteins by
applying a mathematical algorithm. That is, from the spatial
conformation of protein, they all have only analyzed the
characteristics of spatial structure of proteins. The similarity
of proteins in other aspects was not taken into account. For
example, element P and element S are crucial to the functions
of proteins. Using the multiparameter comprehensive com-
parisonmethod, this study not only compared the differences
between the two proteins in the spatial atomic density but
also considered the similarity of many other aspects. When
conducting the weighted summation of each parameter, the
weights used all came from training of diverse data not from
subjective weighting. It guarantees the accuracy of weight of
each parameter and avoids the mistakes that some parameter
is of little importance to the overall similarity but with high
weight. Consequently, the similarity of two proteins was
figured out more accurately. All the process of calculation
was carried out by the M file compiled by MATLAB. Batch
comparison of any amount of proteins could be carried out
easily and quickly.

5. Conclusions

Here, the ligand-binding model of the EF-hand structure of
p42.3 was successfully predicted. Meanwhile, a Bayesian net-
work using the corresponding mathematical algorithm was
constructed and optimized to predict themost likely pathway.
On the other hand, molecular biology experiments indicated
that p42.3 and S100A11 may be with the commonplace in
character, and this provided a hypothesis for us to conduct
further research. In a word, our findings provide important
research directions for exploring the mechanism of action of
p42.3 in gastric cancer.
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