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Abstract
We present a quantitative model for the binding of divalent ligand–receptor systems. We study the influence of length and flexi-

bility of the spacers on the overall binding affinity and derive general rules for the optimal ligand design. To this end, we first

compare different polymeric models and determine the probability to simultaneously bind to two neighboring receptor binding

pockets. In a second step the binding affinity of divalent ligands in terms of the IC50 value is derived. We find that a divalent ligand

has the potential to bind more efficiently than its monovalent counterpart only, if the monovalent dissociation constant is lower than

a critical value. This critical monovalent dissociation constant depends on the ligand-spacer length and flexibility as well as on the

size of the receptor. Regarding the optimal ligand-spacer length and flexibility, we find that the average spacer length should be

equal or slightly smaller than the distance between the receptor binding pockets and that the end-to-end spacer length fluctuations

should be in the same range as the size of a receptor binding pocket.
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Introduction
Multivalency is a common design principle in biological

systems. The simultaneous binding of several, relatively weakly

binding partners is a widely used strategy to strengthen the

overall binding affinity [1-3]. Multivalency is believed to play

an important role in evolutionary processes, since the collective

interaction of several rather simple ligands makes the develop-

ment of more complex binding partners with a higher binding

affinity unnecessary [2]. Also in drug design, the synthesis of

artificial multivalent ligands is a promising route to increase the

binding affinity or to reduce the amount of substance required

for treatment [4-7].

The term multivalency is used for systems that consist of

several identical binding partners. Thereby, the larger binding

partner, for example a protein, is commonly denoted as

receptor, whereas the smaller binding partner, for instance an
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Figure 1: (a) Schematic of a divalent ligand–receptor system: The receptor has two binding pockets with a distance d from each other and a binding
range σ. The ligand consists of two identical ligand units, connected via a spacer of contour length L. The end-to-end distance of the ligand is denoted
as r. (b) Binding modes of a divalent ligand: (1) One ligand occupies one binding pocket. (2) Two ligands occupy two binding pockets. (3) One ligand
occupies both binding pockets.

enzyme or a single molecule, is denoted as ligand. The binding

strength of a multivalent structure significantly depends on

details of the presentation of ligands and receptors [1]. Each

multivalent ligand consists of several monovalent ligands that

are connected via a scaffold. The binding affinity of such a

multivalent ligand is determined by the interplay between gain

in binding energy and loss of entropy associated with con-

formational degrees of freedom. The more flexible the scaffold

is, the better it can adapt to the geometry of the receptor, but the

more pronounced on the other hand is the entropy penalty. This

simple, qualitative argument shows that the careful choice of

the ligand scaffold is essential, in order to benefit from multiva-

lent enhancement. It is therefore desirable to derive a model that

allows one to predict the binding affinity of a given ligand-scaf-

fold construct. Several theoretical studies have been dedicated

to study the interaction between multi- and polyvalent ligands

with receptors arranged on planar surfaces [8-13]. The over-

whelming variety of multivalent ligand architectures that range

from small divalent ligands to densely packed nanoparticles, led

to different approaches to describe multivalency, depending on

the size and valency of the system. Several studies aimed to

treat ligand–receptor systems with different structures and

valencies in the framework of a generalized theory [14,15].

The smallest multivalent system consists of a divalent ligand

that interacts with a divalent receptor. Despite its seeming

simplicity, the rational design of divalent ligands is still chal-

lenging [16-19]. In this paper we examine a general model for a

divalent receptor–ligand system in order to estimate the binding

affinity from the dissociation constant of the monovalent ligand

and the length and flexibility of the ligand spacer.

Figure 1a schematically depicts a divalent ligand–receptor

system. The receptor possesses two binding pockets at a dis-

tance d from each other. A binding range of σ characterizes

each binding pocket. The divalent ligand consists of two ligand

units that are connected via a spacer. The contour length of the

spacer is denoted as L. There are three different modes in which

a divalent ligand can bind to a divalent receptor. Each of these

binding modes has a different number of realization possibili-

ties as summarized in Figure 1b: (1) One binding pocket is

occupied by one ligand. (2) Two binding pockets are occupied

by two ligands. (3) Two binding pockets are occupied by one

ligand. The binding affinity in the latter case is strongly influ-

enced by the conformational linker properties, which can be

conveniently discussed in terms of the effective concentration.

The effective concentration describes the local concentration of

one ligand unit close to one binding pocket, if the other ligand

unit is assumed to be bound to the other binding pocket. The

effective concentration thus corresponds to the probability that

the spacer extends to an end-to-end distance that is equal to d, if

spacer–receptor interactions are neglected [20]. In the first

section different models for the effective concentration are

discussed, with particular focus on the influence of the spacer

stiffness and the binding range σ.

For each binding mode depicted in Figure 1b the following

dissociation constants are derived: (1) The dissociation constant

is equal to the dissociation constant of the monovalent ligand,

Kmono, multiplied by a factor of 1/α, which accounts for the

reduced degrees of freedom of the spacer, since it cannot pene-

trate the receptor. The parameter α can adopt value between 0

and 1. In the limiting case, in which the spacer sterically

inhibits the ligand unit from binding to the receptor, α becomes

0. In the hypothetical case, in which the conformational degrees

of freedom of the spacer do not reduce at all when binding

to a receptor, the parameter α becomes 1. (2) Each ligand

contributes with a factor of Kmono/α to the dissociation constant.

(3) The dissociation constant consists of the monovalent disso-

ciation constant for each ligand times the probability that the

spacer bridges the two binding pockets. A detailed derivation of

the dissociation constants is presented in Supporting Informa-

tion File 1. Furthermore, Figure 1b summarizes the combinato-

rial factors for each binding mode that count the number of

equivalent permutations. We regard the divalent ligands as

distinguishable, we note in passing that this could reflect poly-
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meric spacers that exhibit chemical asymmetry. Our final

results do not depend on whether we assume indistinguishable

ligand units or not.

Results and Discussion
Effective concentration – wormlike-chain
model
Samuel and Sinha [21] developed an exact method to describe

the conformational statistics of wormlike chains for the whole

range from short to long polymers. Their model is applied here

to determine the effective concentration Ceff, which is equiva-

lent to the end-to-end distance probability distribution, with the

normalization . An example is shown in

Figure 2. The length of the fully extended spacer L is set to

5 nm. The effective concentration, i.e., the probability that a

spacer of given length and stiffness extends to a certain end-to-

end-distance d, is shown for different persistence lengths lp. The

flexible spacer (lp = 1 nm) exhibits a maximum at d = 0.

Furthermore, the distribution is very broad, indicating that a

flexible spacer can easily bridge two binding pockets, even if

the spacer length does not exactly match the inter binding

pocket distance d. For a slightly stiffer spacer (lp = 1.3 nm), Ceff

is even broader, but the maximum of Ceff is reduced by a factor

of about one half and the distribution shows a plateau between

d = 0 nm and d = 3 nm. For stiff spacers (lp = 5 nm and

lp = 10 nm), Ceff exhibits a narrow peak close to the fully

extended state. In the bound state, the ligand units explore the

range σ of a receptor binding pocket. Hence, it is useful to

consider the effective concentration averaged over the range of

both binding pockets. We denote the averaged effective concen-

tration as  with

(1)

with Vbp the volume of one binding pocket, r1 and r2 the posi-

tions within the first and second binding pocket. We introduce

the connecting vector r = |r1 − r2| and express r in spherical

coordinates:

(2)

with r the distance between the two ligand units, θ the angle

between r and the connecting vector of the binding pocket

midpoints and φ an angle that describes the rotation around the

connecting vector of the binding pocket midpoints. Since the

range of the binding pocket σ is assumed to be much smaller

than the distance between the binding pockets d, we conclude

that the integrals in Equation 2 approximately factorize.

Furthermore, the size of the binding pocket limits the range

over which the angle θ can vary. In the range, where r varies

between d − σ and d + σ, the angle θ can adopt a maximum

value of arctan(σ/r). The upper limit for the integration over θ

then reads

The integration over r can now be described by variations of r

in the range from d − σ and d + σ. With these approximations,

Equation 2 can be written as an effective average over one

dimension:

(3)

In Figure 2, the averaged effective concentration is shown as

green, dashed lines, with σ = 0.25 nm. A flexible spacer can

easily extend to all positions within the binding pockets. Hence,

one cannot observe any significant difference between  and

Ceff. In contrast, a very stiff spacer cannot explore the whole

binding pocket. Therefore, the averaged effective concentration

is reduced and slightly broadened around its maximum, as can

be seen best in Figure 2 for lp = 10 nm.

Figure 2: Effective concentration Ceff of spacers with a contour length
of L = 5 nm as a function of the distance between the binding pockets.
The effective concentration is shown for different spacer stiffness, in
terms of different persistence lengths between lp = 1–10 nm (contin-
uous lines). The effective concentration , averaged over a binding
pocket range σ = 0.25 nm, is shown as green, dashed lines.
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Figure 3: Average end-to-end distance, rete, end-to-end-distance
where the effective concentration Ceff exhibits a maximum, rmax, vari-
ance of the end-to-end distance distribution, Δr, maximum of the effec-
tive concentration,  (continuous line), and effective concentration
at rete, Ceff(rete) (dashed line), in dependence of the persistence length
lp. All lengths are measured in units of the spacer contour length L.
Spacers with a persistence length lp < 0.26L are called flexible.
Spacers with a persistence length lp > 0.26L are called stiff. For stiff
spacers the relation between Δr/L and the persistence length is well
described by Δr/L = 0.1L/lp (dotted line).

Figure 3 summarizes the averaged end-to-end distance rete, the

end-to-end distance that corresponds to a maximum in Ceff,

rmax, the variance of the end-to-end distance distribution Δr, the

maximum of the effective concentration  and the effective

concentration at rete, Ceff(rete), for different persistence lengths.

The influence of the binding range σ is neglected here. The

average end-to-end distance rete increases monotonically with

increasing persistence length and approaches the contour length

L for very stiff spacers. All other quantities reveal a clear-cut

difference between the flexible and stiff limits. The classifica-

tion “flexible” and “stiff” is, of course, to some degree arbi-

trary. We here apply a definition that is based on the disconti-

nuity in rmax, which is the most prominent feature in the chain

observables. In the following, spacers with a persistence length

smaller than 0.26L are called flexible and spacers with a persis-

tence length larger than 0.26L are called stiff. The variance Δr

exhibits a maximum around lp = 0.26L, for stiffer spacers Δr

reduces rapidly. As can be seen in Figure 3, the variance Δr

depends on the persistence length as Δr = 0.1L2/lp (dotted line)

for stiff spacers. Mac Kintosh et al. found the same scaling for

the fluctuations of semiflexible polymers [22]. The maximum

of the effective concentration  (continuous line) as well as

the effective concentration at rete, Ceff(rete), (dashed line) are

minimal in the same region where Δr is maximal. Since for a

stiff spacer rmax and rete are both close to L,  and Ceff(rete)

exhibit only small deviations from each other. For flexible

spacers on the other hand, Ceff(rete) can be much smaller than

the maximal effective concentration. The results presented here

show that neither the persistence length nor the contour length

alone are sufficient to describe the behavior of the effective

concentration, rather the ratio between persistence length and

contour length, lp/L, characterizes the conformational behavior.

Note that for a typical receptor distance of d = 5 nm, DNA

molecules with lp = 53 nm are characterized by a ratio lp/L ≈ 10

and thus correspond to the very stiff limit. Polyethylene glycol

(PEG) with a persistence length of about lp = 0.38 nm on the

other hand is characterized by a ratio smaller than lp/L = 0.08

and thus correspond to the flexible limit [23].

Effective concentration – harmonic spring
and Gaussian chain approximation
The wormlike-chain model requires complex numerical analysis

for the calculation of conformational chain properties. In a

simplified model the spacer statistics can be described as a

harmonic spring or a Gaussian chain with suitably chosen para-

meters. The advantage of this model is that the effective

concentration can be derived in closed form. Furthermore, we

show that despite its simplified assumptions the model accu-

rately reproduces the effective concentration Ceff(rete) for flex-

ible as well as for stiff spacers.

Stiff spacer – harmonic spring approximation
A stiff spacer is on average extended to almost its full length.

The fluctuations around its most probable end-to-end distance

r0 are assumed to be much smaller than the contour length L.

We approximate the free energy F, similar to a harmonic spring,

as

(4)
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with k the effective spring constant and d the end-to-end dis-

tance. The effective concentration Ceff(d), i.e., the normalized

probability to extend the spacer to a certain end-to-end distance

d, reads

(5)

The averaged effective concentration  as defined in

Equation 3 then becomes:

(6)

In order to express the effective concentration in term of the

experimentally more relevant average end-to-end distance rete

and the variance Δr, we first have to determine the relation

between rete and Δr on the one side and k and r0 on the other

side.

From the free energy F in Equation 4 the average end-to-end

distance rete and the variance Δr are obtained as:

(7)

(8)

(9)

(10)

Note that according to our notation, the average end-to-end dis-

tance rete is not equivalent to the root mean squared end-to-end

distance . The variance Δr hence reads:

(11)

(12)

Using Equation 6 and the results for Δr and rete in terms of

the model parameters k and r0 in the stiff spacer limit

, the averaged effective concentration reads:

(13)

For a fixed distance d that has to be spanned by the ligand, the

effective concentration becomes maximal for rete = d and we

obtain, for this optimized spacer length, the result:

(14)

Furthermore, we can differentiate between two cases: 1) the

chain fluctuations are smaller than the binding range (Δr << σ)

and 2) the chain fluctuations are larger than the binding range

(Δr >> σ), leading to

(15)

(16)

We see that in both limits, the maximal effective concentration

decreases quadratically with the distance d. More importantly,

increasing the stiffness of the spacer (decreasing Δr) increases

the effective concentration, but only until the variance Δr
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Figure 4: Effective concentration for the optimized average end-to-end distance rete=d for the wormlike chain model (continuous line) and the
harmonic spring model Equation 17 (dotted line, subfigure a) as well as the Gaussian-chain model Equation 25 (dotted line, subfigure b). In the calcu-
lation, we vary the ratio between persistence length and contour length lp/L, which results in different ratios Δr/d and d/L, respectively. (a) Stiff spacers
are well approximated by Equation 17. (b) Flexible spacers are well approximated by Equation 25.

becomes of the same order as the binding range σ. For even

stiffer spacers the effective concentration stagnates, as can be

seen in Equation 15. We conclude that it is not advantageous to

increase the spacer stiffness beyond the situation where the end-

to-end distance variance Δr becomes smaller than the receptor

binding range σ. To compare this model with the wormlike-

chain model Equation 16 is rewritten as:

(17)

As can be seen in Figure 4a Equation 17 describes the behavior

of stiff wormlike chains very well.

Flexible spacer – Gaussian-chain approximation
The effective concentration of flexible polymers is often

modeled by a Gaussian chain [11,20,24] with the free energy:

(18)

using the mean squared end-to-end distance . The end-to-

end distance rete and the variance Δr can be expressed in terms

of the mean squared end-to-end distance:

(19)

(20)

As a consequence the end-to-end distance rete and the variance

Δr are related as

(21)

Furthermore, the mean squared end-to-end distance can be

written as

(22)

with b being the Kuhn length of one chain segment and N the

number of segments.

We here present the effective concentration as a function of d

and rete.

(23)

Using Equations 19–22, rete can as well be substituted by ,

Δr or N.

Note that the effective concentration of a flexible spacer with

fixed contour length L is maximal at a distance d = 0, as shown

in Figure 2. In contrast, for a given distance d the effective

concentration becomes maximal at . In other
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words, the average end-to-end distance of an optimized flexible

spacer is smaller than the distance between the binding pockets

by a factor of :

(24)

Since we consider the fluctuations of a flexible chain much

larger than the range of the binding pocket, we neglect the influ-

ence of σ on the effective concentration. In order to compare the

behavior of a Gaussian chain with the results for a flexible

wormlike chain, Equation 24 is rewritten as:

(25)

In Figure 4b, Equation 25 is shown together with the numerical

results from the wormlike chain model obtained in the previous

section. The two models show good agreement in the flexible

limit, as expected.

Conformational degrees of freedom of a teth-
ered spacer
If one ligand unit is bound to one of the binding pockets, the

conformational degrees of freedom of the spacer are reduced,

since it cannot penetrate the receptor surface. We quantify this

reduction by the parameter α, which describes the ratio between

the partition function of a tethered and a free spacer. The value

of α depends on the shape of the receptor and the flexibility of

the spacer. To estimate the typical magnitude of α we consider

as limiting cases a stiff rod as well as a flexible Gaussian chain

tethered to a planar surface.

Stiff spacer
For a stiff rod attached with one end to a planar surface, the

parameter α becomes α = 1/2, since the rod can only explore

one half space.

Flexible spacer
As a second example we discuss a Gaussian chain. Equiva-

lently to Equation 23 the normalized probability that a Gaussian

chain consisting of N segments extends to an end-to-end dis-

tance r with b being the length of one segment reads in free

space:

(26)

We now assume that one end of the chain is attached to the

surface. Similar to the considerations made for a stiff rod, we

approximate the probability that the first segment does not

penetrate the surface by a factor 1/2. The probability distribu-

tion for the remaining N − 1 segments then reads:

(27)

with ρ the component of the end-to-end vector parallel to the

surface and z the height above the surface. The last term in

Equation 27 ensures that the chain does not penetrate the

surface (P′(ρ,z = 0,N) = 0). To obtain the parameter α, P′ has to

be integrated over one half space:

(28)

In the limit of a long chain (N >> 1), Equation 28 can be

approximated as:

(29)

A PEG spacer with b = 0.38 nm requires 30–800 segments to

adopt an average end-to-end distance of 2 to 10 nm. In this

range α varies between 0.02 and 0.13.

Binding affinity
With the effective concentration and a parameterization for the

reduction of the conformational degrees of freedom of the

spacer at hand, we now can examine the binding affinity of a

divalent ligand. A common way to quantify the binding affinity

of a multivalent ligand is the so-called IC50 value, the ligand (or

inhibitor) concentration at half maximal inhibition. In a first

step we want to re-derive the relation between the IC50 value

and the dissociation constant of a monovalent ligand [25,26].
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Monovalent ligand
In the reaction , the dissociation constant

Kmono of a monovalent ligand interacting with a monovalent

receptor is defined as

(30)

with [L] and [R] being the concentration of unbound ligands

and unbound receptors and [RL] the concentration of bound

ligands or equivalently the concentration of bound receptors.

If half of all receptors are occupied, which defines the IC50

condition, the other half must be unbound and as a conse-

quence [R] = [RL]. From Equation 30 we see that under IC50

conditions the dissociation constant equals the concentration of

unbound ligands:

(31)

with the index 50 indicating that the IC50 condition is fulfilled.

In the monovalent case exactly one ligand binds to one receptor.

Thus, the concentration of bound ligands under IC50 conditions

is given by half the total receptor concentration:

(32)

with [R]0 = [R] + [RL] the total receptor concentration.

Combining Equation 31 and Equation 32 the IC50 value is

obtained as [25]:

(33)

In the limit of dilute receptor conditions ([R]0 << Kmono) the

IC50 value is a good approximation for the dissociation

constant, and we find:

(34)

Divalent ligand
In analogy to the monovalent case, we now derive an expres-

sion for the IC50 value of a divalent ligand. There are different

ways of defining half maximal inhibition for divalent receptors.

We first adopt a heuristic definition where half of all receptor

binding pockets are occupied by a ligand unit. This definition is

most relevant for competitive binding assays, for instance

surface plasmon resonance measurements [27], since the

measured signal in a competitive binding assay is related to the

number of occupied binding pockets. Later, we also define a

situation in which at least one ligand unit is bound to half of all

receptors as IC50 condition, which mimics non-competitive

binding assays, as for instance hemagglutination assays [28]. In

non-competitive binding assays the number of bound ligands

rather than the number of occupied binding pockets is

measured. In general the concentration of occupied binding

pockets [bp]occ of divalent receptors reads:

(35)

with [RLn] being the concentration of bound ligand–receptor

pairs, with n referring to the three binding modes summarized

in Figure 1b. Each term on the right hand side of Equation 35

has two prefactors. The first prefactor counts the number of

occupied binding pockets per receptor and the second prefactor

counts the permutations due to the distinguishability of the

ligand units and the receptor binding pockets (see Figure 1b).

Note that the number of permutations presented in Figure 1b

and Equation 35, are obtained for distinguishable ligand units.

For indistinguishable ligand units the number of permutations in

each binding mode is reduced. At the same time the dissocia-

tion constant of a ligand with indistinguishable ligand units is

reduced by the same factor. Hence, the overall concentration of

bound ligands does not change. A detailed derivation of the

dissociation constants for each binding mode is presented in

Supporting Information File 1.

In the same way the total concentration of binding pockets,

[bp]0, can be obtained as

(36)
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(39)

(40)

(42)

In order to discuss also the IC50 condition for non-competitive

binding assays we derive the concentration of receptors with at

least one binding pocket occupied, [R]1bp, and the total receptor

concentration, [R]0, as

(37)

(38)

With Equations 35–38 the IC50 condition for competitive and

non-competitive binding is expressed as given in Equation 39

and Equation 40.

In analogy to the monovalent case we define the multivalent

dissociation constant Kmulti as the concentration of free ligand

under IC50 conditions, as defined in Equation 39 and

Equation 40.

Equation 41 and Equation 42 show the multivalent dissociation

constant Kmulti in case of competitive binding and non-competi-

tive binding, respectively.

(41)

Competitive and non-competitive binding exhibit the same

qualitative behavior for large effective concentrations. We

therefore limit the further discussion to competitive binding, as

given in Equation 41.

As one would intuitively expect, the multivalent dissociation

constant Kmulti becomes proportional to the monovalent dissoci-

ation constant, if the effective concentration is low, i.e., if

. In contrast, the multivalent dissociation constant
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(43)

decreases, if the dissociation constant of the monovalent ligand

is small and if the effective concentration, i.e., the probability to

connect two binding pockets, is large.

To determine the total ligand concentration we first have to

derive the concentration of bound ligand [L]bound as shown in

Equation 43.

Using Equation 38 and 43, a relation between the concentration

of bound ligands and the total receptor concentration under IC50

conditions is obtained as

(44)

(45)

where we note that that ψ is a coefficient that varies between 1

and 5/4. Similar to the results for monovalent receptor–ligand

systems in Equation 34, the IC50 value becomes equivalent to

the multivalent dissociation constant, in the limit of low

receptor concentrations, i.e., for [R]0 << Kmulti:

(46)

To compare monovalent and multivalent ligands we use the

relative binding affinity (RBA), which we define as

(47)

Here, the factor 2 accounts for the valency of the ligand and

ensures that the concentration of ligand units are compared. The

larger the RBA the better is the divalent ligand. For RBA = 1 the

same concentration of mono- and divalent ligand units, taking

into account that a divalent ligand consist of two ligand units, is

required to occupy half of the receptor binding pockets. For

RBA < 1 the monovalent ligand binds better than the divalent

ligand. In this case the loss in entropy of the spacer is larger

Figure 5: Relative binding affinity (RBA) of a divalent ligand in depend-
ence of the end-to-end distance of the spacer rete from Equation 47.
The three different ligand–spacer constructs are schematically
depicted in the insets. The binding pockets are separated by d = 5 nm.
Each binding pocket has a binding range of σ = 0.1 nm. (a) The ligand
units are directly attached to a stiff DNA spacer, characterized by a
persistence length lp = 53 nm. (b) The ligand units are attached to a
stiff DNA spacer with flexible linker chain, leading to an end-to-end dis-
tance fluctuation of Δr = 0.5 nm. (c) The ligand units are connected via
a flexible spacer.

than the gain in binding energy due to the multiple binding

of ligand units. Inserting the effective concentration from

Equation 13 and Equation 23 into Equation 41 and Equation 47,

the RBA  can be calculated for any given divalent

ligand–receptor pair. As an example the RBA is depicted for

different spacers and different values of Kmono in Figure 5. We

here assume that the receptor is well described by a large,

planar surface. Hence, the parameter α is approximated by 1/2

for stiff spacer and by Equation 29 for flexible spacers. In all

cases we consider a divalent receptor with a distance d = 5 nm

between the binding pockets. Each binding pocket has a binding

range σ = 0.1 nm. In all three subfigures we see that if Kmono is

too large, i.e., if the monovalent binder is too weak, the RBA-
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value never reaches 1. In such a situation, using the RBA-value

as a quantifier, the monovalent ligand binds always better than

the divalent ligand. Furthermore, at a certain Kmono, which we

will further on denote as , there is exactly one spacer

length, parameterized by rete, for which monovalent and diva-

lent ligands bind equally well. If Kmono is lower than ,

there is a broader range of spacer lengths for which the divalent

ligand binds better than the monovalent ligand (RBA > 1). In

Figure 5a the behavior of a stiff spacer with persistence length

lp = 53 nm is depicted, which mimics a DNA spacer to which

the ligand units are directly attached. A DNA spacer with a

contour length of 5 nm exhibits fluctuations in the range Δr ≈

0.05 nm, which is considerably smaller than the binding range

σ. As is discussed in the previous section, the maximum and

width of the effective concentration and therefore also the

maximum and width of the RBA are in this case determined by

the binding range σ. In Figure 5b we assume a DNA spacer that

is decorated with flexible PEG linkers at both ends. The PEG

linkers consist of four monomers each. Assuming Gaussian-

chain behavior with a segment length of b = 0.38 nm [29], the

fluctuations of the PEG linkers and hence the fluctuations of the

whole ligand sum up to Δr = 0.5 nm. The shape of the RBA now

is much broader, showing that the ligand is less affected by a

mismatch between spacer length and distance between the

binding pockets. Additionally, we obtain  = 5 mM in

Figure 5b which is considerably smaller than  = 28 mM

for the pure DNA spacer in Figure 5a. The same trend is

continued in Figure 5c. The more flexible the spacer, the

smaller is , indicating that flexible spacers are less suit-

able to improve the binding affinity of weak monovalent

binders, even though they are more tolerant with respect to a

mismatch between linker length and receptor distance.

To investigate the transition from RBA < 1 to RBA > 1 further,

we determine the critical dissociation constant  for which

the RBA is equal to one for the optimized chain length, i.e., for

the chain length that maximizes the RBA value. Using

Equation 41 and Equation 47 it can easily be seen that 

relates to the effective concentration  as

(48)

In Figure 6,  is shown for stiff as well as flexible ligands.

The stiff ligand is considered to consist of a DNA spacer to

which the ligand units are attached via two PEG linkers. Linker

length and binding range are set to be identical to the example

presented in Figure 5b. The average end-to-end distance of the

DNA spacer is either chosen to be equal to d (black, continuous

line), or is chosen to be too short by 0.7 nm, which mimics the

length of two base pairs (red, continuous line). Even though the

mismatch between spacer length and binding pocket distance is

small, the ligand becomes significantly less efficient.

The flexible ligand is chosen to resemble a PEG spacer. Again,

we assume Gaussian-chain behavior with a segment length of

b = 0.38 nm. A ligand with optimized spacer length (black,

dashed line) does not exhibit a significant difference to a ligand

with a spacer that is shortened by two segments (red, dashed

line). This shows again that a flexible chain is more tolerant

with respect to a distance mismatch between inter-binding

pocket distance d and chain length.

If the monovalent dissociation constant is larger than , a

monovalent ligand always binds better than a divalent ligand.

On the other hand, if the monovalent dissociation constant is

smaller than , a divalent ligand of optimally (or slightly

suboptimal) chosen size binds better than a monovalent ligand.

As can be seen in Figure 6,  depends on the distance

between the binding pockets as well as the spacer length and

flexibility. In order to approximate an upper limit for ,

the maximum effective concentration (Equation 24 for a flex-

ible spacer and Equation 15 and Equation 16 for a stiff spacer)

is substituted into Equation 48:

(49)

(50)

As an example that is relevant for medical applications we want

to briefly discuss the interaction between hemagglutinin (HA), a

receptor protein on the surface of influenza viruses, and its

ligand sialic acid (SA). The dissociation constant between

monomeric SA and trimeric HA is known to be 2.5 mM [1].

Furthermore, the crystal structure of HA [30] indicates a dis-

tance between neighboring binding pockets in the range of

d = 5 nm. Note that HA is a trivalent receptor, which means that

additional binding modes as well as different numbers of

permutations (see Figure 1b) have to be considered. Neverthe-

less, since the efficiency of a divalent ligand is mainly influ-

enced by the effective concentration  and the monovalent

dissociation constant Kmono, rather than by the number of

binding modes, we can compare the values for the SA–HA pair
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with the results presented in Figure 6. We see that a divalent

ligand consisting of two SA units connected via a PEG spacer is

expected to bind less efficient than the monovalent SA. In

contrast, a stiff DNA spacer can increase the binding affinity of

the divalent ligand compared to the monovalent ligand, if its

length is optimized.

Figure 6: Efficiency diagram:  is shown for different
ligand–spacer constructs. If the monovalent dissociation constant is
larger than , a monovalent ligand always binds better than a
divalent ligand. If, on the other hand, the monovalent dissociation
constant is smaller than , a divalent ligand of suitably chosen
length binds better than its monovalent counterpart. We present 
in dependence of the distance between the binding pockets for a DNA
spacer with flexible PEG linkers (Δr = 0.5 nm). In the optimal case, the
spacer length is chosen equal to the distance d (black, continuous
line). In the slightly suboptimal case, the spacer length is chosen to be
0.7 nm (two base pairs) shorter than the distance d (red, continuous
line). In both cases the binding range is set to σ = 0.1 nm. We also
show  for a flexible PEG spacer with optimized spacer length
(black, dashed line) and a spacer that is two monomers shorter
(≈0.76 nm) (red, dashed line). The monovalent dissociation constant

 as well as the distance between neighboring binding pockets
for a SA–HA pair is indicated by a black point.

Conclusion
In the present work we first examine different polymeric

models for the effective concentration. We find that a worm-

like-chain model can be well reproduced by a simple harmonic

spring model and a Gaussian-chain model with suitable chosen

parameters, in the stiff and flexible limits, respectively. We next

study the binding between divalent ligand–receptor pairs. We

find that multivalency increases the overall binding affinity

only, if the monovalent ligand–receptor pair binds strongly

enough, i.e.; if the monovalent dissociation constant is smaller

than a critical value . Approximations for  for both

flexible and stiff ligands are derived in dependence of the dis-

tance between the binding pockets and the spacer length and

flexibility. For the optimal ligand design, we find that for stiff

ligands the average end-to-end distance should be equal to the

distance between the binding pockets and the average fluctua-

tions should be of the order, but not smaller, than the binding

range. The average end-to-end distance of a flexible ligand on

the other side should be smaller by a factor of  than the

binding pocket distance d.

Supporting Information
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