
EXCLI Journal 2014;13:1289-1291 – ISSN 1611-2156 
Received: December15, 2014, accepted: December 16, 2014, published: December 17, 2014 

 

 

1289 

Guest editorial: 

INTEGRATED SPATIOTEMPORAL-METABOLIC MODELLING 
BRIDGES THE GAP BETWEEN METABOLISM ON THE  

CELLULAR LEVEL AND ORGAN FUNCTION 
 
Agata Widera 
 
Leibniz Institut für Arbeitsforschung an der TU Dortmund,  
Leibniz Research Centre for Working Environment and Human Factors (IfADo),  
Ardeystrasse 67, 44139 Dortmund, Germany; widera@ifado.de 
 
 
 

Recently, Schliess et al. (2014) have in-
troduced a novel concept of spatiotemporal 
modelling. This work is of general interest, 
because it offers a possibility to bridge the 
level of metabolic functions at the subcellu-
lar level to tissue architecture and organ 
function. The authors used an already estab-
lished spatiotemporal model of a liver lobule 
(Hoehme et al., 2010; 2007). This model 
simulates the position and coordinated 
movement of all hepatocytes in a representa-
tive lobule during the destruction and regen-
eration process after intoxication with hepa-
totoxic compounds. Moreover, it contains 
the microvessel of the liver lobule that al-
lows simulation of perfusion and dry 
transport. The authors used this model to ad-
ditionally integrate metabolic process into 
the simulated hepatocytes (Schliess et al., 
2014). Metabolic pathways of ammonia me-
tabolism, the urea cycle in periportal and 
glutamine synthetase in the pericentral com-
portment of the liver lobule, were modelled 
as differential equations and integrated into 
the hepatocytes of the spatiotemporal model. 
The resulting integrated model allows the 
simulation of ammonia and its metabolites in 
the liver vein (the ‘liver outflow’) for a given 
concentration in the portal vein (the ‘liver 
inflow’). Moreover, the model predicts to 
which degree a certain extent or pattern of 
liver tissue destruction will compromise 
ammonia detoxification. This novel tech-
nique of integrated spatiotemporal tissue 
modelling may have a major impact on stud-

ies of organ toxicity in future (Wierling, 
2014; Godoy et al., 2013; Drasdo et al., 
2014; Hammad et al., 2014). Currently, stud-
ies on hepatotoxicity are often performed in 
vivo in rodents (Nussler et al., 2014; Zhang 
et al., 2013; Ghallab, 2013; Kanda et al., 
2008; Monteiro et al., 2013; Köhle et al., 
2008; Jaeschke et al., 2012; van Kesteren et 
al., 2013; Hammad et al., 2013; Hadi et al., 
2013; Lo et al., 2012). On the other hand in 
vitro systems with hepatocytes represent a 
popular system to analyse molecular mecha-
nisms (Messner et al., 2013; Godoy et al., 
2009, 2010a, b; Hengstler et al., 2009; 
Klingmüller et al., 2006; Schyschka et al., 
2013; Watzek et al., 2013; Muguruma et al., 
2008; Grinberg et al., 2014; Schaap et al., 
2012; Schug et al., 2013; Doktorova et al., 
2012a, b; Ilkavets, 2013; Gagné et al., 2012; 
Fraczek et al., 2013; Fernandes et al., 2003). 
Although cultivated hepatocytes represent a 
valuable tool to qualitatively study molecular 
mechanisms it still is difficult to extrapolate 
their impact at the organ level. The work of 
Schliess et al. (2014) is a first step in estab-
lishing modelling techniques that bridge the 
levels of intra or even subcellular metabolic 
pathways to the functionality and metabolic 
performance of entire organs. 
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