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Abstract

Worldwide most pollinators, e.g. bumblebees, are undergoing global declines. Loss of ge-
netic diversity can play an essential role in these observed declines. In this paper, we inves-
tigated the level of genetic diversity of seven declining Bombus species and four more
stable species with the use of microsatellite loci. Hereto we genotyped a unique collection
of museum specimens. Specimens were collected between 1918 and 1926, in 6 provinces
of the Netherlands which allowed us to make interspecific comparisons of genetic diversity.
For the stable species B. pascuorum, we also selected populations from two additional time
periods: 1949-1955 and 1975-1990. The genetic diversity and population structure in B.
pascuorum remained constant over the three time periods. However, populations of declin-
ing bumblebee species showed a significantly lower genetic diversity than co-occurring sta-
ble species before their major declines. This historical difference indicates that the
repeatedly observed reduced genetic diversity in recent populations of declining bumblebee
species is not caused solely by the decline itself. The historically low genetic diversity in the
declined species may be due to the fact that these species were already rare, making them
more vulnerable to the major drivers of bumblebee decline.

Introduction

All over the world different pollinator species are undergoing major declines (e.g. [1]). General-
ist foragers like many bumblebees, that are essential pollinators in natural and managed ecosys-
tems, are no exception to this general phenomenon [2-4]. Different hypotheses aim to explain
the observed declines in bee populations, e.g. the impact of pathogen infections and pathogen
spill-over from reared pollinators, the use of pesticides, diet specialization, landscape modifica-
tion and loss of forage (as reviewed in: [1-5]). Although all these factors and their interactions
influence pollinator populations at different locations and at different scales (from individual,
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to colony, to population), the agricultural intensification with increasing loss of habitats and
forage resources, which started between 1950-1980 [4,6-8], is thought to be the key driver in
Europe [5]. Genetic processes can also contribute to the observed decline as a consequence of,
e.g. habitat fragmentation and limited migration. Indeed, low genetic diversity might threaten
populations by limiting their ability to adapt to future environmental change [9-11]. For in-
stant, it may predispose populations to disease epidemics [3,12]. Secondly, low diversity may
result in inbreeding, thereby reducing individual fitness and threatening population extinction
[10-11,13-14].

Based on contemporary specimens, several studies have shown that populations of declining
bumblebee species have lower levels of genetic diversity compared to stable species [3,15-18].
However, as discussed by Lozier et al. [19], without information on the historic situation, the
question remains: is this low diversity actually the result of recent declines, or is it due to histor-
ical, e.g. pre-decline, differences in genetic variation among species? Differentiating between
these two causes could be achieved by comparison of the levels of genetic diversity of popula-
tions before the major drivers of bumblebee declines have acted [20-21]. Thus, by contrasting
past and recent genetic diversity, one could obtain estimates of the magnitude of these drivers
on population sizes and the levels of gene flow between these populations [17-18].

In this paper, we compared the genetic diversity of declining and more stable bumblebee
species before their major recent decline (between 1950-1980) [6-8]. We used microsatellites
to genotype a set of pin-mounted museum specimens of 4 stable bumblebee species: Bombus
pascuorum, B. hortorum, B. pratorum and B. lapidarius, and 7 declining species: B. muscorum,
B. veteranus, B. ruderarius, B. sylvarum, B. humilis, B. ruderatus and B. subterraneus [22]. Sam-
ples were all collected in the Netherlands (1918-1926) before the recent declines started (be-
tween 1950-1980) [4,6-8]. Furthermore, we compared our results with currently available data
(time period: 1975-2009) on genetic diversity in bumblebees [16,23-29] to obtain further in-
sights whether the genetic diversity is similar in historical and current populations of the same
declining and stable species. Together, these findings contribute to our understanding of the
changes in population genetic processes and can provide valuable information for the imple-
mentation of conservation strategies.

Material and Methods
Museum specimens and their distribution

Museum specimens of 11 bumblebee species were selected from the Hymenoptera collection of
the Naturalis Biodiversity Center in Leiden taking into consideration their distribution in the
Netherlands (Fig 1).

We divided the selected species in groups based on their presence and status on the red list
of the Netherlands [22] (S1 Table). Bumblebee species grouped as ‘declining” have been given a
red list status of ‘vulnerable’, ‘endangered’, ‘critically endangered’ or ‘disappeared’, while spe-
cies grouped as ‘stable’ did not have a special red list status although these species also had
range reductions. This first division of the species according to their red list status corresponds
to the decline in their distribution (= trend, S1 Table). Here, species distribution is calculated
as the relative areal size (i.e. the amount of hour blocks a species has been found / the total
amount of hour blocks checked) x 100%, with an hour block representing a 5 x 5 km square
area. The decline in distribution is calculated as: (the relative areal size of after 1970—relative
areal size before 1970) / relative areal size before 1970) x 100% [22]. The species assigned to the
‘decline’ group showed a decline in distribution of 65% or more between 1970 and 2003, while
for the ‘stable’ species the decline in distribution was less than 40% ([22], S1 Table). Further-
more, we divided the group of declining species in two based on their distribution before 1970:

PLOS ONE | DOI:10.1371/journal.pone.0127870 June 10,2015 2/15



o
@ ’ PLOS | ONE Historical Lower Genetic Diversity in Declining spp

DECLINING /
RESTRICTED spp.

1918-1926
DECLINING /

WIDESPREAD spp.

C ok ,“ —r &
B. ruderatus

NETHERLANDS

\
'
- = 1
A i

) S /

B. veteranus

BELGIUM

STABLE /
WIDESPREAD spp.

1
’
;.‘ 5,8,9,10,11

51

B. hortorum B. lapidarius B. pratorum B. pascuorum

Fig 1. Distribution of the specimens of the declining and more stable Bombus spp. Specimens collected in the Netherlands between the years 1918
1926 before the recent bumblebee declines started (1950-1980), with a picture of each Bombus spp. used in the analysis. Species pictures from [56]. The
letters refer to each sampling location: A = N-Holland, B = Z-Holland, C = Overrijssel, D = Gelderland and E = Limburg. Symbol size refers to the amount of
species sampled at that location, while the numbers refer to which species. With for the stable and widespread species: 1 = B. hortorum, 2 = B. lapidarius, 3 =
B. pratorum, 4 = B. pascuorum; for the declining and restricted species: 5 = B. humilis, 6 = B. ruderatus, 7 = B. subterraneus, 8 = B. sylvarum, and for the
declining and widespread species: 9 = B. muscorum, 10 = B. ruderarius, and 11 = B. veteranus.

doi:10.1371/journal.pone.0127870.g001
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species with a distribution lower than 10% were considered as restricted (with mean (SD): 6.1%
(2.8%)) while declining species with a distribution between 15-25% were considered as wide-
spread (19.1% (2.4%); T-test, t = -6.465, d.f. =5, P < 0.001). The group of declining and wide-
spread species was not significantly different in range from the group of widespread but stable
species (23.2% (2.8%); T-test, t = 1.937, d.f. =4, P = 0.125).

Based on these criteria, we selected 4 stable and widespread bumblebee species: B. pas-
cuorum (N = 38); B. hortorum (N = 30), B. pratorum (N = 10) and B. lapidarius (N = 19), 3 de-
clining but widespread species: B. muscorum (N = 20), B. veteranus (N = 8) and B. ruderarius
(N =28), and 4 declining but restricted species: B. sylvarum (N = 16), B. humilis (N = 20), B.
ruderatus (N = 17) and B. subterraneus (N = 7). Populations were collected in the period 1918-
1926 and in 5 Dutch provinces: North-Holland, South-Holland, Gelderland, Overijssel and
Limburg (Fig 1). Samples from a province were from one locality or different localities close to-
gether (within a 5 x 5 km frame). For all populations, 7 to 10 bumblebee workers
were genotyped.

For B. pascuorum, we selected additional specimens from 4 populations of two more recent
time periods, 1949-1955 (N = 40) and 1975-1990 (N = 49) and from one additional province:
Drenthe. These extra 8 populations allowed us to investigate the genetic diversity of B. pas-
cuorum over space and time. We suspected this to remain fairly stable as this species was and
still is abundantly present in the Netherland. Deviations from this suspected result could indi-
cate artefacts associated with the genotyping of museum specimens.

DNA extraction and microsatellite protocol

Bumblebee DNA was extracted from one middle leg of each selected museum specimen with a
Chelex method (InstaGene Matrix, BioRad) as described in [28]. Workers were genotyped at
10 microsatellite loci that have a size range lower or around 200 bp to avoid the chance of null
alleles [20]: B11, B100, B121, B126 and B132 [30] and BT04, BT08, BT10, BT11 [31] as origi-
nally developed from B. terrestris, and BL02 [31] as derived from B. lucorum. Microsatellites
were then amplified by PCR and visualized with capillary electrophoreses as described in [28].
Genotype replications of 48 random individuals were conducted to examine the genotypic
error rate.

Data analysis

Not all genotyped individuals of a population were included in the analysis due to several vali-
dation steps. First, specimens which could not be scored in a reliable manner for a minimum of
5 microsatellite loci, were excluded. Second, we used the program Colony 2.0 [32] employing
corrections for genotyping errors (5% per locus) to search for the presence of multiple sisters
from the same colony. To exclude problems using Colony 2.0 on populations with low genetic
variability [33], we checked our data also with the program Kinalyzer [34] with both the 2 al-
lele’ algorithm and the ‘consensus’ method. We randomly selected one individual per sibship
for further analysis.

As the microsatellites used here were developed from B. terrestris and B. lucorum, we needed
to validate if they could be used in a reliable manner in the different Bombus spp. We tested for
genotypic linkage disequilibrium with FSTAT 2.9.3 [35] and for genotype frequencies against
HW equilibrium expectations for each population of a species with GENALEX 6.3 [36]. When
excess homozygosity was found, the program MICROCHECKER 2.2.3 [37] was used to check
for evidence of null alleles.
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Genetic diversity

We estimated genetic diversity in each population using the allelic richness (Ag) and Nei’s un-
biased expected heterozygosity (Hg; [38]). The latter statistic is not biased by the sample size of
populations within the same species and appears not to be affected by null alleles [39]. The pro-
gram HP-RARE [40], with hierarchical rarefaction to correct for sampling size, and GENALEX
6.3 [36] were used to estimate Ap and calculate Hy, for each microsatellite locus, respectively.
As some of our groups did not pass the Levine test, we used only nonparametric tests (e.g. In-
dependent samples Mann-Whitney U test) in SPSS (version 21.0.0.0) to examine if the genetic
diversity differed significantly between the widespread stable versus the restricted and wide-
spread declining species and an ANOVA with Repeated Measures Factors to examine the ge-
netic diversity between populations of B. pascuorum.

We conducted a sensitivity analysis of the calculated mean heterozygosity (Hg) for each
population of the different Bombus spp. in the time period 1918-1926 based on more stringent
exclusion policies for missing data. We started this analysis from a maximum of 50% missing
values (or 5 loci) within one specimen towards a more stringent exclusion step of only 10% (or
one locus) missing data.

Estimation of the genetic diversity and comparison between groups of
species

Here, we used only a low number of specimens (n = 10 and after excluding step only 6-10) to
estimate the genetic diversity for the different Bombus species. This is mainly due to the low
number of available collection specimens and the study design of having a comparable sample
size for all populations of each species. Normally, a reliable estimation of genetic diversity is
made with 20-25 or more specimens of a population. Possible problems with low sampling
size could be avoided by including more microsatellite loci. However, including more loci was
not doable as DNA extracts were expended. Here, we still believe that our data is trustworthy
as the estimations of genetic diversity for the different populations of a species are of a compa-
rable magnitude and less then the differences in genetic diversity observed between the three
different groups of species.

Furthermore, we compare the genetic diversity between groups of species. However, the in-
terpretation of the observed inter-specific differences cannot be made easily due to: (i) muta-
tion rates which may vary at different microsatellites loci and (ii) differences in polymorphism
of the microsatellite loci. To remedy these effects, we used the same microsatellite loci for each
species and bumblebee specimens with similar distribution in The Netherlands. In addition,
we compared a group of 7 declining species with a group of 4 stable bumblebee species instead
of single species. Furthermore, each group consisted of bumblebee species of multiple subge-
nera. In this way we minimize inconsistencies and perform a valid comparison between groups
of species [17-19].

Population structure

Genetic differentiation values (Fst) between the B. pascuorum populations within years and
within populations between years were calculated using 1000 permutations in FSTAT 2.9.3
[35] and re-calculated after applying the ENA correction for null alleles as implemented in
FREENA [41]. We also estimated the true measure of differentiation, Jost’s D [42], using the
software SMOGD v2.6 [43].
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Results
Data analysis

Genotype replications of random individuals showed only 4 specimens with an error at 1 of the
10 loci. Thus, we have a correct repetition of a single microsatellite locus of 99.2%.

Eight to ten microsatellite loci amplified in each Bombus species and were consistent across
replicates (Table 1). Overall populations and species, we excluded in total 27 specimens which
could not be scored in a reliable manner for a minimum of 5 microsatellite loci (Table 1). Anal-
ysis with Colony 2.0, controlled with Kinalyzer, revealed that almost all populations (28 out of
the 31) contained 1 to 3 full-sib pairs (Table 1). We randomly selected one individual per sib-
ship for further analysis. Of the in total 302 specimens, 234 specimens were kept for further
analyses after removal of the 27 specimens with too many non-amplifications and removal of
the 41 sisters (46 specimens of 4 restricted and declining species; 40 specimens of 3 widespread
and declining species; and 148 specimens of the stable species; Table 1).

No significant linkage disequilibrium was found between the pairs of loci, when testing each
locus pair across populations. All loci displayed heterozygote deficits under the Hardy-Wein-
berg equilibrium for at least one population of a species, which is indicative for the presence of
null alleles. However, MICROCHECKER 2.2.3 revealed low (<10%) null allele frequencies for
those loci.

Genetic diversity and differentiation of B. pascuorum

Before analyzing all Bombus species, we estimated the genetic diversity of all B. pascuorum pop-
ulations over the three time periods. As this species was and still is abundantly present in the
Netherlands, we expected the genetic diversity to be fairly stable in space and time. If we detect
a low genetic diversity in the past for B. pascuorum, this could suggest artefacts associated with
the genotyping of museum specimens, such as the presence of null-alleles. Here, the genetic di-
versity of the B. pascuorum populations remained stable as there were no significant differences
in genetic diversity over the different locations (ANOV A with Repeated Measures Factors; Ag,
F=1.032,df =4, p = 0.408; H, F = 1.262, df = 4, p = 0.308) and the three time periods
(ANOVA with Repeated Measures Factors, Ag, F = 0.0116, df = 1, p = 0.743; and Hg, F = 0.276,
df =1, p = 0.615; Fig 2). Thus, the microsatellite analysis of old specimens was reliable.

Comparison of the B. pascuorum populations within and between the different time periods
revealed only in a few cases significant genetic differentiation (Fgr) (52 Table). Correction for
the occurrence of null alleles, i.e. the ENA correction, had no effect on the genetic differentia-
tion. Furthermore, the calculation of Jost D, another statistic to measure differentiation, within
each time period was low: 0.057 for 1918-1926, 0.060 in 1949-1955, and 0.013 in 1975-1990,
and not significantly different from zero (one sample T-test against 0, t = 2.202, p = 0.064;
t=1.742, p = 0.125; and t = 1.204, p = 0.268; respectively). So, B. pascuorum populations
showed no or only marginal genetic differentiation.

Genetic diversity in declining versus stable species

For each population of the declining and stable species, we estimated the genetic diversity
(Table 2). Next, we assessed whether declining Bombus species had a lower genetic diversity
than stable species before their recent decline (Fig 3). The allelic richness (Ar) and expected
heterozygosity (Hg) of the declining species: 3.218 (SE 0.158) and 0.466 (SE 0.030), were signif-
icantly lower than that of the stable bumblebee species with 4.883 (SE 0.164) and 0.692 (SE
0.022) (A and Hj, respectively) (Mann-Whitney U test, Z = -2.646, p = 0.006; and Z = -2.268,

PLOS ONE | DOI:10.1371/journal.pone.0127870 June 10,2015 6/15



@’PLOS ’ ONE

Historical Lower Genetic Diversity in Declining spp

Table 1. Scoring efficiency of the microsatellite loci for each Bombus spp.

Group
Widespread / Stable

Restriced / Declining

Widespread /
Declining

Species

B. hortorum
B. lapidarius
B. pratorum
B. pascuorum
B. humilis

B. ruderatus

B.
Subterraneus

B. sylvarum
B. muscorum

B. ruderarius
B. veteranus
TOTAL

PUA
n NA FS Bi1

30 (22) 3 5 0.0
19 (12) 6 1 0.0
10 (8) 11 0.0
127(108)* 6 15 28
20 (16) 0 4 0.0
17 (12) 2 3 1000
7(7) 0 o 0.0
16 (11) 3 2 9.1
20 (15) 3 2 6.7
28 (18) 3 7 611
8 (7) 0o 1 0.0
302(234)* 27 41

PUA
B121

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
6.7

0.0
0.0

PUA PUA PUA PUA PUA
B132 B100 B126 BT11 BL02
250 00 313 00 700
417 417 1000 00 583
125 125 125 0.0 0.0
104 1000 19 38 1000
250 00 313 00 0.0
47 00 00 00 583
00 00 00 00 0.0
545 0.0 545 0.0 0.0
467 67 67 00 0.0
278 00 00 00 0.0
143 00 143 00 143

PUA

—_

PUA PUA
BT08 BT10 L
188 00 10
583 00 9
375 00 10
38 00 8
188 00 10
167 00 9
1000 00 8
455 00 10
333 00 10
278 278 10
143 0.0 10
9.5

With n = the number of workers and between brackets the number of workers used in all further analysis, NA = the number of specimens that were not

amplifiable, FS = the number of full sibs, and PUA = the proportion of unsuccessfully amplified individuals per locus (in %). Microsatellite loci not used for
further analysis are underlined with a full line, loci that were not used in only one population of a certain species are underlined with a dotted line, L = the
number of loci used in further analysis.
* = workers of B. pascuorum from two additional time points: 1942—1960 and 1975—-1995.

doi:10.1371/journal.pone.0127870.t001

7.0 A

6.0 -

ol M

3.0 4

2.0 A

0.0

p =0.024; Table 2). Although two declining species (B. ruderatus and B. subterraneus) had a
comparable mean Hg, as some of the stable species (Fig 3).
The lower genetic diversity within the declining species as reported here could be the result
of the smaller distribution range of some species in the declining group. This was not the case.
Indeed, when we divided the species declining before 1970s in restricted and widespread spe-
cies [22], the result remained the same. The genetic diversity of the widespread/declining
group was significantly lower than that of the stable species (Ag Z =-2.121, p = 0.034; and Hp,
Z =-2.121, p = 0.034) and the restricted/declining group was also significantly lower than that

Location

Drenthe Limburg  N-Holland  Overijssel  Gelderland

@1918-1925
01949-1955
01975-1990
Drenthe Limburg ~ N-Holland ~ Overijssel ~ Gelderland
Location

F02

0.1

0.0

Hy

Fig 2. Genetic diversity of the Bombus pascuorum populations. The mean allelic richness (Ar) and expected heterozygosity (Hg) averaged across loci
(and S.E.) between the B. pascuorum populations over the different locations and the three time periods.

doi:10.1371/journal.pone.0127870.9002
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Table 2. Historical genetic diversity within all Bombus species.

Species
Widespread / stable
B. hortorum

B. lapidarius

B. pratorum
B. pascuorum

Restricted / declining
B. humilis

B. ruderatus

B. subterraneus

B. sylvarum
Widespread / declining

B. muscorum

B. ruderarius

B. veteranus

Location

Gelderland
Overijsssel
Z-Holland
Limburg
Overijssel
Overijssel
Limburg
N-Holland
Overijssel
Gelderland
Total

Gelderland
Limburg
Z-Holland
Overijssel
Overijssel
Limburg
Limburg
Subtotal

Limburg
Overijssel
Limburg
N-Holland
Overijssel
Limburg
Subtotal
Total

Year

1918
1918
1923
1918
1918
1918
1918
1924
1918
1925

1926
1918
1923
1918
1925
1918
1920

1918
1918
1918
1924
1918
1918

a\lmCD(D(D\IU‘I\I\ICO

gmmxl\lmoooo

8%\10)01\1(}0\1

Mean

5.095
5.490
5.502
4.000
4.604
4.114
4.962
4.777
5.035
5.250
4.883

2.907
2.527
3.571
4.044
4111
3.116
2.778
3.293

3.222
3.750
3.519
3.167
2.184
2.942
3.131
3.218

Ar

SE

0.826
0.465
0.488
1.000
0.571
0.640
0.582
0.692
0.704
0.457
0.164

0.455
0.415
0.649
0.300
0.526
0.642
0.547
0.236

0.621
0.596
0.607
0.654
0.539
0.574
0.222
0.158

Mean

0.697
0.763
0.778
0.553
0.710
0.604
0.694
0.702
0.685
0.733
0.692

0.425
0.366
0.543
0.669
0.625
0.451
0.458
0.598

0.401
0.503
0.496
0.490
0.252
0.382
0.421
0.466

He

Here, we describe the mean values (and SE) of the allelic richness (Ag), and the expected heterozygosity (Hg) for each Bombus spp. over all
microsatellite loci and populations within the time period 1918-1926. With n: the number of samples used for this analysis after removal of the

identified sisters.

doi:10.1371/journal.pone.0127870.t002

of the stable species for Ag (Z =-2.309, p = 0.021) and showed the same trend for Hy (Z =

SE

0.076
0.034
0.026
0.125
0.041
0.084
0.085
0.072
0.089
0.041
0.022

0.097
0.094
0.103
0.031
0.078
0.118
0.101
0.042

0.112
0.099
0.112
0.104
0.103
0.109
0.040
0.030

-1.732, p = 0.083, Fig 3). Both groups of declining species were not different from each other
(Ar, Z=-0.354, p = 0.857 and Hg, Z = -1.414, p = 0.229; Table 2 and Fig 3). This indicates that
historically declining species already had a lower genetic diversity than bumblebee species with

stable populations.
As we arbitrary chose to exclude specimens of which showed non-amplifications for 6

loci or more, there are still specimens in our analyses with non-amplifications which could
have an effect on our results. However; the sensitivity analysis of the calculated mean hetero-
zygosity showed that Hg was stable over the different exclusion steps (from five non-ampli-
cations per specimens allowed in the analyses to only 1 non-amplification per specimens, see

PLOS ONE | DOI:10.1371/journal.pone.0127870 June 10,2015
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Fig 3. Historical genetic diversity of declining versus stable bumblebee species. Comparison of the mean allelic richness (Agr) and expected
heterozygosity (Hg) averaged across loci between the populations of the declining and more stable Bombus species within the time period 1918-1926. With
indication of the significance level, * =P < 0.05

doi:10.1371/journal.pone.0127870.9003

also S3 Table). Most importantly, the significant differences of Hy between stable and declin-
ing species remained.

Furthermore, within each bumblebee species, a few populations had non-amplifications for
all their individuals for one microsatellite loci, which could have an impact on our estimate of
genetic diversity. To exclude the presence of these effects, we removed the populations which
had non-amplifications for a certain microsatellite loci and we re-analyzed the genetic diversity
of each population with the same 8 microsatellites (B11, B121, B126, B132, BT04, BT08, BT10,
and BT11). This analysis showed also no major impact of the non-amplifications on our data-
set (S4 Table).

Discussion
Genetic diversity in declining versus stable species

Our results showed that historical populations of declining bumblebee species had a signifi-
cantly lower genetic diversity than found within the historical populations of co-distributed
more stable species (Fig 3). In studies with recent specimens, this lower genetic diversity in de-
clining bumblebee species is sometimes explained as a reduction in genetic diversity in re-
sponse to environmental drivers (e.g. [17-18]). However, this latter hypothesis was formulated
without having any information on the genetic diversity present within the populations of
these bumblebee species before their major declines [17-18]. Interestingly, our results were ob-
tained with museum specimens of nine decades ago, that is two to three decades before the de-
clines of most bumblebees started. As reported for Belgium [7-8] and for the Netherlands and
Britain [6] and reviewed in [18], general drivers like the reduction in floral resources by agricul-
tural intensification started around 1950. Thus here, the observed difference in genetic varia-
tion between declining and stable bumblebee species was not due to a recent reduction in
genetic diversity but was already present in the years 1918-1926. This result is relevant for the
interpretation of other studies which solely used recent specimens to assess genetic diversity
[15-19].
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Genetic diversity and rarity

Our results showed that declining bumblebee species had lower levels of genetic diversity than
stable species. One possible explanation for the lower genetic diversity of the declining species
in the early 20"™ century could be a lower abundance of these species in this time period. In-
deed, small bumblebee populations can have a reduced genetic diversity as a result of higher ge-
netic drift [11,13]. However, there are indications that rarity alone cannot totally explain the
observed low genetic diversity of the declining species: (i) some declining species were present
in the collection with a magnitude comparable to some of the stable species between the years
1900-1940. However, this method is not fully reliable as it has caveats, e.g. collector biases and
preference for collecting rare species over common ones [20]. (ii) by referring to historical pub-
lications or expert judgement indicating a fairly common status. No historical information of
the Netherlands is present but some of these declining species were reported as abundant in
Belgium [44-45]. For example: B. veteranus (then called B. equestris) ranked with second low-
est allelic richness (2.942) was described as “fairly common” in Belgium [44-45]. However, as
both indications have their own drawbacks, rarity is still a valid explanation of the low genetic
diversity observed in the declining species. There are also some other possible explanations of
the low genetic diversity in the declining bumblebees: (i) having small effective population
sizes could be an intrinsic characteristic of those species. If this would be the case it makes
those species originally more vulnerable for the major drivers of bumblebee decline; (ii) the ge-
netic diversity in the populations of the declining species could be altered due to habitat frag-
mentation or population isolation events before the dates used in this study (1918-1926).
Therefore we could search for a genetic bottleneck. However, the use of bottleneck tests for
haplodiploid species is somewhat dubious, as there are many violations of the model assump-
tions certainly when the power is low due to low samples size [46]. So, we cannot exclude that
the declining species had undergone a historical decline before 1918-1926. Thus, for now is
not known what the cause of the observed differences in genetic diversity is. Further research is
needed to investigate the causes of the reduced genetic diversity in the declined bumblebee spe-
cies and thus to be able to distinguish between historical and the more contemporary causes.

Historical versus recent level of genetic variation

By comparing the levels of genetic variability among populations before a genetic bottleneck
with those found in current populations, one will be able to determine if the observed lower ge-
netic variation is a consequence of recent population declines, or an ancestral state [20-21]. In-
deed, Bouzat et al. [47] showed a human-induced decrease in genetic diversity over time due to
a decrease in allel number between historical and recent populations. However, other studies
clearly showed that genetic diversity remains stable despite declines in population size [20,48—
50]. We compared the genetic diversity of the declining and stable bumblebee species from our
study also with the available data on genetic diversity from the literature (S5 Table). Although,
we should compare the genetic diversity of historical populations with recent populations of
the same species from the same location, this alternative comparison also indicates that the ge-
netic diversity between historical and recent populations of stable and declining species re-
mained fairly stable over the time (Fig 4). Only by contrasting past and recent genetic diversity,
one could obtain estimates of the magnitude of the drivers on population sizes and the levels of
gene flow between these populations. This could then be used for genetically monitoring popu-
lations for conservation and management [20,51]. Furthermore, as genetic variation is the raw
material required for future adaptive potential, comparing genetic diversity levels between
Bombus species may help to detect populations at risk of decline.
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stable bumblebee spp., with data from our project and from the literature [13,24—-30]. See also S5 Table for referees and genetic parameters of

these populations.
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Conservation

Our results have strong implications for conservation strategies. Determination of the genetic
diversity of bumblebees can reveal which species are more vulnerable to local extinction in
the longer term. Indeed, our study shows that all bumblebee species with a low genetic diver-
sity and thus predicted to be vulnerable to decline, suffered more severe declines than the
other species. However, it should be remarked that knowing the genetic diversity will not al-
ways identify which population is threatened. Indeed, two declining species showed similar
levels of expected heterozygosity but had stronger declines than stable species with similar
levels of heterozygosity (Fig 3). Thus, clearly also other factors than genetic diversity can play
arole in the observed bumblebee declines. However and in general, these results suggest that
determination of the genetic diversity is still a very good tool to predict bumblebee decline.
Indeed, all five species with historically low genetic diversity levels (Hg lower than 0.550 and
a Ay lower than 3.5) have subsequently suffered strong declines in their distribution. Hence,
as bumblebee populations with high genetic diversity may be less likely to decline or to go lo-
cally extinct, improving the genetic diversity of the populations of restricted bumblebee spe-
cies is a valuable strategy.

Being able to directly measure the genetic diversity from historical bumblebee popula-
tions allows for a better estimation of historical effective population sizes, levels of gene flow,
and the relatedness between populations [20-21]. As the estimations of these population pa-
rameters are performed before the major (human) perturbations caused in the last decades,
they are essential for making realistic conservation plans [20-21]. Furthermore, including
historical data into conservation genetics could also help to put conservation goals into per-
spective [20-21]. Indeed, it could give an idea of a certain population size goal in the absence
of recent scientific evidence. Such a clear framework of reference should be provide to avoid
the dominance of more economic and politic reasons within conservation plans [21]. Indeed,
several studies using historical specimens to estimate the effective population size showed
that including historical samples can prevent us from reaching misleading conclusions
[47,52-55].
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In conclusion, our results demonstrate that species with a lower genetic diversity are the
ones that are currently endangered. However, species with a high genetic diversity could still be
at risk for extinction. Indeed, the more stable species also underwent distribution declines but
not as severe as the declining group. So, to preserve bumblebee diversity one must tackle also
the current drivers of bumblebee decline, to ensure that these low and even high genetic diver-
sity species will not go extinct. It is therefore recommended that conservation strategies create
more suitable habitat for sustaining bumblebee populations.

Supporting Information

S1 Table. Distribution, trend of decline and red list status of the different Bombus spp. In
this table we presented, the distribution before and after 1970, trend of decline and red list sta-
tus of the different Bombus spp. following Peeters and Reemer [1]. Species distribution is calcu-
lated as the relative areal size = (amount of hour blocks a species is found / the total amount of
hour blocks checked) * 100%, with an hour block = 5 x 5 km square. The decline in distribution
or trend is calculated by Peeters and Reemer [1] as: (the relative areal size of after 1970—rela-
tive areal size before 1970) / relative areal size before 1970 * 100%).

(PDF)

S2 Table. Population structuring of the B. pascuorum populations. Pairwise Fgr (with ENA
correction) for the different populations of B. pascuorum under the diagonal and the harmonic
mean of Dest across loci above the diagonal, a) between locations within a time period, and b)
within a location between time periods. With indication of the significance level, ** =

P < 0.001 and * = P < 0.005.

(PDF)

S3 Table. Sensitivity analysis of genetic diversity. After removal of identified sisters, we con-
ducted a sensitivity analysis of the calculated mean expected heterozygosity (Hg) for each pop-
ulation of the different Bombus spp. in the time period 1918-1926, based on more stringent
exclusion policies for missing data. From a maximum of 5 microsatellite loci with missing val-
ues within one specimen towards only one locus with missing data. With #n = the total number
of workers in each exclusion step and * = too low number of specimens.

(PDF)

$4 Table. Estimation of genetic diversity after extra data exclusion steps. Recalculations of
the genetic diversity were performed after removal of three species (B. subterraneus, B. rudera-
tus and B. lapidarius) and populations with non-amplifications and based on the same 8 micro-
satellite loci in each species.

(PDF)

S5 Table. Comparison of the genetic diversity in historical and recent populations of de-
clining and more stable bumblebee species. The data was obtained from our study and from
the available data on recent populations found in the literature. With time periods: ‘historical’
=1895-1930; and ‘recent ‘ = 1975-2010’.

(PDF)
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