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Abstract

Iron is critical to the survival of almost all living organisms. However, inappropriately low or high 

levels of iron are detrimental and contribute to a wide range of diseases. Recent advances in the 

study of iron metabolism have revealed multiple intricate pathways that are essential to the 

maintenance of iron homeostasis. Further, iron regulation involves processes at several scales, 

ranging from the subcellular to the organismal. This complexity makes a systems biology 

approach crucial, with its enabling technology of computational models based on a mathematical 

description of regulatory systems. Systems biology may represent a new strategy for 

understanding imbalances in iron metabolism and their underlying causes.
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Introduction

Dysregulation of iron metabolism plays a role in a wide range of diseases [1], and 

understanding this role is crucial in the search for therapeutics. Fortunately, over the last 

decade, some key mechanisms involved in iron regulation have been uncovered, and a more 

complete picture of iron regulation is starting to emerge [2]. Complicating the matter, 

however, is the fact that iron regulation involves processes at scales ranging from the 

organism to subcellular compartments, each of which interacts with the others. At each 

scale, the control system uses several intertwined feedback loops that also cross scales. 

Thus, it is crucial that, on the one hand, we understand iron metabolism as a multi-scale 

control system, and, on the other hand, we move beyond a purely descriptive static 

characterization of this control system.
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Systems biology provides an approach and tool set to address both of these requirements. 

Systems biology integrates individual components of a system by tying them together 

through their interactions. This is done through the use of computational models that are 

capable of synthesizing all the different interactions between components into a dynamical 

system that captures global dynamic behavior. In particular, such a dynamical system 

representation allows the integration of regulatory events at different scales. System 

dynamics can then be probed using the computational model as a virtual laboratory, for the 

purpose of formulating hypotheses that can then be validated in the laboratory.

This review begins with a description of iron metabolism at the systemic and intracellular 

scales and discusses some of the most important diseases involving dysregulation of iron. 

We then take a systems biology view and describe some of the computational models of iron 

metabolism at both scales. Our aim is to present several different approaches to the 

construction of computational models, and the advantages and disadvantages of the different 

methods.

Iron Metabolism

The earliest accounts of iron being present in blood date back to as early as the 18th century, 

but it was not until the late 1930s that the first accounts of iron metabolism at the molecular 

level emerged and not until 1958 that the first comprehensive review of iron absorption was 

published [3,4]. More recently, key findings have shaped our current view of iron 

metabolism. These include the discovery of TfR, the transferrin receptor, in the 1970s, the 

discovery of the IRE/IRP regulatory axis in the 1980s, and the discovery of HFE, the gene 

mutated in hereditary hemochromatosis, in 1996 [5–7]. Arguably, the most seminal finding 

in recent years was the discovery of the long-sought iron-regulatory hormone, hepcidin, and 

its target ferroportin, in the early 2000s [8–13]. It is now apparent that many iron-associated 

disorders are attributable to genetic malfunctions that affect the hepcidin-ferroportin axis. 

Nevertheless, our knowledge of iron biology remains incomplete.

The importance of iron to almost all living organisms is undeniable; iron is required for 

oxygen transport, energy production, DNA synthesis, and cellular respiration. For example, 

iron is a component of hemoglobin, an oxygen carrier that transports oxygen from the lungs 

to the peripheral tissue and then carries carbon dioxide back to the lungs. Likewise, iron is a 

constituent of myoglobin, an oxygen storage protein that provides oxygen to muscle tissue. 

At the same time, excess iron can be toxic due to the ability of iron to exist in various 

oxidation states. The ability of iron to redox cycle can facilitate the formation of hydroxyl or 

lipid radicals, which in turn can damage proteins, DNA, and lipids. To maintain iron 

homeostasis at both the systemic and the cellular levels, vertebrates have developed an 

elaborate machinery to control iron intake, storage, utilization, and recycling. Our 

understanding of diseases associated with iron depends on our knowledge of iron 

homeostasis.

Systemic Iron Homeostasis

An adult well-nourished human contains approximately 3–5 g of iron. Nearly 60% of this 

iron is incorporated into hemoglobin, with 10% in muscle myoglobin. The rest is stored in 
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hepatocytes and reticuloendothelial macrophages. There is no known mechanism of iron 

excretion from the body. Roughly 1–2 mg of iron is lost daily through sweat, blood loss, 

sloughing of intestinal epithelial cells, and desquamation. To compensate for this loss, the 

body absorbs about 1–2 mg of dietary iron per day, but hemoglobin synthesis alone requires 

20–25 mg of iron per day. To support hemoglobin synthesis and other metabolic processes, 

iron must be recycled and tightly regulated within the system. The circulating peptide 

hormone hepcidin together with its receptor ferroportin primarily maintain systemic iron 

homeostasis, whereas iron-regulatory proteins play a primary role in the control of 

intracellular iron homeostasis. Recently, an intracellular iron network consisting of 151 

chemical species and 107 reactions and transport steps was identified [2]. Here, only key 

features are presented; for more details, comprehensive reviews, and current advances the 

reader is encouraged to consult the articles [2,14–19].

Iron Absorption—Inorganic, nonheme iron is available in many foods, e.g., eggs and 

vegetables, and is absorbed by duodenal enterocytes. Ferrireductase, Cybrd1 (DcytB), 

reduces nonheme iron to Fe2+ before it is transported through the cellular membrane by the 

divalent metal transporter 1, DMT1 (SLC11A2) [20–24]. The absorption of heme iron, 

found in red meats, is not fully understood. Once heme iron is absorbed it is transported into 

the cytosol and released by heme oxygenase 1 (HO1) [25]. Excess intracellular iron is stored 

in the storage protein ferritin. Ferritin oxidizes and sequesters excess ferrous iron into a 

ferrihydrite mineral core [26,27]. Iron sequestered in the ferritin of enterocytes is lost after a 

few days through the sloughing of intestinal epithelial cells. Dietary cytosolic iron is 

exported into the plasma by the basolateral iron exporter ferroportin (Fpn, SLC40A1) 

[8,9,11]. Export of iron from enterocytes into the circulation requires the ferroxidase 

hephaestin (HEPH), a multicopper oxidase, that oxidises Fe2+ to Fe3+ [28]. In the plasma, 

Fe3+ circulates bound to transferrin (Tf), a glycoprotein that has two binding sites for ferric 

iron and maintains iron in a soluble form. The discovery of transferrin as a plasma iron 

transporter dates back to 1946 [29]. Transferrin has two important functions: it limits the 

formation of toxic radicals and delivers iron to cells. In healthy humans, about 1/3 of 

transferrin is saturated with iron. Iron concentrations in healthy adults are approximately 14 

– 32 μmol/L, with virtually all circulating iron bound to Tf. In conditions of iron overload, 

non-transferrin-bound-iron (NTBI) accumulates. NTBI is thought to contribute substantially 

to the pathology associated with iron overload (Table 10.1) [17].

Iron Utilization, Recycling, and Storage—The principal consumer of iron is the 

erythroid bone marrow, and most of that iron comes from internal recycling by tissue 

macrophages, predominantly splenic macrophages. Erythroblasts acquire iron via a 

ubiquitous protein expressed on the cell surface, transferrin receptor 1, TfR1. Through 

receptor-mediated endocytosis TfR1 transfers iron-loaded Tf (Holo-Tf) into acidified 

endosomes where iron dissociates from transferrin with the assistance of six transmembrane 

epithelial antigen of the prostate (STEAP) proteins and exits the endosome via DMT1 [30]. 

Transferrin and transferrin receptor are recycled back to the cell surface. Iron is imported 

into mitochondria from intracellular compartments by the inner membrane protein 

mitoferrin 1 to form heme, the majority of which is then used for hemoglobin production 

[31]. Since excess heme is toxic and can lead to apoptosis, mechanisms must be in place to 
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maintain heme at appropriate levels. It has been proposed that feline leukemia virus 

subgroup C cellular receptor (FLVCR) and ATP binding cassette protein G2 (ABCG2) 

export excess heme, although this is not completely understood [32,33].

Macrophages recapture iron from senescent and damaged erythrocytes by first 

phagocytosing erythrocytes and then catabolizing heme using heme oxygenase, to release 

iron. Ferrous iron is exported into the plasma via the iron exporter ferroportin (SLC40A1) 

and unused iron is stored in macrophages, mainly in ferritin [15,17,34]. Another major 

storage site for iron is the liver; the majority of iron entering the liver is stored in ferritin and 

can be mobilized when required by the body. Hepatocytes acquire Holo-Tf through two 

receptors, TfR1 and TfR2, but TfR2 is believed to act mainly as a transferrin saturation 

“sensor” and has much lower affinity for Holo-Tf than TfR1 [35–37]. Most importantly, 

when serum iron levels surpass the transferrin binding capacity, the liver becomes the major 

storage site for non-transferrin-bound-iron (NTBI) [15]. The mechanism by which 

hepatocytes acquire NTBI is not completely understood; one candidate for uptake of NTBI 

is zinc transporter Zip14 (SLC39A) [38]. Other tissues, such as heart and pancreas represent 

sites of iron accumulation in iron overload, and are also proposed to have mechanisms for 

NTBI uptake.

Regulation of Systemic Iron Homeostasis—To avoid iron overload or deficiency, an 

organism must maintain an internal equilibrium of iron and make iron available only when 

and where it is needed. The circulating peptide hormone hepcidin is a key molecule that 

regulates systemic iron homeostasis. It is predominantly produced by the liver, although 

studies indicate that other tissues also generate hepcidin [12,13]. Hepcidin levels are 

modified in response to physiological stimuli that affect iron homeostasis, such as iron 

overload, hepatic iron stores, inflammation, iron deficiency, erythropoietic activity, and 

hypoxia. Higher levels of hepcidin reduce iron absorption and vice versa.

Hepcidin modulates serum iron levels and controls transferrin saturation by inhibiting iron 

release from duodenal enterocytes, macrophages, and hepatocytes (Fig 10.1). More 

precisely, hepcidin regulates iron efflux by binding to the iron exporter ferroportin, 

triggering its internalization and degradation in lysosomes [39]. The mechanism is 

facilitated by Janus kinase 2 (Jak2) that binds to the ferroportin-hepcidin complex, 

phosphorylates ferroportin, and targets ferroportin for degradation [40]; an ubiquitin-

mediated pathway of ferroportin degradation has also been described [41,42].

Transcriptional Regulation of Hepcidin—Expression of hepcidin in the liver is 

primarily affected by transcriptional mechanisms mediated by the bone morphogenetic 

protein (BMP) family of transcription factors and other signaling components, which are 

members of the TGF-β family of ligands [43]. Recent studies suggest that the principal 

regulator of hepcidin is BMP6, which is increased in response to hepatic iron stores [44,45]. 

BMP binds to its receptor (BMP-R) and co-receptor hemojuvelin (HJV), a 

glycosylphosphatidylinositol-linked protein [43]. This interaction induces the 

phosphorylation of R-SMAD proteins and subsequent formation of active transcription 

complexes involving the co-regulator SMAD4, which bind to BMP responsive elements in 

the hepcidin promoter [46]. The membrane receptor neogenin (NEO1) enhances BMP 
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signaling and hepcidin expression, perhaps by stabilizing HJV [47,48]. The transmembrane 

serine protease TMPRSS6 cleaves HJV, inactivates it, and consequently inhibits production 

of hepcidin [49].

Another mechanism for hepcidin regulation involves hemochromatosis proteins (HFEs). 

HFE has been suggested to act as a switch between two sensors of holo-Tf, TfR1 and TfR2. 

In this model, high concentrations of holo-Tf displace HFE from TfR1 and permit the 

interaction of HFE with TfR2. The HFE/TfR2 complex then promotes hepcidin transcription 

through an unknown mechanism [50–52].

Hepcidin expression is also induced by the inflammatory cytokine interleukin-6 (IL-6) and 

other cytokines by activating STAT3, signal transducer and activator of transcription 3 

[53–55]. STAT3 binds to specific sequences in the HAMP promoter. Cytokine-mediated 

induction of hepcidin is thought to contribute to the hypoferremia that frequently 

accompanies chronic infections, acute inflammation and cancer [56].

Despite the substantial progress that has been made in defining key players in hepcidin 

regulation, the identification of critical components involved in hepcidin signaling and their 

functional relationships is far from complete. Mechanisms of hepcidin regulation mentioned 

above are depicted in Fig 10.2.

Intracellular Iron Homeostasis

Free ferrous iron can be toxic, since it contributes to the formation of the hydroxyl radical 

through the Fenton reaction. Hence, intracellular iron must be maintained as meticulously as 

systemic iron. The regulatory mechanism that coordinates intracellular iron uptake, 

utilization, storage and excretion is centered on the iron regulatory proteins (IRPs) and 

utilizes iron responsive elements (IREs). What follows is a brief description of the 

mechanism for a “generic cell” that encompasses pathways that have been consistently 

observed in many cell types (Fig 10.3). Further details can be found in [2].

Iron Import—Mammalian cells acquire iron predominantly via transferrin receptor 1 

(TfR1). Following binding of Holo-Tf to TfR1, Tf-bound Fe is taken up by receptor-

mediated endocytosis into acidified endosomes where ferric iron is reduced to Fe2+ by the 

transmembrane family of metalloreductases (STEAP) [30]. The divalent metal transporter 

1, DMT1, then facilitates the transport of ferrous iron from the endosomes into the 

cytoplasm. In some cells, e.g. enterocytes, DMT1 is also located on the cell surface and 

participates in the transport of extracellular iron. It is worth pointing out that the role of 

STEAP proteins has been studied and well defined in hepatocytes, macrophages, erythroid 

cells, and erythroblasts, while their role in peripheral tissues requires further investigation 

[14]. Following egress from the endosome, iron enters the so-called “labile iron pool” 

(LIP), a cytosolic pool of weakly bound iron available for a variety of interactions with other 

molecules.

It has been suggested that dietary heme iron is transported by the heme carrier protein 1 

(SLC46A1) [57], but another study demonstrated that SLC46A1 is an important folate 

transporter [58,59]. A year later SLC48A1 was identified as a possible candidate for heme 
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import [60]. Some cells, like macrophages, acquire heme indirectly by phagocytosing 

erythrocytes and catabolizing heme to release iron. Hepatocytes have multiple mechanisms 

of iron entry, including TfR2 and a possible transporter for non-transferrin-bound-iron 

(NTBI), zinc transporter Zip14 (SLC39A) [38].

Iron Export—While there is no known mechanism for iron excretion from the body, there 

is a well-organized and controlled regulation of iron excretion from cells. Ferroportin, 

located on the plasma membrane, is expressed in a wide variety of human tissue types and is 

believed to be the only ferrous iron exporter [8,9,11,34]. It requires coordinated efforts of 

ferroxidases (ceruloplasmin and/or hephaestin) to assist iron oxidation and loading onto 

transferrin. As mentioned above, cells also export iron in the form of heme through FLVCR 

and ABCG2 [32,33].

Iron Utilization and Storage—The major site of iron utilization is the mitochondrion, 

where iron is used in synthesis of heme and iron-sulfur (Fe/S) cluster prosthetic groups, but 

the understanding of the mechanism by which iron is moved inside the cell is still 

incomplete. Iron is imported into the mitochondrion for incorporation into bioactive heme 

by the SLC transporter mitoferrin (SLC25A37) [31]. Intracellular heme regulates its own 

production through delta aminolevulinate synthase (ALAS) and its degradation by inducing 

heme oxygenase (HO1) [61,62]. After heme is synthesized it is exported via an unknown 

mechanism into the cytosol for integration into proteins.

Ferrous iron that is not exported or utilized is stored in ferritin, a cytosolic protein whose 

main function is to oxidize and sequester excess ferrous iron into a ferrihydrite mineral core. 

Ferritin is a 24-subunit polymer comprised of heavy (ferritin H) and light (ferritin L) 

polypeptide chains in variable ratios. The subunit composition of ferritin depends on cell 

type and physiological status [27]. Each ferritin protein can accrue as many as 4500 iron 

atoms. Since free iron can promote formation of reactive oxygen species, ferritin is crucial 

to preventing iron-mediated cell damage by keeping excess iron in a non-reactive form.

Intracellular Iron Regulation—Intracellular iron homeostasis is regulated post-

transcriptionally by the iron regulatory proteins IRP1 (ACO1) and IRP2 (IREB2) in 

response to changing iron levels. For a comprehensive review the reader is encouraged to 

consult [7,18].

IRP1 and IRP2 exert their effects by binding to iron responsive elements (IREs), cis-

regulatory hairpin structures that are present in the untranslated regions (UTRs) of mRNAs 

involved in iron metabolism. The mRNAs encoding ferritin, ferroportin, ALAS2, 

mitochondrial aconitase (ACO2), and hypoxia-inducible factor 2α (HIF2α) contain a single 

IRE in their 5′UTRs. The mRNA encoding TfR1 contains multiple IREs within the 3′ UTR, 

whereas the mRNAs encoding DMT1, cell division cycle 14 homolog A (Cdc14A), 

hydroxyacid oxidase 1 (HAO1), and MRCKα contain a single IRE in their 3′UTRs.

When intracellular iron levels are low, iron regulatory proteins bind to IREs with high 

affinity. Binding of IRP’s to 5′ UTR IREs inhibits the translation of ferritin and ferroportin, 

while binding to the 3′ UTR IREs results in the stabilization of mRNA of the iron importer 
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TfR1, thus increasing cytoplasmic iron levels. In iron-replete cells, the regulatory effect of 

IRPs stops: IRP2 is targeted for degradation and IRP1 acquires a completed iron sulfur 

cluster that impedes IRE binding (Fig 10.4). The role of IRP regulation in the mechanisms 

and functions of other IRE-containing mRNAs has been less thoroughly studied.

Diseases of Iron Metabolism

Iron is required for oxygen transport, energy production, DNA synthesis and cellular 

respiration. Accordingly, inappropriately low or high levels of iron are detrimental and lead 

to a wide range of diseases.

Iron overload/deficiency is either hereditary or acquired. Levels of iron can be altered by the 

presence of mutated genes, diet that contains inappropriate amounts of iron (either 

insufficient or excessive), transfusion of red blood cells, iron injections, excessive blood 

loss, decreased intake or intestinal absorption of iron, and hemolysis.

Iron Overload

Excess iron leads to iron deposition in vital organs such as the liver, heart, pancreas, and 

endocrine glands. This propagates the formation of hydroxyl or lipid radicals, which damage 

proteins, DNA, cellular membranes, and can lead to cell death. Left untreated, chronic iron 

overload increases the risk of liver cirrhosis, cancer, hypogonadism, arthritis, cardiac 

arrhythmia, heart failure, retinal degeneration, diabetes mellitus, neurodegenerative diseases 

(Alzheimer’s, Parkinson’s, Huntington’s), and premature death. Treatments for iron 

overload include phlebotomy and iron chelation therapy [63].

Hereditary Hemochromatosis—Hemochromatosis is the most common genetic iron 

overload disorder and results from mutations in several genes, all of which affect the 

ferroportin/hepcidin regulatory axis (Table 10.2) [14,16,17]. The main characteristic of this 

disorder is increased absorption of dietary iron and its accumulation in the liver, heart, 

pancreas, endocrine glands, tissue and joints, where it causes injury and organ dysfunction, 

as described above. To date, researchers have identified five mutated genes associated with 

hemochromatosis, which can be grouped further into two cases: hepcidin deficiency and 

hepcidin resistance [16].

Hepcidin deficiency: Mutations in the genes encoding HFE, TfR2, hemojuvelin (HFE2, 

HJV), and hepcidin (HAMP) cause hemochromatosis by inactivating the pathway that up-

regulates hepcidin. The most common and mild form of hereditary hemochromatosis (HH) 

is due to a missense mutation of the HFE gene, which is incompletely penetrant, and is 

influenced by environmental and other genetic factors [5,64]. A severe and less common 

form of HH, with extremely low or absent hepcidin levels, is juvenile hemochromatosis 

(mutations in HJV or HAMP genes) that leads to hypogonadism, heart failure, and death 

[65–67]. Another rare form of HH but less severe is caused by a mutation in the TfR2 gene 

[68].
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Hepcidin resistance: Missense mutations in the gene encoding ferroportin obstruct hepcidin 

binding and result in insensitivity of ferroportin to regulation by hepcidin, leading to 

hepatocyte iron accumulation and high plasma iron [69].

Aceruloplasminemia—Aceruloplasminemia is a disorder caused by mutations in the 

gene encoding ceruloplasmin (Cp), a ferroxidase involved in the loading of Fe onto Tf 

following its release from cells [70,71]. Low serum ceruloplasmin levels and accumulation 

of iron in neural and glial cells of the brain, pancreatic islet cells, and hepatocytes 

characterize this disorder. The clinical outcome is retinal degeneration, diabetes mellitus, 

cerebellar ataxia, dementia, and neurologic diseases.

Other diseases related to iron overload and degenerative neurologic conditions are 

Hallervorden-Spatz disease and Friedreich’s ataxia [63].

Hypotransferrinemia/Atransferrinemia—Practically undetectable plasma levels of 

transferrin characterize hypotransferrinemia [72]. Deficiency in transferrin allows non-

transferrin bound iron (NTBI) to accumulate and deposit in the liver and other organs, 

leading to the accumulation of iron to toxic levels. On the other hand, reduction in Tf-bound 

iron impairs erythropoiesis in the bone marrow, which strictly depends on Tf-bound iron. 

Hypotransferrinemic patients also have a severe hepcidin deficiency, implying that 

transferrin is somehow involved in the regulation of hepcidin [16].

Transfusional Siderosis—Repeated blood transfusions are a life-saving therapy in many 

conditions, but multiple transfusions can also lead to toxicity and chronic iron overload. 

Transfusions are used in patients with beta thalassemia, sickle cell anemia, bone marrow 

failure (aplastic anemia, myelodysplastic syndrome, red blood cell aplasia), and patients 

receiving aggressive cancer therapy. Each unit of transfused blood contains 200–250 mg of 

iron, which is more than a hundred times the amount absorbed daily from the diet (1–2 mg). 

At first, iron accumulates in reticuloendothelial macrophages and later in parenchymal tissue 

cells of the liver, pancreas, heart, and endocrine tissue, where it can lead to cardiomyopathy 

and other iron overload disorders [63].

Iron Deficiency

Iron deficiency is the major cause of anemia and a public health problem worldwide. Since 

roughly two-thirds of total body iron is used in hemoglobin synthesis, deficiency in iron will 

affect the production of healthy red blood cells.

Iron-Deficiency Anemia—Approximately three billion people worldwide suffer from 

iron-deficiency anemia due to decreased dietary iron intake, poor absorption, and increased 

need for iron, which can result from blood loss, gastrointestinal bleeding, blood donations, 

pregnancy, and cancer of the esophagus, stomach, or colon. Children and women are at 

much greater risk. Iron-deficiency can result in premature birth, poor growth development 

and cognitive skills, and also affects the nervous system. Patients may experience symptoms 

associated with anemia that include chronic fatigue, poor exercise tolerance, headaches, and 

problem concentrating [14,63].
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Left untreated, iron-deficiency anemia can lead to complications such as irregular heartbeat, 

angina, and heart attack, low birth weight, high risk of infection (childhood), and delayed 

growth (childhood) [63]. Changes in diet and iron supplements can treat minor iron 

deficiency, while severe cases may require transfusion of red blood cells, intravenous iron, 

or iron injections.

Iron-Refractory Iron-Deficiency Anemia (IRIDA)—Iron-refractory iron-deficiency 

anemia is triggered by a rare mutation in the gene TMPRSS6, which encodes matriptase-2 

expressed in the liver. This mutation leads to reduced activity of TMPRSS6 and 

consequently high hepcidin levels. As a result, iron absorption from the intestine and iron 

release from macrophages is inhibited, causing severe iron deficiency [16,17].

Anemia of Chronic Inflammation—Anemia of chronic inflammation, also called 

anemia of chronic disease (ACD), is a systemic iron disorder and occurs in association with 

malignancy, chronic infections, trauma, inflammatory disorders, and organ failure [56]. Iron 

stores in ACD are not exhausted, but iron is sequestered in macrophages. In addition, 

absorption of iron is reduced and hemoglobin synthesis is inhibited. The decrease in serum 

iron is a consequence of hepcidin increase in response to inflammation, which seems to be 

an attempt to restrict iron availability to invading microorganisms and tumor cells [73]. 

Hepcidin production is induced by the inflammatory cytokine interleukin-6 (IL-6), bacterial 

pathogens, and lipopolysaccharide [74]. Anemia of chronic inflammation is considered to be 

mild-to-moderate anemia and treatment is usually focused on the underlying disorder.

Iron Homeostasis and Cancer

Dysregulation of iron metabolism in cancer is well known, and it has been argued for years 

that excess iron and increased cancer incidence go hand-in-hand [75], although this is not 

always observed [76]. Links between excess iron and cancer are also suggested by the 

efficacy of dietary iron deprivation [77] and iron chelators [78] in cancer therapy. In the 

early 1980’s it was observed that levels of transferrin receptor 1 (TfR1) are elevated in 

cancer, and use of TfR1 as a targeting ligand in the design of anti-cancer drugs was 

proposed [79,80].

More recently, it was observed that hepcidin and ferroportin are expressed in epithelial cells 

of peripheral tissue, such as the breast, where they exhibit the same regulatory interaction as 

in macrophages and liver cells [81]. Levels of hepcidin were increased and levels of 

ferroportin were decreased in breast cancer cell lines when compared to non-malignant 

breast cells, and this was correlated with an increased labile iron pool in malignant cells. 

Data collected from breast cancer patients also showed reduced levels of ferroportin in 

malignant compared to non-malignant breast tissue. Experimentally induced overexpression 

of ferroportin reduced tumor growth of breast cancer xenografts, implying a direct 

relationship between intracellular iron and tumor growth. Importantly, low levels of 

ferroportin in the tissues of breast cancer patients were associated with poor clinical 

outcome and reduced survival. Subsequent work determined that elevated TfR1 and reduced 

HFE (which would also be expected to elevate iron in tumor tissue) similarly predict poor 

survival in breast cancer patients [82].
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Although cancer is of course more than an iron disorder, these findings indicate a clear and 

direct relationship between iron and cancer. Clarifying the precise nature of this relationship 

will require further study.

A Systems Biology Approach to Iron Metabolism

The complexity of iron regulation in mammals makes a systems biology approach crucial, 

with its enabling technology of computational models based on a mathematical description 

of the iron homeostasis control system. Before discussing specific mathematical models we 

briefly summarize the role that models play in systems biology (Fig 10.5) [83]. As discussed 

earlier, the primary role of mathematical models is to discover new biology. This is typically 

done in two steps. The first step, model building, consists of the description of the pertinent 

biology in mathematical terms. There are a variety of mathematical formalisms one can use 

for this purpose. Which one to choose for a given problem depends in large part on the type 

of information available and on the type of questions one would like to answer. A common 

approach is through a system of differential equations. In the case of a metabolic network, 

for instance, there will be one differential equation per molecular species in the network, 

viewing it as a biochemical reaction network. The equation for a given species describes the 

rate of change of the species in terms of the quantities of other species it depends on, 

together with a collection of kinetic parameters. Alternatively, one can view the network in 

terms of a collection of logical rules that govern the “decision making” of the node based on 

the states of the other molecular species. Rather than varying continuously, the species 

might take on categorical values, such as low or high.

The second step is model analysis, which, in many cases, relies on simulation. That is, the 

mathematical model is implemented as a computational algorithm in a computer. Simulation 

of the model consists of the choice of an initial concentration of all the species in the 

network, from which the time evolution of the model is calculated. Observations might 

include which steady state is reached from this initialization or whether the simulation is 

robust with respect to small changes in the model parameters. The result of these simulations 

is an understanding of how the model behaves under certain perturbations of interest. If the 

model correctly captures the key features of the biology, then an understanding of the model 

can lead to a more targeted investigation of the actual network, leading to new biological 

insights. Below we discuss some published computational models related to iron regulation.

Models of Iron Homeostasis

Biological systems can be described mathematically as dynamical systems, in terms of 

functional relationships between the variables, which govern the temporal evolution of the 

system. Some biological data is best modeled by systems in which the model components 

take on discrete states, while others require continuously varying system states. Dynamic 

models of iron homeostasis that are presented in this section are of two different types: 

continuous and discrete. The models summarized in Diseases of Iron Metabolism section 

above are all continuous in the form of ordinary differential equations (ODE), whereas the 

model in the Transfusional Siderosis Section above is discrete and is based on the theory of 

Petri nets.
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Generally speaking, differential equations describe the temporal change of state variables, 

e.g., the change in concentration of a molecular component. To put this in the context of iron 

metabolism, let duodenal enterocytes represent a compartment and let y denote the 

concentration of labile iron in this compartment. Then the rate of change of y, dy/dt, 

describes how the level of iron changes over time. If it is constant then the differential 

equation will be dy/dt=0. Since iron is brought into the cell and is also exported from the 

cell, further assumptions can be made. For simplicity, assume that iron enters enterocytes at 

some rate a and is exported at some rate b. Then the flow of iron through enterocytes can be 

described by the differential equation dy/dt = a-by. This is of course a simplified illustration; 

in reality one would have as many equations as compartments and will have to consider 

shuttling between the compartments. In addition, rates might not be just simple constants, 

but rather complicated expressions, and would have to incorporate various regulations, for 

example regulation of the iron exporter ferroportin by hepcidin. From this simple example 

one can see that the resulting ODE model will have many unknown parameters and will 

require detailed information about kinetic constants or time course data in order to estimate 

model parameters.

Compartmental Model of Iron Homeostasis—B. J. Lao and D. T. Kamei developed a 

simple compartmental model of iron homeostasis calibrated to mouse data [84]. The model 

consists of five compartments, each denoting the amount of iron at a specific location or in a 

particular state: hepatocyte, FeTf (diferric transferrin), RBC (red blood cells), NTBI (non-

transferrin-bound-iron), and macrophage. The system is then given by five ordinary 

differential equations that explicitly incorporate the roles of ferroportin, hepcidin, TfR2, and 

HFE. We present only one of the equations, describing the RBC compartment.

 (rate of iron transfer from FeTf to RBC compartment)

kRBC;macro = 1.6 · 10−3h−1 (rate of iron transfer from RBC compartment to 

macrophages)

These rates are based on findings published in [85,86]. All parameters in the model were 

approximated using mouse data from various sources.

The resulting model was used to simulate anemia, iron overload and erythropoiesis 

stimulation. The following conclusions were formed.

1. FeTf may be involved in determining availability of iron for erythropoiesis.

2. To maintain proper iron absorption and intracellular iron levels, the iron-responsive 

elements of ferroportin are essential. Simulations performed without IRE’s resulted 

in normal FeTf and in iron accumulation in macrophages and hepatocytes.

3. Increased iron absorption by duodenal enterocytes replicated features of HFE 

hemochromatosis, and iron accumulation in hepatocytes was influenced by the 
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uptake of NTBI. Moreover, increased levels of NTBI cause hepcidin decrease 

implying that removal of NTBI might revert hepcidin levels.

Systemic Model of Iron Homeostasis—In [87] a systemic model of iron metabolism 

was built based on data from normal mice (C57BL6) [88] under three diets: iron-deficient, 

iron-adequate, and iron-loaded. The model consists of a plasma compartment and 15 

peripheral organ compartments. Each compartment (pool) is represented by its iron content 

and is described by a balance equation.

Ci iron content in ith compartment

vij the rate of iron in-flux from compartment j to i

vji the rate of iron out-flux from compartment i to j

vio the rate of iron flux from outside into compartment i

voi the rate of iron flux from compartment i out of the system.

Time course data was obtained by administering radioactive tracer (59Fe) and then 

measuring at certain intervals over 28 days non-heme iron as well as hematocrit and 

hemoglobin content of blood. The experimental data from mice under three different diets 

was used to estimate parameters and calibrate the model. The authors argue that the resulting 

quantitative model reflects systemic properties of iron homeostasis. They conclude that this 

model could be used to study dietary iron perturbations and plan to use the model on 

genetically modified mice. Furthermore, the authors envision that this mathematical model 

of pools and fluxes will serve as a foundation for a whole-body model, which would 

ultimately include iron uptake, storage, secretion, heme synthesis, and regulatory structure.

Intracellular Model of Iron Homeostasis—A model of intracellular iron homeostasis 

was constructed in [89]. This model is specific to normal breast epithelial cells and 

represents the core control system of iron metabolism focused on iron import via TfR1, 

export (ferroportin), sequestration (ferritin), and regulation (iron regulatory proteins). These 

proteins and the labile iron pool are connected by several feedback loops that drive network 

dynamics. Each component in the model is defined by an ordinary differential equation that 

describes changes in concentration with respect to time. The resulting ODE system has five 

equations and 15 parameters with two parameters being external: hepcidin and the iron 

saturation level of extracellular transferrin. One of the assumptions made was that ferritin 

(Ft) is always bound to iron and undergoes natural degradation. As a result, ferritin releases 

iron back into the labile iron pool. It was represented by the following mechanism.

c is a constant decay rate
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b is a hyperbolic rate that describes negative regulation of IRP’s on Ft,

Here, IRP represents an inhibiting state variable, k an activation threshold, and a the 

maximum production rate of the regulated protein (in this case Ft). Using this information, 

the rate of change of the labile iron pool (LIP) can be represented by the following equation.

a1Feex · (TfR1) iron import (via TfR1) with the rate a1

a2 · (LIP) · (Fpn) iron export (via Fpn) with the rate a2

  Feex   iron saturation level of extracellular transferrin

  b and c   as described above.

The model was validated using data from overexpression of ferroportin. Through a 

combination of analytical arguments and simulations, it was shown that the model has a 

unique stable steady state for any choice of parameters, agreeing with experimental evidence 

that cellular iron is tightly controlled [90].

Including additional relevant components in the model will be the next step, with the 

ultimate goal of identifying basic forces and key regulators that contribute to modifications 

in iron homeostasis as normal breast epithelial cells transition to malignancy.

Petri Net Model of Systemic Iron Homeostasis—Petri net theory uses a different 

approach to simulations and analysis, and has also been applied to iron metabolism. Carl A. 

Petri, a German mathematician and computer scientist, introduced and formally defined the 

concept in the 1960s. Today, Petri nets are used in computational biology to model gene-

regulatory networks, metabolic pathways, signal transduction pathways and biochemical 

networks.

Informally speaking, a Petri net is a directed graph that consists of two kinds of nodes, 

places and transitions, and arcs connecting them. Arcs only connect two nodes of different 

kinds; they do not join two places, or two transitions. Places, depicted by circles, represent 

passive elements such as proteins, protein complexes or chemical compounds, while 

transitions, depicted by rectangles, are active elements and represent biological interactions 

or chemical reactions. In the context of iron metabolism an example of a place might be 

Fe2+ and an example of a transition is oxidation of Fe2+ by hephaestin. Some places are 

marked by black dots or natural numbers, called tokens, which are dynamic elements of the 

net and represent the concentration of a given species in terms of moles, molecules, or even 

abstract concentration levels such as high, medium, and low. Tokens are distributed over 

places to describe a systems state, e.g., the normal body iron physiological state. The 

distribution of tokens over places is called a marking of the net. For a certain biological 
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reaction to happen, its places, e.g. proteins, must contain sufficient numbers of tokens. If all 

places are marked (contain tokens), then a transition may fire by removing one or more 

tokens from each place and moving it to another appropriate place (Fig 10.6). This changes 

the marking of the net, i.e., the systems state. Enabled transitions do not have to fire, which 

makes Petri nets nondeterministic and the behavior of the system is established by all 

possible firing sequences. Of course, just following tokens does not represent the entire 

analysis. Comprehensive formal analysis must be performed to show behavioral and 

structural properties of the system.

In a series of papers a Petri net model of systemic iron homeostasis was constructed [91–

93]. The model consists of 47 places and 57 transitions and has been verified through 

extensive analysis. In the latest article in the series [92] the authors focused on some aspects 

of the anemia of chronic disorders and, based on their analysis of the net, they have made 

some observations, listed below. The predictions made by the model were validated using 

data from patients with chronic anemia that were treated with recombinant human 

erythropoietin (rHuEPO). The conclusions based on the model and laboratory tests are:

1. Transferrin receptor levels are not influenced by inflammation.

2. There is a strong positive correlation between the dose of recombinant human 

erythropoietin and soluble transferrin receptor.

3. There is a strong negative correlation between the dose of rHuEPO and hepcidin, 

suggesting a reverse relationship.

4. The TfR1 serum level was confirmed to be a suitable indicator of erythropoietic 

activity.

It is worth commenting on some differences among the mathematical models presented here. 

The majority of the models consist of a system of ordinary differential equations. These 

capture the continuous rate of change of the concentrations of the different molecular 

quantities over (continuous) time. The last model consists of a Petri net, that is, a graph 

structure of a certain type, together with rules that govern the state of the different nodes in 

this graph. In the model presented, the states are integer values, specifying how many tokens 

are placed at a particular node at a given time. Thus, the states are discrete, rather than 

continuous concentrations.

Furthermore, time progresses in discrete steps also. There are also other types of time- 

and/or state-discrete models in use in systems biology [83]. The different modeling methods 

each have their pros and cons. What particular modeling framework is best for a particular 

type of system depends on several factors, such as availability of experimental data, kinetic 

parameters, the type of question to be answered, and others.

Conclusion

Iron metabolism and its relationship to a variety of disorders and diseases is difficult or 

impossible to fully understand without a systems approach. Regulatory mechanisms in 

different parts of the organism, operating at different time and spatial scales, are connected 

to each other and interact through complex feedback loops. Without an understanding of 
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how these interdependencies affect dynamic changes in iron homeostasis, systematic 

therapeutic approaches will remain elusive. Systems biology and mathematical modeling 

promise such a rigorous understanding. As detailed in this chapter, much has been 

discovered about the mechanistic foundations of iron regulation. However, key parts of the 

system remain poorly understood.

So-called reductionist biology has an important role to play in uncovering additional 

features of iron metabolism. These can then be integrated into system level models, such as 

the case studies presented here. Systems biology brings another valuable approach to the 

problem through the generation and analysis of high-throughput “-omics” data, which have 

not yet been used extensively to study iron metabolism. Large-scale gene expression studies 

using DNA microarrays or high-throughput sequencing can help in discovering new genes 

involved in iron regulation and their connections to the known control network. Proteomics 

analyses using mass spectrometry based methods can shed light on posttranscriptional 

regulation and further help identify important players in the network. The application of one 

or more of a variety of network inference algorithms can be used to build up a more 

complete regulatory network structure that can be used to generate experimental hypotheses, 

to be validated in the laboratory.

Since iron regulation is a highly dynamic process, we require dynamic computational 

models for its study. This chapter describes some recent examples of such models. Given the 

complexity of the entire process, substantially more sophisticated models will be required. 

Their construction needs to be based on comprehensive time-resolved data at different scales 

and in different cell types. The confluence of new and improved mathematical and 

computational techniques, together with sophisticated new measurement techniques, brings 

such models into the realm of the possible. Thus, the promise of systems biology is yet to be 

fully realized in the study of iron metabolism and its relation to human health.
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Fig 10.1. Systemic Iron Homeostasis
Inorganic, nonheme iron is absorbed by duodenal enterocytes. In the plasma, iron circulates 

bound to transferrin (Tf). The principal consumer of iron is the erythroid bone marrow, and 

most of that iron comes from internal recycling by tissue macrophages, predominantly 

splenic macrophages. Liver is the major storage site of iron. Iron entering the liver is stored 

in ferritin and can be mobilized when required by the body. Some iron is incorporated in 

other tissues. Hepcidin regulates systemic iron homeostasis by inhibiting iron release from 

duodenal enterocytes, macrophages, and hepatocytes.
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Fig 10.2. Transcriptional regulation of Hepcidin
Regulation of hepcidin by BMP/SMAD and IL-6/STAT3 pathways. Expression of hepcidin 

in the liver is mainly affected by transcriptional mechanisms mediated by the BMP family, 

primarily BMP6. BMP binds to its receptor (BMPR) in conjunction with the co-receptor 

HJV. This interaction induces the phosphorylation of R-SMAD proteins which interact with 

the common mediator SMAD4, bind specific sequences in the hepcidin promoter, and 

trigger hepcidin gene (HAMP) transcription. NEO1 may enhance BMP signaling by 

interacting with HJV. TMPRSS6 negatively regulates hepcidin by cleaving HJV. Hepcidin 

expression is also induced by IL-6 through activation of STAT3. STAT3 binds to specific 

sequences in the HAMP promoter. TfR2 and HFE are also involved in hepcidin activation 

through mechanisms that are incompletely defined.
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Fig 10.3. Intracellular iron homeostasis of a generic cell
Cells acquire iron predominantly via TfR1. Ferric iron is reduced to Fe2+ by the 

transmembrane family of metalloreductases (STEAP). DMT1 then facilitates the transport of 

ferrous iron from the endosomes into the cytoplasm. In some cells, e.g. enterocytes, DMT1 

participates in the transport of extracellular iron. DcytB reduces nonheme iron to Fe2+ 

before it is transported through the cellular membrane. Following egress from the endosome, 

iron enters the so-called “labile iron pool” (LIP). Ferroportin (Fpn) is believed to be the 

only ferrous iron exporter. It has been suggested that dietary heme iron can enter through 

SLC48A1 and be exported via FLVCR. A mechanism by which heme is moved in and out 

of mitochondria (the major site of iron utilization) is poorly understood. Ferrous iron is 

imported into mitochondria for incorporation into bioactive heme by the SLC transporter 

mitoferrin (Mfrn). Iron that is not exported or utilized is stored in ferritin (Ft).

Chifman et al. Page 22

Adv Exp Med Biol. Author manuscript; available in PMC 2015 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 10.4. 
Intracellular iron regulation
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Fig 10.5. The construction of a mathematical model
The starting point is a formulation of the problem and specific questions that the model will 

answer. Biological knowledge about components of the system, its structure, interactions, 

and any available experimental results must be gathered. Different types of experimental 

data are analyzed and integrated. This information is then used to construct a mathematical 

model. Since different models emphasize different features, the choice of mathematical 

model depends on the questions being asked. Its structure will also depend on the system 

description: organismal, cellular, or molecular. Some systems will have unknown biological 

parameters and will require detailed information about kinetic constants or time course data 

in order to estimate model parameters. Various computational techniques are used to assess 

if the model is in accordance with experimental results, and if not, hypotheses underlying 

the model need to be refined, and different types of experiments might be proposed. This 

iterative process is repeated and the model is refined until it is accurately describes the 

relevant aspects of the system.
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Fig 10.6. A simple Petri net example
Initially input places p1 and p2 contain three and two tokens, respectively. By firing 

transition t one token will be removed from p1 and two tokens from p2. Transition t will 

consume tokens and place two of them into place p3. Transition t may fire since its 

preplaces p1 and p2 have sufficient number of tokens. After one firing step the marking of 

the net is changed: p1 has only two tokens left, p2 has no tokens, and p3 has two tokens. 

Transition t cannot fire anymore.
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Table 10.1

Levels of transferrin saturation

Transferrin saturation (%) Clinical Interpretation

< 16% Iron deficiency

16%–45% Normal levels

45%–60% Signs of iron overload

> 60% Iron overload
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Table 10.2

Genes involved in iron-related disorders

Disorder Genes Protein Protein function

Hemochromatosis HFE HFE Involved in transcriptional regulation of hepcidin

Hemochromatosis TfR2 Transferrin receptor 2 Holo-Tf sensor; at high Tf levels, HFE interaction with 
TfR2 is increased promoting hepcidin expression

Juvenile hemochromatosis HJV Hemojuvelin Involved in transcriptional regulation of hepcidin; BMP co-
receptor

Juvenile hemochromatosis HAMP Hepcidin Modulates serum iron levels; regulates iron efflux by 
binding to the iron exporter ferroportin, triggering its 
internalization and degradation

Hemochromatosis (Hepcidin resistance) SLC40A1 Ferroportin Iron exporter

Aceruloplasminemia CP Ceruloplasmin Ferroxidase

Hypotransferrinemia TF Transferrin Glycoprotein with two binding sites for ferric iron

IRIDA TMPRSS6 Matriptase-2 Cleaves HJV, inactivates it and, consequently, inhibits 
production of hepcidin
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