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Abstract

We present a new statistical test of association between a trait and genetic markers, which we 

theoretically and practically prove to be robust to arbitrarily complex population structure. The 

statistical test involves a set of parameters that can be directly estimated from large-scale 

genotyping data, such as that measured in genome-wide association studies (GWAS). We also 

derive a new set of methodologies, called a genotype-conditional association test (GCAT), shown 

to provide accurate association tests in populations with complex structures, manifested in both 

the genetic and environmental contributions to the trait. We demonstrate the proposed method on a 

large simulation study and on the Northern Finland Birth Cohort study. In the Finland study, we 

identify several new significant loci that other methods do not detect. Our proposed framework 

provides a substantially different approach to the problem from existing methods, such as the 

linear mixed model and principal component approaches.

INTRODUCTION

Performing genome-wide tests of association between a trait and genetic markers is one of 

the most important research efforts in modern genetics [1–3]. However, a major problem to 

overcome is how to test for associations in the presence of population structure [4]. Human 

populations are often structured in the sense that the genotype frequencies at a particular 

locus are not homogeneous throughout the population. Rather, there is heterogeneity in the 

genotype frequencies among individuals (correlated with variables such as geography or 
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ancestry). At the same time, there may be other loci and non-genetic factors that also 

correlate with this genotype frequency heterogeneity, which in turn are correlated with the 

trait of interest. When this occurs, genetic markers become spuriously statistically associated 

with the trait of interest despite the fact that there is no biological connection.

The importance of addressing association testing in structured populations is evidenced by 

the existence of a large literature of methods proposed for this problem [5, 6]. The well-

established methods all take a similar strategy in that the trait is modeled in terms of the 

genetic markers of interest, while attempting to adjust for genetic structure. Two popular 

approaches are to correct population structure by including principal components of 

genotypes as adjustment variables [7, 8] or by fitting a linear mixed effects model involving 

an estimated kinship or covariance matrix from the individuals’ genotypes [9, 10]. Previous 

work investigating the limitations of these two methods includes Wang, et al. (2013) [11]. 

These two approaches have been shown to be based on a common model that make differing 

assumptions about how the kinship or covariance matrices are utilized in the model [5]. This 

common model does not allow for non-genetic (e.g., environmental) contributions to the 

trait to be dependent with population structure. The linear mixed effects model requires that 

the genetic component is composed of small effects that additively are well-approximated 

by the Normal distribution. The model itself is therefore an approximation, and it is not yet 

possible to theoretically prove that a test based on this model is robust to structure for the 

more general class of relevant models that we investigate.

By taking a substantially different approach that essentially reverses the placement of the 

trait and genotype in the model, we formulate and provide a theoretical solution to the 

problem of association testing in structured populations for both quantitative and binary 

traits under general assumptions about the complexity of the population structure and its 

relationship to the trait through both genetic and non-genetic factors. This theoretical 

solution directly leads to a method for addressing the problem in practice that differs in key 

ways from the mixed model and principal component approaches. The method is 

straightforward: a model of structure is first estimated from the genotypes, and then a 

logistic regression is performed where the SNP genotypes are logistically regressed on the 

trait plus an adjustment based on the fitted structure model. The coefficient corresponding to 

the trait is then tested for statistical significance.

This association-testing framework is robust to general forms of population genetic 

structure, as well as to non-genetic effects that are dependent or correlated with population 

genetic structure (for example, lifestyle and environment may be correlated with ancestry) 

and with heteroskedasticity that is dependent on structure. We introduce an implementation 

of this test, called “genotype conditional association test” (GCAT). We show the proposed 

method corrects for structure on simulated data with a quantitative trait and compares 

favorably to existing methods. We also apply the method to the Northern Finland Birth 

Cohort data [12] and identify several new associated loci that have not been identified by 

existing methods. For example, the proposed method is the only one to identify a SNP 

(rs2814982) associated with height, which we note is linked to another SNP (rs2814993) 

that has been associated with skeletal frame size [13]. We discuss the advantages and 

disadvantages of the proposed framework with existing approaches, and we conclude that 
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the proposed framework will be useful in future studies as sample sizes and the complexity 

of structure increase.

RESULTS

Simulation Studies

We performed an extensive set of simulations to demonstrate that the proposed test is robust 

to population structure and to assess its power to detect true associations (full technical 

details in Online Methods and Supplementary Note). We compared the proposed test to its 

Oracle version (where model (3) from Online Methods and test-statistic (6) from 

Supplementary Note are used with the true individual-specific allele frequency values 

imputed). We also included in the simulation studies three important and popular methods: 

(i) the method of adjusting the trait and genotypes by principal components computed from 

the full set of genotypes [8] and (ii) two implementations of the linear mixed effects model 

(LMM) approach [9, 10], specifically EMMAX by Kang et al. (2010) [10] and GEMMA by 

Zhou and Stephens (2012) [15]. The methods are abbreviated as “PCA,” “LMM-EMMAX,” 

and “LMM-GEMMA.”

For each of 33 simulation configurations, we simulated and analyzed 100 GWAS data sets 

from a quantitative trait model (equation (1) from Online Methods), for a grand total of 3300 

simulated data sets. Each simulation scenario involved m = 100,000 simulated SNPs on n 

individuals, where n ranged from 940 to 5000 depending on the scenario. For a given 

simulated study, we therefore obtained a set of 100,000 p-values, one per SNP. So-called 

“spurious associations” occur when the p-values corresponding to null (non-associated) 

SNPs are artificially small. For a given p-value threshold t, we expect there to be m0 × t false 

positives among the m0 p-values corresponding to null SNPs, where m0 = 100,000–10 in our 

case. At the same time, we can calculate the observed number of false positive simply by 

counting how many of the null SNP p-values are less than or equal to t. The excess observed 

false positives are spurious associations. A method properly accounts for structure when the 

average difference is zero. The best one can do on a study-by-study basis is captured by the 

Oracle method, which according to our theory is immune to structure and provides the 

correct null distribution.

Fig. 2 shows the excess in observed false positives vs. the expected number of false 

positives for the Oracle, GCAT (proposed), PCA, and both implementations of LMM under 

five configurations of structure for a quantitative trait variation apportionment 

corresponding to genetic=5%, non-genetic=5%, and noise=90%. It can be seen that the 

proposed GCAT method performs similarly to the Oracle test, whereas PCA tends to suffer 

from an excess of spurious associations.

We found from using the distributed binary executable EMMAX software and our own 

implementation that EMMAX required a 10-fold increase in computational time over the 

proposed method and PCA when analyzing n = 5000 individuals. Therefore, it was not 

reasonable to apply EMMAX to all 3300 simulated GWAS data sets. We limited 

comparisons with EMMAX to five representative structure configurations. GEMMA was 
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computationally more efficient, though still significantly slower than GCAT or our 

implementation of PCA.

Supplementary Figs. 1–8 show results from the remaining set of simulations from all 33 

simulation configurations. Due to the computational constraints mentioned above for 

EMMAX, the additional simulations feature only results from GEMMA for LMM methods.

In comparing the statistical power among the methods (Supplementary Figs. 9–17), we 

found that the Oracle, GCAT, and PCA performed similarly well, while the two LMM 

methods sometimes showed a loss or gain in power depending on the scenario. We also 

carried out analogous simulations on binary traits simulated (from trait model equation (2) in 

Online Methods) and we found that all methods performed similarly well in terms of 

producing correct p-values that were robust to structure. This result agrees with the 

comparisons made between PCA and a linear mixed effects model in Astle and Balding 

(2009) [5].

Analysis of the Northern Finland Birth Cohort Data

We applied the proposed method to the Northern Finland Birth Cohort (NFBC) genome-

wide association study data [12], which includes several metabolic traits and height 

(Supplementary Figure 18). This study has also been analyzed by the LMM and PCA 

methods, as well as a standard analysis uncorrected for structure [10]. We carried out 

association analyses with the proposed method on the 10 traits that were also analyzed using 

the other methods (Table 1). After processing the data, including filtering for missing data, 

minor allele frequencies, and departures from Hardy-Weinberg equilibrium, the data were 

composed of m = 324,160 SNPs and n = 5027 individuals (Supplementary Note). The LFA 

model of population structure was estimated from a subset of the data where markers were at 

least 200 kbp apart.

Most traits showed only approximate Normal distributions, so we applied a Box-Cox 

Normal transformation to all traits so that they satisfy the model assumptions. We noted that 

C-reactive Protein (CRP) and Triglycerides (TG) traits followed an exponential distribution 

more closely, so it was unnecessary to transform these two traits. The developed theory can 

be extended to exponential distributed quantitative traits as well.

The 20 most significant SNPs for each of the 10 traits are shown in Supplementary Table 1. 

Kang et al. (2010) utilized a genome-wide significance threshold of p-value < 7.2×10−8 as 

proposed in ref. [16], so we also utilized this threshold for comparative purposes. The 

numbers of loci found to be significant for each method are shown in Table 1. Whereas our 

proposed method identifies 16 significant loci, the other methods identify 11 to 14 loci.

We identified three new loci that were not identified by the other methods. None of the other 

methods identified any significant associations for the height trait. However, we identified 

rs2814982 on chromosome 6 as being statistically associated with height (Supplementary 

Table 1). This SNP is located ~70kbp from another SNP, rs2814993, which has been 

associated with skeletal frame size in a previous study [13]. Additionally, rs2814993 was the 

fifth most significant SNP for height. For the LDL cholesterol trait, we identified a 
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significant association with rs11668477, which was significantly associated with LDL 

cholesterol in a different study [17]. Finally, there were significant associations between the 

glucose (GLU) trait and a cluster of SNPs (rs3847554, rs1387153, rs1447352, rs7121092) 

proximal to the MTNR1B locus; variation at this locus has been associated with glucose in a 

previous study [18].

As described in Sabatti et al. (2009) [12], the NFBC data show modest levels of inflation 

due to population structure as measured by the genomic control inflation factor (GCIF) [19] 

of test statistics from an uncorrected analysis. The population structure present among these 

individuals may be subtler and manifested on a finer scale than other settings. Noting that 

the GCAT approach does not attempt to adjust for a polygenic background, the GCIF values 

calculated for the proposed method (Supplementary Table 2) were found to be in line with 

what is expected for polygenic traits where no structure is present [20], providing evidence 

that the proposed method adequately accounts for structure.

DISCUSSION

We considered models of quantitative and binary traits involving genetic effects and non-

genetic effects in the presence of arbitrarily complex population structure. We allowed for 

the non-genetic effects to be confounded with population genetic structure since structure, 

ancestry, geography, lifestyle, and environment – all factors potentially involved in complex 

traits – may be highly dependent with one another. A mathematical argument showed that 

under these models, it is most reasonable to account for this confounding in the genotypes, 

but it is not tractable to do so in the non-genetic effects. This follows because we have many 

instances of genotypes that can be jointly modeled to provide reliable estimates of structure, 

but the non-genetic effects are never directly observed and we do not have repeated 

instances of them. In general it is not possible to estimate a latent variable that accounts for 

the confounding between structure and non-genetic effects.

These observations led us to propose an inverse regression approach to testing for 

associations, where the association is tested by modeling genotype variation in terms of the 

trait plus model terms accounting for structure. In this model, the terms accounting for 

structure were based on the logistic factor analysis (LFA) approach that we have proposed 

[14], although the general form of the association test can incorporate other methods that 

estimate population structure. We mathematically proved under general assumptions that the 

trait term in the model is non-zero only when the genetic marker is truly associated with the 

trait, regardless of the population structure. We demonstrated that the implemented test 

properly accounts for structure in a large body of simulated studies that included a wide 

range of population structures. We also applied the method to 10 traits from the Northern 

Finland Birth Cohort genome-wide association study. The proposed method identified three 

new loci associated with the traits, including being the only method among those we 

considered that identifies a locus associated with the height trait. Overall, we showed that 

the proposed method compares favorably to existing methods and we also noted that it has 

favorable computational requirements compared to existing methods.
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As GWAS increase in sample size and levels of complexity of population structure, it is 

important to develop methods that properly account for structure and that scale well with 

sample size. Whereas we found that the popular principal components adjustment does not 

properly account for structure, we also found that the mixed model approach performs 

reasonably well. However, the mixed model approach involves estimating a n × n kinship 

matrix (where n is the number of individuals in the study) and its current implementation 

does not scale well with sample size. The kinship matrix quickly becomes computationally 

unwieldy when n grows large, and the possibility of the estimated kinship matrix becoming 

overwhelmed by noise is a concern [21]. In the Northern Finland Birth Cohort data, the 

mixed model approach required us to estimate 12 million parameters, whereas the proposed 

method involved estimating 25-thousand parameters, a ~500-fold decrease. A study 

involving n = 10,000 individuals with the same complexity of structure requires estimating 

about 50-million parameters in the mixed model kinship matrix, whereas the proposed 

method requires estimating 50-thousand parameters, a ~1000-fold decrease. In addition, 

estimating the structure in the proposed method primarily uses singular value 

decomposition, for which a rich literature of computational techniques exists. We utilized a 

Lanczos bidiagonalization algorithm [22], which scales approximately linearly with respect 

to n for d ≪ n, where is d the number of latent variables used in the LFA model of 

population structure (Online Methods). The proposed method is well equipped to scale to 

massive GWAS and can take advantage of future advances for computing singular value 

decomposition.

The key assumption to verify in utilizing the proposed GCAT approach is that population 

structure observed in the SNP genotypes is adequately modeled and estimated. One can test 

for associations among SNPs that show convincing empirical evidence that the model of 

structure is reasonably well-behaved; this can be directly tested on the genotype data as 

previously demonstrated in our logistic factor analysis (LFA) model of structure [14]. For 

example, on the Northern Finland Birth Cohort Study, we empirically verified that utilizing 

the LFA model with dimension d = 6 accounted for structure reasonably well for the great 

majority of SNPs. The linear mixed effects model (LMM) approach and principal 

components (PCA) approach make trait model assumptions that may be difficult to verify in 

practice (Online Methods and Supplementary Note). In cases where the probabilistic model 

that we assume is not validated on the data, a different model should be utilized. For 

example, our probabilistic model does not account for closely related individuals.

We anticipate that the proposed genotype conditional association test (GCAT) will be useful 

for future studies. The framework we have developed should facilitate its extension to traits 

modeled according to distributions not considered here while maintaining our theoretical 

proof that the test accounts for population structure in the presence of non-genetic effects 

also confounded with structure.

ONLINE METHODS

Population Structure Model

Suppose that there are n individuals, each with m measured SNP genotypes. The genotype 

for SNP i in individual j is denoted by xij ∈ {0,1,2}, i = 1,2, …, m, j = 1,2, …, n. We 
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collected these SNP genotypes into an m × n matrix X, where the (i, j) entry is xij. We 

denote the genotypes for individual j by xj = (x1j, x2j, …, xmj)T.

We utilize our recently developed framework that flexibly models complex population 

structures for diallelic loci [14]. As described in Results, z is an unobserved latent variable 

that is assumed to capture heterogeneity in allele frequencies among individuals and can be 

interpreted as capturing the effect of population structure. (Note that, as described in 

Results, z also captures information on non-genetic contributions to the trait, such as those 

related to lifestyle and environment.) For a SNP i, the allele frequency πi can be viewed as 

being a function of z, πi(z). For a random sample of n individuals, we therefore have 

implicitly sampled unobserved z1, z2, …, zn with resulting allele frequencies πi(z1), πi(z2), 

…, πi(zn) for SNP i. In Hao et al. (2013) [14], we formulate and estimate a model for m 

SNPs simultaneously while providing a flexible parameterization of the form of πi(z).

For shorthand, πij ≡ πi(zj) is the allele frequency for SNP i conditioned on the ancestry state 

of individual j. The πij values may be called “individual-specific allele frequencies” [14]. 

These allele frequencies can be collected into an m × n matrix F, where the (i,j) entry is πij. 

Note that E[xij/2|zj] = πij, and when Hardy-Weinberg equilibrium holds, xij|zj ~ Binomial(2, 

πij). We utilize the framework from Hao et al. (2013) [14], called “logistic factor analysis” 

(LFA), that allows the simultaneous estimation of all πij from a given genotype data set X. 

Specifically, it provides estimates of latent variables that form a linear basis of the 

 quantities, which turns out is the most convenient scale on which to 

estimate a model of structure for the proposed testing framework. It should be noted that 

other well-behaved estimates of πij may be utilized as well. Further details are provided in 

Supplementary Note.

Trait Models

We assume a trait (either quantitative or binary) has been measured on each individual, 

which we denote by yj, j = 1,2, …, n. We consider the following models of quantitative and 

binary traits. We write the trait models in terms of additive genetic effects, but the 

framework can be extended to account for dominance models and interactions, and the 

models can also incorporate adjustment variables that capture known sources of trait 

variation.

The quantitative trait model is

(1)

where βi is the genetic effect of SNP i on the trait, λj is the random non-genetic effect, and εj 

is the random noise variation. To allow the interdependence of structure, lifestyle, and 

environment, we assume that xj = (x1j, …, xm,j)T, λj, and  may all be functions of zj. We 

assume that , which allows for heteroskedasticity of the random 

noise variation. The distribution of λj can remain unspecified, although we assume that λj 
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and zj may be dependent random variables. The population genetic model summarized 

shows how the distribution of , depends on zj. Without having observed zj, it follows 

that , λj, and εj are dependent random variables; however, we assume that 

conditional on zj, these random variables are independent.

The binary trait model is

(2)

where again βi is the genetic effect of SNP i on the trait, λj is the non-genetic effect, and we 

allow for the case that xj and λj may be dependent due to the common confounding latent 

variable zj as described for the quantitative trait model.

We have shown that the linear mixed effects model and principal components approaches 

involve more restrictive assumptions about the trait models utilized in testing for 

associations (Supplementary Note).

Association Test Immune to Population Structure

We have derived a statistical hypothesis test of association that is equivalent to testing 

whether βi = 0 for each SNP i in the above trait models (1) and (2), and whose null 

distribution does not depend on structure or the non-genetic effects correlated with structure, 

making it immune to spurious associations due to structure (Supplementary Note). 

Specifically, the test allows for general levels of complexity in structure because the test is 

based on adjusting for structure according to individual-specific allele frequencies.

We have proved a theorem (Supplementary Note) that shows that βi = 0 in models (1) and 

(2) implies that bi = 0 in the following model:

(3)

for all j = 1,2, …, n. This establishes a model that can be used to test for associations in 

place of models (1) and (2). Note that the non-genetic effects, heteroskedasticity, and 

polygenic background do not appear in the above model used to test for associations. This is 

important because under our general assumptions, these terms can be difficult or even 

impossible to estimate in practice. Furthermore, testing for association under this model 

means that the test will have a valid null distribution regardless of the form of the non-

genetic effects, heteroskedasticity, and polygenic background.

As fully detailed in Supplementary Note, an association statistic whose null distribution is 

known can be constructed by testing whether bi = 0 in the above model, which we have 

shown is a valid test if βi = 0 in traits models (1) and (2). Briefly, the testing procedure 

works as follows:
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1. Formulate and estimate a model of population structure that provides well-behaved 

estimates of the logit(πij) values. We specifically use the logistic factor analysis 

(LFA) approach of ref. [14], which has been shown to provide a accurate linear 

basis of the logit(πij) values.

2. For each SNP i, perform a logistic regression of the SNP genotypes on the trait 

values plus the model terms that estimate the  values. Also, perform 

a logistic regression of the SNP genotypes on only the model terms that estimate 

, where the trait is now excluded from the fit. These two model fits 

are compared via a likelihood ratio statistic, where the larger the statistic, the more 

evidence there is that bi ≠ 0.

3. Calculate a p-value for each SNP, which is done based on our result that when the 

null hypothesis of no association is true, βi = 0 in models (1) and (2), then the 

above statistic follows a  distribution for large sample sizes.

In our implementation, d estimated logistic factors (from LFA [14]) are included as 

covariates, which serve as the model terms that estimate the  values.

We call our proposed test the “genotype-conditional association test” (GCAT). As a general 

concept, such an approach is sometimes called an inverse regression model because the trait 

and genotype are reversed in the regression.

Simulated Data

The complete simulation study on quantitative traits involved population structure 

constructed in 11 different ways for each of three different apportionments of variance 

among genetic effects, non-genetic effects, and random variation that all contribute to 

variation in the trait. Therefore, each configuration involved a constructed allele frequency 

matrix F and values assigned to variances , and Var(εj) 

from model (1). For each of these 33 =11×3 configurations, we simulated 100 GWAS data 

sets, for a grand total of 3300 studies.

We simulated allele frequencies: (i) from the Balding-Nichols model [23] based on allele-

frequency and FST estimates calculated on the HapMap data set (Balding-Nichols); (ii) 

subject to structure estimated from two real data sets: the Human Genome Diversity Project 

(HGDP) and the 1000 Genomes Project (TGP); (iii) at four different levels of admixture by 

varying the parameter α (defined in Supplementary Note) in the Pritchard-Stephens-

Donnelly (PSD) model [24], which is an extension of the Balding-Nichols model; and (iv) 

for four different types of spatially defined structure (Spatial) by varying the parameter a 

(defined in Supplementary Note). We intentionally simulated challenging population 

structures, having in mind that future GWAS such as the forthcoming “Genotype Tissue 

Expression” program (GTEx) data may involve particularly challenging forms of structure.

In order to provide an extra challenge to the proposed test, we simulated the allele 

frequencies from a model that differs from the LFA model (equation 4 in Supplementary 
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Note). We generated allele frequencies parameterized by F = ΓS, where F is the matrix of 

πij values, G is an m × d matrix and S is the d × n matrix that encapsulates the structure 

(with d = 3). This model captures as special cases the Balding-Nichols model and the PSD 

model [14]. It was also intended to provide an advantage to the PCA and LMM methods 

because the structure is manifested on the observed genotype scale [14], which is the same 

scale on which both methods estimate structure.

We simulated 10 truly associated SNPs whose effect sizes are distributed according to a 

Normal distribution. All genotypes were simulated to be in linkage equilibrium so that true 

and false positives are unambiguous. We set the variances 

, and Var(εj) to be: (5%, 5%, 90%), (10%, 0%, 90%), 

and (10%, 20%, 70%). Setting these variances enforced a certain overall level of genetic 

contribution to the trait; therefore our simulation study results were minimally affected by 

the choice of 10 truly associated SNPs and the Normal distribution on their effect sizes. In 

each simulation scenario, we simulated data for m = 100,000 SNPs and n = 5000 

individuals, except HGDP necessarily restricted us to n = 940 individuals and TGP to n = 

1500 individuals. The dimension of the structure was set to d = 3, although we carried out 

the same simulations for d = 6 and the results were quantitatively very similar and 

qualitatively equivalent.

Additional details on the simulations can be found in Supplementary Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rationale for the proposed test of association. (a) A graphical model describing population 

structure and its effects on a trait of interest. Population structure is captured by a common 

latent variable z among a set of loci xi (i =1,2, …, m), via the allele frequencies πi(z). When 

one locus has a causal effect on the trait, this induces spurious associations with other loci 

affected by population structure. At the same time, population structure may be correlated 

with lifestyle and environment as these are all possibly related to ancestry and geography. 

(b) Accounting for confounding due to latent population structure. Left panel: A test for 

association between the ith SNP xi and trait y without taking into account z will produce a 
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spurious association due to the fact that both xi and y are confounded with z. Right panel: A 

test for association between xi|πi(z) and y will be an unbiased because conditioning on πi(z) 

breaks the relationship between z and xi.
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Figure 2. 
Performance of association testing methods. One-hundred quantitative trait GWAS studies 

were simulated in each of the Balding-Nichols, HGDP, TGP, PSD (α =0.1), and Spatial (a 

=0.1) simulation scenarios (see Online Methods for definitions of each) to compare the 

Oracle, GCAT (proposed), LMM-EMMAX, LMM-GEMMA, and PCA testing methods. 

The variance contributions to the trait are genetic=5%, non-genetic=5%, and noise=90%. 

The difference between the observed number of false positives and expected number of false 

positives is plotted against the expected number of false positives under the null hypothesis 

of no association for each simulated study (grey lines), the average of those differences 

(black line), and the middle 90% (blue lines). All simulations involved m =100,000 SNPs, so 

the range of the x-axis corresponds to choosing a significance threshold of up to p-value ≤ 

0.0025. The difference on the y-axis is the number of “spurious associations.” PCA is shown 

on a separate y-axis since it usually has a much larger maximum than the other methods. 

The Oracle method is where the true population structure parameters are inputted into the 

Song et al. Page 14

Nat Genet. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proposed test (see Results), which we have theoretically proven always corrects for structure 

(see Supplementary Note).
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