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Abstract

Electrophilic products of lipid peroxidation are important contributors to the progression of 

several pathological states. The prototypical α,β–unsaturated aldehyde, 4-hydroxynonenal (HNE), 

triggers cellular events associated with oxidative stress, which can be curtailed by the glutathione-

dependent elimination of HNE. The glutathione transferases (GSTs) are a major determinate of the 

intracellular concentration of HNE and can influence susceptibility to toxic effects, particularly 

when HNE and GST levels are altered in disease states. In this article, we provide a brief summary 

of the cellular effects of HNE, followed by a review of its GST-catalyzed detoxification, with an 

emphasis on the structural attributes that play an important role in the interactions with alpha-class 

GSTs. Some of the key determining characteristics that impart high alkenal activity reside in the 

unique C-terminal interactions of the GSTA4-4 enzyme. Studies encompassing both kinetic and 

structural analyses of related isoforms will be highlighted, with additional attention to 

stereochemical aspects that demonstrate the capacity of GSTA4-4 to detoxify both enantiomers of 

the biologically relevant racemic mixture while generating a select set of diastereomeric products 

with subsequent implications. A summary of the literature that examines the interplay between 

GSTs and HNE in model systems relevant to oxidative stress will also be discussed to demonstrate 

the magnitude of importance of GSTs in the overall detoxification scheme.
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Introduction

Electrophilic products of oxidative stress are clearly associated with toxic effects, and some 

may have a causal role in several diseases, including Alzheimer’s disease (AD), Parkinson’s 

disease, diabetes, atherosclerosis, cancer, and aging (Butterfield et al., 2010a; Grimsrud et 

al., 2007; Leitinger, 2003; Nair et al., 2007; Zhou et al., 2008; Zimniak, 2008). Among the 
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major products generated endogenously from the degradation of polyunsaturated fatty acids 

during lipid peroxidation (LPO) are 4-hydroxynonenal (HNE), malondialdehyde, and 

acrolein, which all share a reactive α,β–unsaturated aldehyde moiety (Esterbauer et al., 

1991). Similarly, electrophilic metabolites of prostaglandins are also reactive and are 

potential therapeutic targets in as much as they regulate inflammatory responses (Straus and 

Glass, 2001). Additional products of oxidative stress include lipid peroxides, which are also 

electrophilic (Singhal et al., 1994).

Conjugation with the tripeptide, glutathione (GSH), can prevent each of these electrophiles 

from reacting with other crucial cellular nucleophiles and render them more hydrophilic to 

facilitate elimination. Although some compounds can spontaneously react with GSH to 

varying extents, the cytosolic glutathione transferases (GSTs) comprise a family of versatile 

enzymes with the capacity to catalyze the nucleophilic conjugation of GSH with a wide 

spectrum of electrophiles (Armstrong, 1997). Although the substrate selectivity of different 

GST classes and isoforms is broad and overlapping, the alpha-class GSTs are abundant in 

tissues exposed to high levels of reactive oxygen species (ROS) and are known to play a 

significant role in the detoxification of oxidative stress products (Coles and Kadlubar, 2005; 

Sharma et al., 2004; Yang et al., 2001; Morel et al., 2002). Despite high sequence 

similarities, the alpha-class GSTs display highly divergent substrate specificities. The 

GSTA4-4 isoform is known to be selective for the GSH conjugation of LPO products and is 

well-recognized for its catalytic efficiency with HNE (Board, 1998; Hubatsch et al., 1998). 

Structurally, this isoform consists of a rigid scaffold preorganized for HNE metabolism, 

whereas the structural homolog GSTA1-1, which has low activity toward HNE, utilizes a 

conformationally flexible scaffold to accomplish promiscuous catalysis with diverse 

substrates, such as 1-chloro-2,4-dinitrobenzene (CDNB) and Δ5-androstene-3,17-dione 

(Balogh et al., 2010; Bruns et al., 1999; Hou et al., 2007; Blikstad et al., 2008). However, in 

addition to directly metabolizing HNE, some of the alpha-class GSTs can also provide 

antioxidant protection by attenuating HNE formation. Both the GSTA1-1 and A2-2 isoforms 

can catalyze the reduction of lipid hydroperoxides through their GSH peroxidase activity, 

thereby decreasing the propagation of LPO that can ultimately generate HNE (Awasthi et 

al., 2004; Yang et al., 2003; Zhao et al., 1999).

Collectively, the cytosolic GSTs are part of key detoxification mechanisms that play a 

pivotal role in the clearance of lipid derivatives generated during oxidative stress. 

Furthermore, to the extent that GSTs regulate the intracellular concentration of HNE, they 

can influence susceptibility to the effects elicited by HNE, particularly when HNE and GST 

levels are altered in disease states (Coles and Kadlubar, 2005, LoPachin et al., 2008). This 

review aims to summarize studies concerning the underlying role of cytosolic GSTs in these 

processes. Because HNE represents a major toxicological link between oxidative stress and 

disease, it will be the focus of this work.

Relevance of HNE

Although LPO has historically been associated with toxicity, and earlier studies had already 

begun the characterization of alkenals and hydroxyalkenals, the link between activated 

alkenals and the harmful effects associated with oxidative stress garnered further attention 
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when HNE was designated as the most abundant, cytotoxic aldehyde produced from the 

peroxidation of rat liver microsomes (Benedetti et al., 1980). Based on estimates calculated 

with physiological concentrations of GSH and the forward rate constant previously 

determined for HNE (Esterbauer et al., 1975), the aforementioned study approximated the 

half-life of HNE at 2.5 minutes, and suggested this could explain the effects elicited by 

oxidative stress on cellular targets far removed from the site of origin. These effects had 

previously been difficult to comprehend, given the short half-lives of free radicals involved 

in the initiation and propagation of LPO. HNE and HNE adducts have subsequently become 

common biomarkers for detecting the occurrence and extent of oxidative stress (Petersen 

and Doorn, 2004; Uchida, 2007; Zarkovic, 2003b).

The consequence of HNE adduction on structure/function and the corresponding 

toxicological significance still remain to be fully characterized for many modifications. 

However, numerous investigations have collectively generated an extensive list of proteins 

that are covalently modified by HNE, many of which are correlated with exposure to various 

pro-oxidant treatments intended as models of oxidative stress. A brief list of some of the 

prominent biological molecules known to be modified by HNE include albumin (Aldini et 

al., 2006; Szapacs et al., 2006), the amyloid, β peptide (Liu et al., 2008; Siegel et al., 2007), 

α-synuclein (Qin et al., 2007), apolipoprotein B in oxidized low-density lipoprotein (Bolgar 

et al., 1996), adipocyte fatty acid–binding protein (Grimsrud et al., 2007), Keap1 (Levonen 

et al., 2004), and several GST isoforms (Mitchell et al., 1995; Shireman et al., 2010; van 

Iersel et al., 1997). A recent study that tackled a global analysis of protein damage by HNE 

provides an excellent perspective on the systems-level view of the impact of protein damage 

with respect to intricate networks involved with oxidative stress (Codreanu et al., 2009). 

HNE has also been described to covalently modify p53 DNA (Hu et al., 2002) and protein, 

with a significant increase in p53 adducts observed in the inferior parietal lobule of samples 

from AD patients, leading to speculation that HNE may influence the pro-apoptotic activity 

of p53 during advanced stages of neurodegeneration (Cenini et al., 2008).

The ability of HNE to exert a number of toxicological effects has been attributed to its 

electrophilic α,β–unsaturated carbonyl moiety that can react through 1,2- and 1,4-additions 

with nucleophiles, such as cysteine, histidine, and lysine residues in proteins (Carini et al., 

2004; LoPachin et al., 2008). The electrophilicity of HNE is enhanced by polarization due to 

the hydroxyl substituent on C-4 that increases the reactivity of hydroxyalkenals with 

nucleophiles, such as GSH, when compared with their alkenal counterparts (Esterbauer et 

al., 1975, 1991). Although LPO generates both enantiomers of HNE, the stereochemical 

configuration at C-4 may be of biological significance, and studies pertaining to this aspect 

will be highlighted below.

HNE is also involved in modulating proliferation, differentiation, and apoptosis and has 

been shown to generate concentration-dependent alterations in a variety of signaling 

cascades (Awasthi et al., 2004, 2005b; Uchida, 2003). The direct and indirect actions of 

HNE are numerous and appear to simultaneously influence multifactorial pathways, making 

effects complex to deconvolute. Nonetheless, microarray analyses aimed at examining 

global alterations in gene expression have demonstrated that the network of signaling events 

influenced by HNE eventually affect multiple genes known to be regulated within the scope 
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of antioxidant, heat shock, and ER stress responses (Jacobs and Marnett, 2010; West and 

Marnett, 2005).

Both the electrophilic reactivity and the involvement in signaling cascades have been 

invoked in mechanisms to explain the physio- and pathological roles of HNE. Overall, HNE 

can be considered a second messenger that originates from and augments early free radical 

events that initiate LPO and, eventually, alters gene expression and cell viability. A survey 

of the literature indicates the range of HNE concentrations in various mammalian tissues and 

plasma is 0.5–6 μM, with 3–10-fold increases observed in patients under oxidative stress 

(Awasthi et al., 2005b). It has also been approximated that HNE accumulates in membranes 

at concentrations of 10 μM–4.5 mM in response to oxidative insults (Esterbauer et al., 

1991). Given the toxic nature of HNE and its roles in oxidative stress, factors controlling its 

cellular concentration are of significant interest, as they likely influence an organism’s 

susceptibility to toxic effects and represent a further step in understanding the relationship 

between oxidative stress and disease states.

Detoxification of HNE

Spontaneous reaction with GSH

Conjugation to GSH is the primary component in the defense strategy used in the 

detoxification of reactive electrophiles (Hayes and McLellan, 1999). HNE spontaneously 

reacts with GSH to form a conjugate through a 1,4-addition reaction (Esterbauer et al., 1975, 

1991). The nucleophilic addition of the thiolate to C-3 of HNE initially yields an enolate 

tautomer that reacts with a proton donor to produce glutathionyl 4-hydroxynonanal 

(GSHNE). Equilibrium favors the cyclic hemiacetal structure that is generated from an 

intramolecular reaction of the 4-hydroxyl and carbonyl groups (Figure 1).

Whether generated by the spontaneous reaction or enzyme-mediated catalysis, as reviewed 

below, characterization of the GSHNE conjugates represents an important step not only in 

understanding the routes of HNE elimination, but also in cell-signaling cascades, as 

compelling evidence indicates that GSHNE is also involved in modulating effects previously 

attributed to HNE itself. An insightful study conducted in aortic smooth muscle cells 

indicated that a subsequent metabolite, generated by the aldose reductase-catalyzed aldehyde 

reduction of GSHNE, is a mediator of the cell signaling associated with HNE that was found 

to stimulate protein kinase C, nuclear factor-κB (NF-κB), and activator protein-1 (Ramana 

et al., 2006). Moreover, in addition to the buildup of proteins excessively adducted by HNE, 

GSHNE and its secondary metabolites have been found to accrue in neurodegenerative 

disease states (Selley, 1998; Volkel et al., 2006) and models of oxidative stress (Volkel et 

al., 2005), thereby suggesting a dependence on the adequate functioning of this 

detoxification pathway to combat oxidative stress.

GST-catalyzed conjugation

The accumulation of HNE is also countered by a collection of enzymes that can contribute 

to detoxification reactions (Alary et al., 2003; Alin et al., 1985; Amunom et al., 2007; 

Awasthi et al., 2005b; Boon et al., 1999). Although the spontaneous reaction with GSH 

presumably provides some level of protection against HNE, results with various cell lines 
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suggest that many cells in general respond in initial stages of stress by upregulating the 

mechanisms for detoxification and exclusion of HNE (Cheng et al., 2001a). Mercapturic 

acids constitute the major portion of HNE metabolites identified in urine, and GSTs, being a 

major determinant of the intracellular concentration of HNE, are believed to play a central 

role in the overall detoxification scheme (Alary et al., 1998).

Based principally upon sequence homology, cytosolic GSTs are categorized into seven 

classes in mammals that are further divided into subclasses identified numerically by their 

monomer composition (Sheehan et al., 2001). Beyond characterization of the spontaneous 

reaction with thiols, early studies established that products of LPO were, indeed, substrates 

for several GST isoforms, thereby implicating the GSTs in an important physiological role 

with respect to these endogenous compounds (Alin et al., 1985; Danielson et al., 1987). 

Since these initial studies, GSTA4-4 has emerged as the alpha-class GST enzyme 

distinguished for its high catalytic efficiency with toxic LPO products, such as HNE (Board, 

1998; Hubatsch et al., 1998; Liu et al., 1998; Stenberg et al., 1992; Zimniak et al., 1992). 

The kinetic parameters (KM = 34 μM, kcat = 100 s−1), as determined by a liquid 

chromatography/mass spectrometry (LC/MS)-based product formation assay in our 

laboratory (Balogh et al., 2008), are consistent with previously reported constants for 

racemic HNE and human GSTA4-4 (hGSTA4-4) (Cheng et al., 2001b, Hubatsch et al., 

1998). Based on these parameters and the rate constant provided for the corresponding 

spontaneous reaction (Esterbauer et al., 1975), the catalytic proficiency (as defined by the 

ratio: (kcat/KM)/knon; Miller and Wolfenden, 2002) of hGSTA4-4 is calculated to be 2.7 × 

106 and could be indicative of a significant contribution to HNE detoxification—orders of 

magnitude above the spontaneous conjugation rate in vivo. For comparison, the catalytic 

efficiencies reported for the hGSTA1-1 (Zhao et al., 1999) and P1-1 (Singhal et al., 1994) 

isoforms would yield proficiencies 50- and 400-fold lower, respectively, relative to 

hGSTA4-4. Although these other GSTs in the alpha, pi, and mu classes exhibit significantly 

reduced activity with HNE, they may also contribute to the detoxification, to some extent, 

given these isoforms can constitute the bulk of GST protein in some tissues (Eaton and 

Bammler, 1999). This concept is exemplified by the mGsta4 null mouse, which retains as 

much as 64% of conjugation activity in liver tissue (Engle et al., 2004).

Rationally engineered mutants of GSTA1-1, including the elegantly redesigned GSTA1-1 

“GIMFhelix” mutant, which contains amino-acid substitutions representing 6% of the 

sequence (A12G/L107I/L108M/V111F/A1 208–222 A4), have also uncovered structural 

elements important within the context of high activity toward alkenals (Blikstad et al., 2008; 

Nilsson et al., 2000; Babbitt, 2000). Although it is still less efficient than GSTA4-4, the 

GIMFhelix mutant is remarkably more active with HNE than GSTA1-1. The mutant 

displayed 20- and >300-fold increases in catalytic efficiency with HNE and nonenal, 

respectively. Interestingly, over a 10-fold decrease in the catalytic efficiency for the 

characteristic aromatic substitution reaction with CDNB also emerged, indicating that the 

effects of the particular substitutions are correlated with a shift in specificity toward the 

Michael-like additions performed by GSTA4-4.

Balogh and Atkins Page 5

Drug Metab Rev. Author manuscript; available in PMC 2015 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Stereochemical considerations

Among the studies that explore the stereochemical course of GST catalysis are the 

conjugation reactions of prostaglandin A2 by GSTA1-1 and P1-1 (Bogaards et al., 1997) and 

the stereoselective GSH conjugation of 13-oxooctadeca-9,11-dienoic acid by GSTM1-1, 

M2-2, and allelic variants of P1-1 (Bull et al., 2002). HNE exists in two enantioisomeric 

forms, whereas the cyclized form of GSHNE contains three chiral centers in the hemiacetal 

moiety. Results described by others (Ji et al., 2002) and our laboratory (Balogh et al., 2008) 

both indicate that the spontaneous reaction of racemic HNE with GSH produces a high-

performance liquid chromatography (HPLC) or LC/MS chromatogram with four major 

diastereomeric peaks. Taking into account the chiral centers inherent in GSH, there are a 

total of eight potential GSHNE diastereomers, with the remaining possibility that each of the 

four peaks constitute a pair of unresolved diastereomers. The significance of the chirality of 

HNE and GSHNE with respect to kinetic and structural attributes of GSTA4-4 has been a 

point of interest in studies involving both the rat and human isoforms.

Substrate stereoselectivity

The relative preference for R- versus S-HNE as initial substrates could play an important 

role in the removal of these electrophiles, as both enantiomers are reactive toward cellular 

nucleophiles and are presumed to be toxic (West et al., 2004). Although LPO generates both 

enantiomers of HNE, the unique intracellular localization of R- versus S-HNE histidine 

adducts in the renal cortex of rats exposed to ferric nitrilotriacetate emphasizes the potential 

for stereoselective toxicological interactions (Hashimoto et al., 2003). HNE can also form 

adducts with DNA, and the ability of the exocyclic HNE-deoxyguanosine adduct to form 

interstrand cross-links was found to be contingent upon stereochemistry (Huang et al., 

2008). One of the HNE-deoxyguanosine adducts derived from S-HNE was observed to form 

interstrand cross-links, whereas adducts derived from R-HNE did not. Although initial 

adducts are formed with both enantiomers, only the adduct derived from S-HNE was 

positioned to facilitate cross-link formation when the reactive aldehyde is unmasked during 

the opening of the cyclic hemiacetal structure, thereby increasing its propensity to ultimately 

block DNA replication.

Given the stereoselectivity outlined above, it is important to understand what determines the 

relative concentrations of HNE enantiomers. The S-HNE enantiomer was found to 

irreversibly inactivate rabbit glyceraldehyde-3-phosphate dehydrogenase (GAPDH) at a 

greater rate than R-HNE (Hiratsuka et al., 2000), and a recent review highlights how the 

modification of this enzyme is now attracting attention due to roles in neurodegeneration 

(Butterfield et al., 2010b). Interestingly, the previous study also described a corresponding 

stereoselective substrate preference by rat GSTA4-4 in the order of S- > racemic > R-HNE. 

Likewise, our studies conducted with the human isoform determined that GSTA4-4 is 

modestly substrate selective, with a preference for S-HNE in the presence of both 

enantiomers (Balogh et al., 2008). The apparent KM and the relative contributions to kcat 

ultimately result in a 1.5-fold greater apparent catalytic efficiency for S-HNE in the 

GSTA4-4-mediated GSH conjugation. However, despite the small preference for S-HNE as 
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a substrate, GSTA4-4 still exhibits high apparent activities with either enantiomer, as 

expected for an enzyme that may have evolved to detoxify a racemic substrate.

Even though it matched, or even surpassed, hGSTA4-4 with other alkenal substrates, the 

hGSTA1-1 GIMFhelix mutant does not quite exhibit maximal catalytic efficiency with HNE 

(Nilsson et al., 2000). Based upon the ratio of the apparent catalytic efficiencies (kcat/KM) in 

our studies, the GIMFhelix mutant exhibits a preference for S- versus R-HNE of 1.6, 

comparable to that of wild-type GSTA4-4 (Balogh et al., 2010). However, it is notable that 

the GIMFhelix mutant does not show any major differences in the kinetic parameters 

between nonenal and HNE (Nilsson et al., 2000), whereas GSTA4-4 shows a reduction and 

increase in the KM and kcat values, respectively, for HNE, as opposed to nonenal as a 

substrate. This can be interpreted to suggest that the GSTA1-1 GIMFhelix mutant cannot 

exploit the hydroxyl group, in either configuration, as efficiently as GSTA4-4. This 

rationalization, which is supported by our recent structure determinations discussed below, 

implies that GSTA4-4 exhibits low substrate stereoselectivity because it exploits the 

hydroxyl group of both substrates, whereas GSTA1-1 GIMFhelix exhibits low substrate 

stereoselectivity because it effectively exploits neither.

Stereoselectivity of product formation

Although crystal structures have yet to depict HNE bound to the GST active site, predictions 

derived from the structure for apo hGSTA4-4 and hGSTA4-4 in complex with the inhibitor, 

S-(2-iodobenzyl)-GSH (Bruns et al., 1999), suggested either enantiomer of HNE could fit 

into the binding pocket, but anticipated that the nucleophilic attack by the GSH sulfur would 

generate only the S-configuration at the site of conjugation in the GSHNE diastereomers. As 

described above, the spontaneous reaction produces an LC/MS spectrum with four major 

diastereomeric peaks. However, our studies confirmed the crystal structure-based proposal 

concerning product stereoselectivity within the active site by explicitly demonstrating that 

only two of the diastereomeric peaks are observed in the catalytic reaction (Figure 2A), 

wherein hGSTA4-4 conjugates GSH to HNE in a stereoselective manner that is not 

maintained in the spontaneous reaction (Balogh et al., 2008). Moreover, LC/MS and nuclear 

magnetic resonance (NMR) experiments, in combination with simulated annealing structure 

determinations, were also consistent with a catalyzed nucleophilic attack that produces only 

the S-configuration at the site of conjugation, regardless of initial substrate chirality. The 

product stereoselectivity of GSTA4-4, as compared with other GST isoforms (Figure 2A–

C), can be rationalized on structural grounds (reviewed below), and, overall, these 

comparisons illustrate how GSTA4-4 has a unique stereoselectivity profile that yields only a 

select set of GSHNE diastereomers.

In addition to regulating any other biological effects produced by GSHNE itself (Ramana et 

al., 2006), the efficient export of GSHNE presumably allows GSTs to sustain maximal HNE 

detoxification that would otherwise be hindered by product inhibition (Alin et al., 1985). 

Hence, in conjunction with GSTs, transporters are also thought to play an important role in 

regulating the intracellular concentrations of HNE and GSHNE and their subsequent effects 

in cells (Awasthi et al., 2005b; Cheng et al., 2001a; Sharma et al., 2000). The stereochemical 

configuration at the site of conjugation could also impact GSHNE bioactivity and further 
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elimination. For example, it was hypothesized that product stereoselectivity of GSTs could 

contribute to the unequal distribution of GSHNE diastereomers observed in rat liver cytosol 

(Boon et al., 1999). Similarly, an unequal distribution of the GSHNE diastereomers in the 

apical compartment was reported for multidrug resistance protein 2 Madin-Darby canine 

kidney cells (Ji et al., 2002). Such distributions could, indeed, originate from stereoselective 

GSHNE production, but the potential for stereoselective contributions by transporters should 

also be acknowledged. Interestingly, though it was not explicitly discussed, the distribution 

pattern of the different GSHNE diastereomers accumulated in the liver tissue of Ral-binding 

protein (RLIP76)−/− mice versus RLIP76+/+ mice (Singhal et al., 2008), alludes to a 

stereoselective preference of the RLIP76 transporter for the diastereomers selectively 

produced by hGSTA4-4. Collectively, these results underscore a role for the product 

stereoselectivity exhibited by hGSTA4-4, and it is conceivable that the overall HNE 

detoxification scheme, including metabolism and transport, could be coordinated with 

respect to stereochemistry. Further research into the biological implications concerning 

GSHNE by utilizing direct transport assays with the individual diastereomers will help to 

elucidate the significance of chirality in the transport process.

Structural characterizations

Alpha-class GST structure

All members of the cytosolic GSTs are functionally dimeric proteins that contain one active 

site per subunit. In general, the N-terminal domain of each subunit creates a GSH-binding 

site (G-site), whereas an area in between the bundle of α-helices in the C-terminal domain 

essentially creates the substrate-binding site (H-site), both of which have been extensively 

discussed in previous reviews (Armstrong, 1997; Dirr et al., 1994; Dourado et al., 2008; 

Hayes et al., 2005; Sheehan et al., 2001). The alpha-class GSTs are commonly known to 

play a significant role in the detoxification of oxidative stress products (Sharma et al., 2004; 

Yang et al., 2001; Zhao et al., 1999). One of the unique features with particular relevance to 

the binding of HNE is the extra α9-helix in the C-terminal domain that participates in the H-

site of the alpha-class GSTs (Sinning et al., 1993). Another distinguishing feature of alpha-

class GSTs is the incorporation of the Arg15 residue, which helps to stabilize the GSH 

thiolate and lower the pKa value of the well-recognized Tyr9 residue (Armstrong, 1997; 

Bjornestedt et al., 1995a; Dourado et al., 2010; Gildenhuys et al., 2010). This Arg15 residue 

has also been proposed to donate a proton or activate a water molecule during catalysis as 

well as interact with the hydroxyl group of HNE, as discussed below (Bruns et al., 1999).

Although GSTA4-4 and GSTA1-1 have similar overall topologies, dimer interactions, and 

conserved G-sites, the specificity of GSTA4-4 is highly distinguished from that of GSTA1-1 

(Hou et al., 2007; Hubatsch et al., 1998). GSTA1-1 is a promiscuous enzyme, whereas 

GSTA4-4 has much higher substrate specificity and catalytic efficiency toward alkenal 

substrates, such as HNE, although it also maintains negligible stereoselectivity toward the 

individual enantiomers. The role of numerous interactions involving regions, such as the C-

terminus or the domain-domain interface, have been explored with respect to enzyme 

stability and dynamics as well as the relationship to catalytic function (Adman et al., 2001; 

Balchin et al., 2010; Dirr et al., 2005; Dirr and Wallace, 1999; Gustafsson et al., 1999; Ibarra 
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et al., 2001; Kuhnert et al., 2005; Mosebi et al., 2003; Nieslanik and Atkins, 2000; Nieslanik 

et al., 1999, 2001; Nilsson et al., 2002). Both isoforms utilize three substrate recognition 

regions (the β1-α1 region, the end of the α4-helix, and the C-terminus) to construct the H-

sites in the folded protein. However, though the studies cited above, as well as additional 

structural characterizations (Cameron et al., 1995; Grahn et al., 2006; Le Trong et al., 2002; 

Zhan and Rule, 2004), indicate the C-terminus of GSTA1-1 is a highly disordered helix that 

is transformed to an ordered helix in a ligand-dependent manner, the first crystal structures 

of hGSTA4-4 (PDB entries 1GUM and 1GUL) helped to reveal how its readily positioned 

C-terminal helix creates an H-site ideally shaped for alkenals (Bruns et al., 1999).

Additional studies with the aforementioned GIMFhelix mutant further established the 

relationship between the structural determinants that contribute to the distinct specificities of 

alpha-class GSTs (Balogh et al., 2009; Blikstad et al., 2008; Nilsson et al., 2000). Because a 

number of the targeted residues comprise the α9-helix, the entire C-terminus (residues 208–

222) was exchanged with that of GSTA4-4 in the final GSTA1-1 GIMFhelix mutant 

designed by Mannervik and co-workers Nilsson et al., 2000. One well-recognized feature 

underscored by these studies is the simultaneous presence of Tyr212 in the α9-helix and 

Gly12 in the β1-α1 loop that is critical for binding and activating HNE (Bjornestedt et al., 

1995b; Bruns et al., 1999; Nilsson et al., 2000). Although it is the Tyr212 residue that is 

proposed to interact with the aldehyde of alkenals, this area is occupied by the Cβ of Ala12 

in hGSTA1-1, and the lack of a side-chain at residue 12 was found to be necessary for 

Tyr212 to adopt the optimal position for binding and catalysis. Furthermore, the pKa value 

of Tyr9 was decreased from 8.1 in hGSTA1-1 to a value of 7.3 in the GIMFhelix mutant, 

which shifts it closer to the anomalously low value of 6.7 measured in hGSTA4-4 (Hubatsch 

and Mannervik, 2001). Although the precise basis of the different pKa values in these 

isoforms is not entirely clear, the trend suggests a correlation between a low pka value and 

structural elements that contribute to high alkenal activity.

In light of these comparisons, characterization of the GSTA1-1 and GSTA4-4 isoforms was 

extended to examine the relationship between functional promiscuity and conformational 

heterogeneity (Hou et al., 2007). The hGSTA4-4 enzyme contains an edge-to-face aromatic-

aromatic interaction between Phe111 and Tyr217 in the α4–α5 helix-turn-helix “tower” that 

is not present in hGSTA1-1 (Figure 3). The interaction between these two residues was 

speculated to contribute to a closer association between the tower and C-terminal regions of 

hGSTA4-4 that increases core packing and preorganization of the active site for HNE 

binding. Although GSTA1-1 was found to be more conformationally heterogeneous, the 

tower mutants that eliminate and incorporate the aromatic-aromatic interaction into 

GSTA4-4 and GSTA1-1, respectively, were shown to exhibit substrate specificity between 

those of the two wild-type proteins and were sufficient to change local, as well as global, 

dynamics. Altogether, these observations suggest that a conserved scaffold with a relatively 

small number of substitutions is able to convey not only differences in local dynamics, but 

also differences in conformational heterogeneity that span the folded protein structure and, 

ultimately, result in unique specificities embodied by these GST isoforms.
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Substrate stereoselectivity

Enzymologically, GSTA4-4 demonstrates an interesting combination of promiscuity and 

specificity, which is opposite from the expected parallel between high chemospecificity and 

high catalytic efficiency. The stereoselectivity of product formation observed for hGSTA4-4 

is contingent upon the consistent maintenance of the relative orientation between GSH and 

the 2,3-double bond of both HNE enantiomers. As a result, the hydroxyl group of each 

enantiomeric substrate is positioned on opposite sides of the active site. Consequently, in 

order to also attain the low level of substrate stereoselectivity, the hydroxyl group is either 

not exploited for binding or else there are comparable interactions, such as enantiospecific 

interactions with different residues, or interactions with a symmetrically placed residue that 

generates energetically degenerate diastereomeric transistion states (Balogh et al., 2008). As 

previously mentioned, the difference in the kinetic parameters between nonenal and HNE 

suggest that the hydroxyl group is exploited within the GSTA4-4 active site, and hence, the 

latter situation is the likely strategy (Bruns et al., 1999; Hubatsch and Mannervik, 2001; 

Hubatsch et al., 1998; Nilsson et al., 2000). Murine GSTA4-4 has been cocrystallized with 

GSHNE (PDB entry 1B48), but extrapolation of the observed interactions to initial HNE 

binding is difficult, considering the cyclized structure of the final conjugate (Xiao et al., 

1999). We recently described the first crystal structures of hGSTA4-4 (PDB entry 3IK7) and 

the hGSTA1-1 GIMFhelix mutant (PDB entry 3IK9), cocrystallized with the open-chain 

form of the 3S-GSHNE conjugate, 3S-glutathionyl 1,4-dihydroxynonanol (3S-GSDHN), 

which serves as an important model for the uncyclized and stereochemically relevant ternary 

substrate complex (Balogh et al., 2010). As expected, the hydroxyl group derived from 

reduction of the aldehyde is positioned at the bottom of the H-site near Tyr212, whereas the 

alkyl chain extends into a hydrophobic cavity delineated by Ile107, Met108, Phe111 in the 

α4-helix, Tyr212, Val216, and Tyr217 in the α9-helix, in a manner that turns out to illustrate 

how the hydroxyl group of either 4R- or 4S-HNE can be positioned near Arg15 without any 

surrounding residues to discriminate between either enantiomer (Figure 4). Furthermore, 

consistent with the modest stereoselective preference of GSTA4-4, occasional binding in a 

proposed additional binding mode that is still compatible within the confines of the structure 

would, in fact, favor an interaction with S-HNE.

Stereoselectivity of product formation

The extra C-terminal helix clearly plays an important role in the different specificities 

exhibited by the structurally related alpha-class GSTs, and the incorporation of the Phe111-

Tyr217 tower region interaction into GSTA1-1 created a mutant with a less dynamic C-

terminus and increased HNE selectivity (Hou et al., 2007). In line with this trend, our studies 

have also shown that conformational heterogeneity is inversely correlated with product 

stereoselectivity in these isoforms (Balogh et al., 2008, 2010). Specifically, the GSTA4-4 

and A1-1 tower mutants exhibit stereoselectivity intermediate between the wild-type 

templates, whereas the GIMFhelix mutant, which also incorporates the aromatic-aromatic 

interaction, as well as other key GSTA4-4 interactions, displays intermediate 

stereoselectivity of product formation similar to that observed with the GSTA1-1 tower 

mutant alone. In light of the catalytic properties of the GIMFhelix and tower mutants 

(Blikstad et al., 2008; Hou et al., 2007; Nilsson et al., 2000), it appears that although the 
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other H-site mutations present in GIMFhelix are also imperative for alkenal activity, simply 

the Phe111-Tyr217 interaction is sufficient to obtain the level of stereoselectivity observed. 

This finding is consistent with a role in limiting local and global dynamics, which evidently 

allows for a higher level of steric control within the active site.

The different GSTA1-1 GIMFhelix mutant structures (PDB entries 3I69, 3I6A, and 3IK9) 

have also detailed the β1-α1 loop, α4-helix, and C-terminal regions that are coupled to high 

alkenal activity and provided a fortuitous crystallographic look that helped to explain why 

GSTA4-4 is completely stereoselective in product formation. Despite similarities in the 

binding of the 3S-GSDHN ligand, comparisons of residues comprising the active site 

identified an aromatic network of interactions resulting from the simultaneous presence of 

the A1-1-derived Phe10 and A4-4-derived Tyr212 residues within the context of the 

GIMFhelix active site (Balogh et al., 2010). The Phe10 residue, which is replaced by a 

proline in hGSTA4-4, ultimately resulted in the displacement of Phe220, a conserved 

residue in the C-terminal helix that is thought to assist in guiding the reacting substrates to 

the transition state (Nilsson et al., 2002). In total, we propose these interactions sterically 

hinder the optimal preorganization of the C-terminus and, inevitably, the maintenance of a 

consistent HNE orientation with respect to GSH. In turn, this demonstrates how these 

fundamental residues are linked to the high substrate specificity and transition-state 

interactions, as well as the complete steric control, that yield only the S-configuration at the 

site of conjugation in hGSTA4-4.

A decrease in stereoselectivity was also found with GSTP1-1 (Balogh et al., 2008). 

Curiously, relative to the alpha-class GSTs, this isoform actually catalyzes a partially 

preferential formation of the diastereomers with the opposite configuration at the site of 

conjugation. The physiological relevance of this is not clear, given that GSTP1-1 has a 

different tissue distribution and a 400-fold lower catalytic efficiency with HNE (Eaton and 

Bammler, 1999; Singhal et al., 1994). Regardless, it is interesting to note that the GSTA4-4 

α9-helix, containing the critical Tyr212 residue, resides across the active site from the end 

of the α4-helix, which does not contain any Tyr residues in the alpha-class GST H-sites 

discussed herein. Although GSTP1-1 completely lacks the extended C-terminal helix, it does 

contain two Tyr residues near the end of the α4-helix, one of which, Tyr108, has already 

been implicated in the active site of GSTP1-1 (Oakley et al., 1997). This Tyr residue could, 

speculatively, play an analogous role to Tyr212, resulting in an orientation of the aldehyde 

group toward the opposing side of the active site, which could, in turn, favor the opposite 

stereoselectivity of product formation, compared with the alpha-class GSTs. However, in the 

absence of a GSTP1-1 crystal structure with HNE bound or rigorous docking studies to 

facilitate the identification of residues, it is difficult to predict precisely what structural 

attributes account for the observed differences. Nevertheless, because GSTP1-1 lacks the C-

terminal helix, these results complement the evidence supporting a role for this region in the 

stereoselectivity of GSTA4-4.

GST adduction by HNE

The modification of macromolecules by HNE has received considerable attention. Of 

particular relevance to this review is the adduction of the very enzymes responsible for the 
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detoxification of HNE. Initial studies conducted using various mouse GST isozymes 

demonstrated that GST-HNE adducts were indeed formed, and that the reactivity with HNE 

was most strongly correlated with the number of Cys residues in the protein sequence 

(Mitchell et al., 1995; van Iersel et al., 1997). GSTs were also among the protein adducts 

identified in a more recent study that featured a global analysis of adducted proteins in colon 

carcinoma cells treated with HNE (Codreanu et al., 2009). The exposure of GSTA4-4 to 

HNE, as necessitated by its role in detoxification of this endogenous electrophile, could 

render the enzyme particularly susceptible to adduction and enhance the intracellular 

concentration and hence toxicity of HNE, if the enzyme were to be inactivated. 

Speculatively, if GSTA4-4 has evolved to clear HNE, then it would likely be resistant either 

to adduction by HNE or to deleterious functional affects of adduction by HNE. Indeed, a 

direct comparison of the kinetics of adduction of GSTA1-1, A4-4, and P1-1 revealed that 

GSTA4-4 is completely resistant under conditions that yield moderate or extensive 

adduction of the other isoforms (Shireman et al., 2010). The structural basis for this is not 

completely clear, but a qualitative inspection of the constellation of nucleophilic residues on 

the surface of each suggests that GSTA4-4 has fewer exposed sites for adduction. It is also 

likely that the protein dynamics are important, and the more dynamic nature of GSTA1-1, 

compared to A4-4, may contribute to the greater accessibility of its surface nucleophiles. 

Along these lines, it is interesting to note that, although GSTA4-4 is highly resistant to 

adduction, the modified residues that were identified are not part of the H-site (Figure 5).

Biological implications

HNE is now implicated in numerous pathological states associated with the consequences of 

oxidative stress that have been the subject of many publications. To the extent that GSTs 

regulate the concentration of HNE, they are poised to play an important role in modulating 

the effects elicited by HNE. Conversely, oxidative stress and, more specifically, HNE have 

been found to induce the expression of phase II enzymes (Zhang and Forman, 2009), 

including GSTA4-4 (Raza and John, 2006). A collection of studies have shown that GSTs 

offer protection against HNE-mediated damage and enhance survival (Gallagher et al., 2007; 

Xie et al., 1998; Sharma et al., 2004). An elevation of hGSTA4-4 has been documented in 

early atherosclerotic plaques from aortic samples that suggests an initial defensive role of 

this enzyme (Yang et al., 2004). This concept is supported by subsequent studies 

demonstrating the protection afforded to endothelial cells transfected with murine GSTA4 

that found an associated upregulation of inducible nitric oxide synthase conveyed through 

the translocation of NF-κB, which is suggested to be beneficial with respect to 

atherosclerotic processes (Yang et al., 2008). Additional evidence for the protective role of 

GSTs, with potential implications concerning osteoarthritis, is illustrated by the finding that 

GSTA4-4 overexpression protects human chondrocytes from HNE-mediated cell death, 

whereas transfection with GSTA4-4 siRNA enhances the toxicity derived from HNE 

(Vaillancourt et al., 2008). The ability of superoxide dismutase (SOD) to scavenge 

superoxide anions has general relevance to pathological states related to oxidative stress. 

Although adult superoxide dismutase-1 (SOD1) knockout mice are known to have a reduced 

lifespan, young SOD1 knockout mice actually exhibit few abnormalities. Investigations 

examining whether this could be related to compensatory mechanisms that counter oxidative 
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stress led to the discovery that elevated levels of GSTA4-4 are present in these young mice 

deficient in SOD1 and, presumably, contribute to the maintenance of normal HNE levels 

(Yoshihara et al., 2009).

The GSTA4-4 isoform exhibits remarkable chemoselectivity and high catalytic efficiency 

toward HNE, and expression of GSTA4-4 is a critical determinant of an organism’s 

susceptibility to disease and aging (Zarkovic, 2003a; Zimniak, 2008). Consequently, HNE 

involvement has been extensively documented in a number of the components associated 

with AD, wherein elevated levels of free and protein-bound HNE have been detected in both 

early and late stages of AD (Butterfield et al., 2006; Reed et al., 2009; Volkel et al., 2006; 

Williams et al., 2006). Although an increase in the magnitude of LPO products is a hallmark 

feature of neurodegeneration, notable studies provide evidence that GST activity and protein 

levels are altered, as well. The cytotoxic effects of HNE are known to be replicated by the 

administration of exogenous HNE, whereas increased GST is known to protect against HNE 

toxicity. Accordingly, a decline in both total GST activity and GST protein (as estimated by 

4-chloro-7-nitro-2,1,3-benzoxadiazole activity and a GSTM1-1 antibody, respectively) was 

observed in many brain regions of short-postmortem-interval autopsy patients with AD 

(Lovell et al., 1998). A related AD study that also found a decrease in GST activity 

(measured using CDNB) uncovered a greater extent of HNE-modified GST protein and 

alluded to a loss in function due to altered protein structure (Sultana and Butterfield, 2004). 

The levels of alpha-class GSTs were actually increased, rather than decreased, and the 

discrepancy in protein levels between classes/studies is not entirely understood; however, 

isoform-specific induction and inhibition may both be contributing factors during disease 

progression. Furthermore, recent results highlighted above dissect the adduction of different 

GSTs and provide insight necessary to begin deconvoluting isoform-specific effects 

(Shireman et al., 2010). Although it is beyond the scope of this review, in light of the 

potential coordination between GSTs and transporters, it is interesting to note that multidrug 

resistance protein 1, which is known to transport GSH-conjugates (Renes et al., 2000), was 

also found to be modified by HNE in patients with AD (Sultana and Butterfield, 2004). 

Increased brain levels of GSHNE have also been observed (Volkel et al., 2006), suggesting 

that a decrease in the transport or further metabolism of GSHNE may conceivably occur 

during the progression of AD and further contribute to the accumulation of HNE by 

disrupting the flow of the detoxification process.

Continuing within the context of biological implications, evaluation of the expression and 

activity of antioxidant enzymes identified the alteration of several GST isoform levels in 

nonalcoholic fatty liver disease (Hardwick et al., 2010). Increases in GST mRNA (A1, A2, 

A4, M3, and P1) and protein levels assessed for each isoform family paralleled disease 

progression, with the exception of GSTM protein, which decreased. Conversely, GST 

activity, as deduced by CDNB-conjugating activity, declined with disease progression. The 

researchers attribute this phenomenon to a complicated mechanism of GST regulation 

potentially exacerbated by decreased GSH levels in vivo, which, overall, is consistent with a 

reduced ability to curtail oxidative stress in advanced disease states. The researchers also 

speculate that the HNE adduction of specific GSTs offers a plausible explanation to the 

discrepancy in enzyme expression and activity. In light of the recent GST-adduct 
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characterization that indicates GSTA4-4 is highly resilient with respect to adduction 

(Shireman et al., 2010), it would be of interest to include HNE when monitoring GST 

activity in many of these studies. Shifts in the distribution of activity during different stages 

may not be adequately deduced by CDNB-conjugating activity alone, given a hypothetical 

circumstance where the small increase in CDNB conjugation provided by increased 

GSTA4-4 (which has poor activity with this “universal” substrate) may not compensate for 

the reduction in GSTA1-1 activity due to enzyme adduction and inhibition, despite elevated 

levels of the isoform.

Oxidative stress is also linked with the development of insulin resistance and diabetes. 

Consistent with the recurrent theme of alteration in GST levels coupled with HNE-protein 

adduction, adipose proteins from obese insulin-resistant mice were detected to have an 

increase in HNE modifications, whereas GSTA4-4 protein levels exhibited a decrease in the 

adipose tissue of obese, insulin-resistant mice and humans (Curtis et al., 2010; Grimsrud et 

al., 2007). In order to explore the impact of the interaction between GSTA4-4 and HNE in 

an intact organism, researchers have been exploiting a mGsta4 null mouse model (Engle et 

al., 2004). These mice have a reduced capacity to metabolize HNE and were found to show 

an earlier onset of degenerative declines, in addition to lower survival rates when presented 

with oxidative challenges. Notably, these mice did retain between 23 and 64% of HNE-

conjugating activity, depending on the tissue, which attests to the importance of other GSTs 

with respect to redundancy in HNE detoxification. Complicating the situation is the 

observation that the biochemical phenotype of this Gsta4 null mouse is strain dependent and 

hence must be considered when interpreting outcomes (Singh et al., 2008). Nonetheless, 

these mice serve as a useful model, and subsequent studies derived from null mice of the 

129/sv genetic background have contributed to the establishment of the relationship between 

increased levels of HNE and obesity. In contrast, Gsta4 null mice of the C57BL/6 

background were generally not found to have elevated levels of HNE and remained lean in 

this study. Expanding upon this counterintuitive result is the finding that these mice have an 

increased lifespan (Singh et al., 2010). This is particularly interesting, in light of model 

studies concerning Caenorhabditis elegans that demonstrated mGsta4 transgeneic strains 

were accompanied by an increase in HNE-conjugating activity and had increased stress 

resistance with an extended lifespan (Ayyadevara et al., 2005). This finding is consistent 

with additional studies that identified GSTs among the detoxification enzymes with elevated 

transcripts in long-lived forms of C. elegans (McElwee et al., 2004, 2007) whereas RNAi 

knockdown of related GSTs and disruption of HNE detoxification significantly reduced 

longevity (Ayyadevara et al., 2005a, 2007). Although these results merit future clarification, 

the manipulation of organisms that ultimately alter HNE concentrations attest to the 

relevance of HNE in various physio- and pathological processes, wherein GSTs can make 

important contributions to a detoxification scheme that coordinates the complex system.

Summary

GSTs clearly play a central role in the detoxification of electrophilic aldehydes. 

Collectively, the available data stress that although GSTA4-4 is not the most abundant 

isoform, its presence can play a crucial role in the detoxification of HNE. A decrease in this 

protective mechanism may partially underlie the pronounced effects of HNE and thus the 
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pathogenesis of several disease states. Within the context of accommodating a racemic 

alkenal, the available studies demonstrate that GSTA4-4 achieves a high chemospecificity 

and an optimal stereoselectivity profile without undergoing enantiospecific induced fit, but 

rather by utilizing a preorganized alkenal-template and the active site residue Arg15, which 

is ideally located to interact with the 4-hydroxyl group of either HNE enantiomer. The data 

further suggest that hGSTA4-4 may optimize its biological utility by combining high 

catalytic efficiency and low substrate stereoselectivity with strict stereoselectivity of product 

formation. This strategy allows for the acceptance of both enantiomers as substrates, which 

provides protection from the harmful consequences of oxidative stress products while 

producing only a select set of GSHNE diastereomers with potential biological implications 

for stereoselective bioactivity and transport. Furthermore, though, undoubtedly, the result of 

multiple complex phenomena, the results described with model systems reviewed herein 

provide a comprehensive view of the outcomes associated with altered GST and HNE levels 

in intact organisms and offer important insights regarding the interaction of GSTs and HNE 

that may be extended to human biology.
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Figure 1. 
Reaction of GSH with racemic HNE. 1,4-addition reaction, followed by an intramolecular 

cyclization..
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Figure 2. 
Comparison of the stereoselectivity of product formation for the different GST isoforms. 

The GSHNE diastereomers (gray line) were prepared by incubating GSH and (A) 

hGSTA4-4, (B) hGSTA1-1, and (C) hGSTP1-1 with racemic HNE and analyzed by LC/MS 

(electrospray positive ion mode, selected ion monitoring, m/z 464). The maximum 

contribution possible from the spontaneous reaction (black line), which produces small, 

roughly equivalent amounts of all four peaks, is also shown for comparison.
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Figure 3. 
Comparison of key C-terminal domain interactions in alpha-class GSTs. Ribbon diagrams of 

a (A) hGSTA1-1 (PDB entry 1K3Y) and (B) hGSTA4-4 (PDB entry 1GUL) subunit as 

viewed perpendicular to the 2-fold axis of symmetry for the corresponding dimer. The tower 

region and α9-helix are emphasized in dark gray. The aromatic-aromatic interaction 

between F111 in the #4-turn-#5 tower region and Y217 in the #9-helix is depicted for 

hGSTA4-4. This interaction is not present in hGSTA1-1. The ligands are not shown for 

clarity.
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Figure 4. 
Human GSTA4-4 active site. GSTA4-4 is shown in complex with 3S,4R-GSDHN (PDB 

entry 3IK7) as a model for the ternary complex formed with GSH and HNE. The 4-hydroxyl 

group is in proximity of R15, whereas the aldehyde-derived oxygen is near Y212 at the 

bottom of the H-site. The alkyl chain extends into the hydrophobic groove lined with other 

key active site residues shown as spheres.
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Figure 5. 
HNE adduction of GSTA4-4. Ribbon diagram illustrating the location of the residues 

covalently modified by HNE within the context of the hGSTA4-4 subunit (PDB entry 

1GUL). Identification of the adducted residues reveals that adduction does not occur in the 

H-site region. The view is aligned perpendicular to the 2-fold axis of symmetry for the 

corresponding dimer, with the tower region and the α9-helix emphasized in dark gray.
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