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Abstract

Identifying unknown drug interactions is of great benefit in the early detection of adverse drug 

reactions. Despite existence of several resources for drug-drug interaction (DDI) information, the 

wealth of such information is buried in a body of unstructured medical text which is growing 

exponentially. This calls for developing text mining techniques for identifying DDIs. The state-of-

the-art DDI extraction methods use Support Vector Machines (SVMs) with non-linear composite 

kernels to explore diverse contexts in literature. While computationally less expensive, linear 

kernel-based systems have not achieved a comparable performance in DDI extraction tasks. In this 

work, we propose an efficient and scalable system using a linear kernel to identify DDI 

information. The proposed approach consists of two steps: identifying DDIs and assigning one of 

four different DDI types to the predicted drug pairs. We demonstrate that when equipped with a 

rich set of lexical and syntactic features, a linear SVM classifier is able to achieve a competitive 

performance in detecting DDIs. In addition, the one-against-one strategy proves vital for 

addressing an imbalance issue in DDI type classification. Applied to the DDIExtraction 2013 

corpus, our system achieves an F1 score of 0.670, as compared to 0.651 and 0.609 reported by the 

top two participating teams in the DDIExtraction 2013 challenge, both based on non-linear kernel 

methods.
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1. Introduction

New drugs are generally studied on relatively small and homogeneous patient populations. 

As a result, pharmaceuticals often have side effects that remain unnoticed until they are 
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already available to the public. This is especially true of side effects that emerge when two 

drugs are co-administered. A change in the effect of one drug in the presence of another 

drug is known as a drug-drug interaction (DDI) [1]. It is characterized as an increase or 

decrease in the action of either substance, or it may be an adverse effect that is not normally 

associated with either drug. Understanding these drug-drug interactions and their 

downstream effects is of significant importance, leading to reduced number of drug-safety 

incidents and reduced healthcare costs.

To address the DDI problem, a number of drug databases such as Drug- Bank [2] and 

Stockley’s Drug Interactions [1] have been created. Yet, they cover only a fraction of 

knowledge available. A large amount of up-to-date information is still hidden in the text of 

journal articles, technical reports and adverse event reporting systems, and this body of 

unstructured published literature is growing rapidly. MEDLINE®, for example, has doubled 

in size within the last decade and currently contains about 23 million documents. This 

creates an urgent need for text mining techniques to extract DDI information.

Using text mining techniques for DDI extraction has received less attention compared to 

other biomedical relation extraction tasks (e.g., proteinprotein interactions), possibly due to 

the lack of gold standard sets [3, 4, 5, 6]. The DDIExtraction challenges are the first 

community-wide competition addressing the DDI extraction problem [7, 8] and a series of 

studies have been reported at the 2011 and 2013 challenge workshops [9, 10, 11].

Top performing systems in the DDIExtraction challenges use Support Vector Machines 

(SVMs) with non-linear kernels [12, 13]. To handle structural representations of input 

instances, such as dependency graphs, nonlinear kernels directly calculate similarities 

between two graphs by comparing embedded subgraphs [14]. While non-linear kernels are 

theoretically capable of implicitly searching a high dimensional feature space of subgraphs, 

existing methods generally exploit only a partial feature space because of the exponential 

number of subgraphs [15]. In addition, non-linear kernels are frequently combined into 

composite kernels [12, 11]. Composite kernels, however, incur more computational cost 

because the complexity of the underlying kernels accumulates and additional learning is 

required to optimize the weights for individual kernels.

Despite the popularity of non-linear kernel methods, linear kernels are a good alternative for 

relation extraction tasks [16, 17, 18]. Linear kernels with word-level features alone provide a 

strong baseline performance [11, 12]. Moreover, they can explicitly include nodes, edges 

and path structures of the dependency graphs [17]. Also, the straightforward representation 

of linear kernels enables the intuitive interpretation of obtained results. Most importantly, 

when training large-scale datasets, it has been demonstrated that often linear kernels are the 

only practical choice [19, 20]. However, the performance of linear kernel systems in DDI 

extraction tasks has a noticeable gap from that of the top systems using non-linear kernels 

[7, 8, 21].

We conjecture that linear kernel-based systems may benefit from a rich set of lexical and 

syntactic features. With the goal to build a simple and scalable system, we develop a DDI 

extraction system based on a single linear SVM classifier. We define five types of features 
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to capture the complexity of data: word features with position information, pairs of non-

adjacent words, dependency relations, parse tree structures and tags for differentiating DDI 

pairs within the same noun phrase. Unlike other state-of-the-art systems [13, 21] which 

incorporate external, domain-specific resources, our features originate exclusively from 

training data.

We evaluate our system on the DDIExtraction 2013 corpus [22]. Consistent with other 

studies [11, 12, 13], we adopt a two-phase approach, where DDI pairs are identified first, 

and then classified into specific DDI types. The proposed method achieves an overall F-

score of 67% which outperforms the best performing system by 1.9%. We believe that the 

strength of our method comes from using a diverse set of features. In addition, the one-

against-one strategy [23] used in the DDI type classification contributes to the higher 

performance. As the first linear kernel method that achieves the state-of-the-art performance 

on both DDI detection and classification tasks, we consider it a strong alternative to the 

nonlinear, composite kernel-based approaches. The inherent simplicity of the method adds 

transparency to the overall system, which could be especially beneficial if the system is used 

as a part of a more complicated schema. The source code for generating the features 

proposed in this article is available at http://www.ncbi.nlm.nih.gov/IRET/DDI.

2. Methods

Figure 1 illustrates the overall architecture of our DDI extraction system. A binary classifier 

is trained first to extract interacting drug pairs from all candidate interactions. A DDI type 

classifier is then built to classify the interacting pairs into predefined relation categories. Our 

approach focuses on interactions expressed within the boundaries of a single sentence, and 

also assumes that drug entities involved in the target interactions have been annotated.

In this section, we first elaborate the five types of features used, including two novel features 

proposed for the DDI problem: word pair and noun phrase-constrained coordination (NPC) 

features. Then, we briefly introduce the preprocessing steps completed on both training and 

test data. Next, we describe our linear SVM classifier with a modified Huber loss function 

[24]. In the end, we compare our method with existing DDI extraction systems.

2.1. Features

2.1.1. Word features—Word-level features such as individual words in a sentence and 

sequences of words have been demonstrated to provide a strong performance baseline in 

extracting relational knowledge [11, 17, 25]. Hence, in our system, we use n-gram features 

of size up to 3, i.e., unigrams, bigrams and trigrams. Including n-grams of larger size does 

not always lead to a performance increase due to the data sparseness problem [25]. Similar 

to the works of He et al. [11] and Giuliano et al. [26], the position information is appended 

to each word feature according to positions of words in a sentence relative to an investigated 

drug pair: before (BF), between (BE) and after (AF). For instance, “Interaction BF of BF 

ketamine and BE halothane in AF rats AF” where “ketamine” and “halothane” are two 

drug names.
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2.1.2. Word pair features—While word features may capture repetitive expression 

patterns in neighboring words, they are not able to discover patterns involving distant words 

in a sentence. A simple solution to capture distant word patterns is to extract all possible 

word combinations from a training set. However, this approach increases the number of 

features considerably, and it also may degrade classification performance. To address this 

issue, we here propose a novel technique for selecting significant word pairs.

First, unigram word features are paired and only those pairs with a minimum frequency k are 

selected. Second, for selected word pairs, p-values are calculated using the hypergeometric 

distribution [27]. The p-value reflects how strongly a feature is represented in the positive 

set as compared to the negative set. It relates to the null hypothesis that the co-occurrence of 

two words is randomly distributed between positive and negative sets. If the co-occurrence 

is randomly distributed, the word pair will have a high p-value. If the p-value is low, this 

indicates a 1−p probability that the co-occurrence is not random and is likely indicative for 

positive DDIs.

To obtain the most useful word pairs, we need the least restrictive frequency and the most 

restrictive p-value. In this work, we set k = 200 and p-value = 0.01 based on F1 scores via 

10-fold document-level cross validation on the training set. This significant p-value helps 

select 588 word pairs from a total of 449,826 pairs with k above 200. This feature set 

contains certain informative word pairs such as “drug1 ⋯ drug2 ⋯ increase ⋯ level” and 

“interaction ⋯ drug1 ⋯ with ⋯ drug2”, which provide a strong signal indicating DDIs.

2.1.3. Dependency graph features—Dependency graphs use nodes to represent words 

in a sentence and edges to describe governor-dependent relations between the words. Thus, 

they can capture long-range dependencies among sentential constituents by considerably 

narrowing the linear order distance between target entities [19]. Since the syntactic 

dependencies closely approximate the underlying semantic relationships, they have been 

effectively used by biomedical knowledge extraction systems [28, 16, 29, 30, 31].

While some approaches use an all-inclusive approach to explore paths of all possible lengths 

between any two nodes in a dependency graph [32, 15], the shortest path between two nodes 

is particularly likely to carry the most valuable information about their mutual relationship 

[33, 34, 35, 36]. Given the dependency graph of each sentence, therefore, the shortest 

dependency path connecting the target drugs in the undirected version of the graph is 

selected. If there exist multiple shortest paths, we randomly choose one. The extracted path 

is then transformed into an ordered sequence of individual dependency relations, in which 

original relation labels and edge orientations are appropriately preserved. For instance, a 

dependency path “ketamine  interacts  halothane” is encoded as 

“nsubj(interacts,ketamine); prep with(interacts,halothane)”. We further split a dependency 

path into n-grams of up to size 3. Compared to the vertex-walks based q-grams proposed by 

Kuboyama et al. [37], our dependency features are equivalent to q-bigrams in their work.

2.1.4. Parse tree features—We have observed in the training data of the DDIExtraction 

2013 challenge [8] that the textual descriptions of more than 25% of the total 4,023 

interacting drug-drug pairs involve different subordinate clauses of a sentence such as “If 
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additional adrenergic drugs are to be administered by any route, they should be used with 

caution because the pharmacologically predictable sympathetic effects of BROVANA may 

be potentiated.”, or appear in the main sentence and its subordinate clause for instance 

“When carbamazepine is withdrawn from the combination therapy, aripiprazole dose 

should then be reduced.” Capturing these grammatical patterns is thus important to the 

successful extraction of these interactions. Compared to constituent parse trees which 

inherently retain phrasal and clausal structures, dependency graphs do not explicitly 

preserve this rich syntactic information.

It has been shown that systems exclusively relying on parse trees obtain inferior results to 

using dependency graphs in information extraction tasks [31, 16]. However, combining 

information from both representations improves the overall performance [38, 11]. To 

supplement our dependency features, we extracted the shortest path connecting the two 

investigated drugs in the parse tree. The resulting path is a sequence of grammatical tags 

such as “NP S VP VP SBAR S VP PP NP”, representing a concise syntactic traverse from 

one drug to the other. To capture frequent syntactic patterns, n-grams over individual tags of 

size 3 are used as our parse tree features. Unlike word features and dependency graph 

features, unigrams and bigrams are not used for parse tree features because these patterns are 

too short to represent syntactic structures.

2.1.5. Noun phrase-constrained coordination features—Linguistically, 

relationships are rarely discussed among entities in syntactic constituents where 3 or more 

target entities appear in a coordination. For instance, in the sentence “Clidinium may 

decrease the effect of phe- nothiazines, levodopa, and ketoconazole.”, the coordination 

structure “phenothiazines, levodopa, and ketoconazole” is used to enumerate a list of drugs 

that potentially interact with “Clidinium’, with no indication of interactions among the drugs 

inside the coordination.

In this work, we use base noun phrases to constrain the scope of the coordinated drug 

mentions, and propose a novel, noun phrase-constrained coordination feature to indicate if 

the target drugs are coordinated in a noun phrase. Suppose the total number of drug 

mentions in a base noun phrase NPb is n, the new feature fc for each candidate DDI pair (d1, 

d2) is defined as follows:

(1)

Because of the cascaded structure, candidate noun phrases are recursively extracted from the 

constituent parse trees. A base noun phrase NPb is defined to be the longest noun phrase that 

does not contain any prepositional phrases (PP), verb phrases (VP), subordinate clauses 

(SBAR) or sentences (S). We observed only 16 interacting drug-drug pairs (0.2%) among 

the total 8,045 pairs satisfying fc = 1 in the DDIExtraction 2013 training data.
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2.2. Preprocessing

Several standard preprocessing steps are first completed on both training and test data. 

These include sentence segmentation and tokenization, Part-of-Speech (POS) tagging and 

syntactic parsing that produces constituent parse trees and dependency graphs for sentences 

[39, 40]. To ensure generalization of the features, drug mentions are anonymized using 

“DRUG” for target drugs and “DRUG OTHER” for other drugs. Numbers are replaced by a 

generic tag “NUM”, and other tokens normalized into their corresponding lemmas by the 

BioLemmatizer [41].

The same drug mentions can appear multiple times in a sentence. Considering that drugs are 

unlikely to interact with themselves, candidate pairs with both drugs referring to the same 

name are removed [42, 12]. This helps reduce candidate drug pairs. In addition, we notice 

that drug names are sometimes separated by a colon from the detailed description on their 

interactions with other drugs. For instance, “Morphine: Combination hormonal contra- 
ceptives may increase the clearance of morphine.” In such cases, as the description itself is 

an independent sentence, pairing “Morphine” on the left of the colon with drug mentions in 

the description may interfere with the narrative flow of the description. Thus, we remove the 

drug mentions on the left of the colon from further consideration.

Figure 2 shows the preprocessing step and the feature vector obtained for an example 

sentence.

2.3. SVM Classifier

For DDI detection and classification, we use an SVM classifier with the modified Huber loss 

function [24]. We have observed that the modified Huber loss function has consistently 

achieved better performance than the hinge loss function used in traditional SVMs for 

biomedical classification problems [43, 25, 44]. Let T denote the size of the training set. Let 

the binary feature vector of the ith pair in the training set be denoted by Xi. Let yi = 1 if the 

pair is annotated as positive and yi = −1 otherwise. Let w denote a vector of feature weights, 

of the same length as Xi. Let θ denote a threshold parameter, and let λ denote a 

regularization parameter. Then the cost function is given by:

(2)

where the function h is the modified Huber loss function defined as follows:

(3)

The values of the parameters, w and θ minimizing C are determined using a gradient descent 

algorithm. The regularization parameter λ is computed from the training set as follows:
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(4)

where 〈|x|〉 is the average Euclidean norm of the feature vectors in the training set. The 

parameter λ′ is set to 0.00001 for the DDI task.

2.4. Comparison with existing DDI extraction systems

Our linear SVM classifier relies on a set of general features to achieve the state-of-the-art 

performance. Word-level features, dependency graphs and parse trees are commonly used 

by relation extraction systems [31, 17, 12, 11]. Compared to the implicit use in non-linear 

kernel systems [11, 12], features extracted from dependency graphs and parse trees are 

represented as linear n-grams in our system. As the only linear kernel system of the top 3 

DDIExtraction 2013 teams, UTurku [21] makes intensive use of dependency graph features, 

but does not take advantage of the rich syntactic information in parse trees. In our system, 

both are used to complement each other for multiple aspects of structural analysis of 

sentences.

The noun phrase-constrained coordination and word pair features are novel in our DDI 

extraction approach. Chowdhury and Lavelli [11] aimed for general conjunction structures 

around investigated drugs by encoding relative distances into features. However, our 

coordination feature is able to explicitly capture the coordination structure of enumerated 

drugs, and semantically constrain the scope of the structure by noun phrases. Also, even 

though Bobić et al. [45] combined non-adjacent tokens across sections (“BF”, “BE” and 

“AF”), they used all the combinations without any feature selection. We find that the feature 

selection using p-values is effective for reducing the data complexity and for improving the 

DDI extraction performance.

In addition, Björne et al. [21] took advantage of domain knowledge derived from DrugBank 

[2] and MetaMap [46]. Besides domain-specific resources, He et al. [11] additionally asked 

domain experts to manually compile keyword and semantic type features. Considering that 

our features originate exclusively from training data and their extraction is domain 

independent, our feature types may be more generalizable to other relation extraction tasks.

3. Results and Discussion

3.1. Dataset

We train and evaluate the proposed approach on the DDI corpus from the DDIExtraction 

2013 challenge [8]. The DDI corpus includes 905 manually annotated documents from the 

DrugBank database and MEDLINE abstracts, which are split into 714 and 191 documents 

for training and test sets, respectively. The DDI set provides examples by sentences and, for 

each sentence, all drug mentions and DDI pairs are annotated. There are four different types 

of DDI relationships in the set [22]; mechanism, effect, advice and int. Mechanism is used 

for DDIs that are described by their pharmacokinetic (PK) mechanism2. Effect is for DDIs 

describing an effect or a pharmacodynamic (PD) mechanism3. Advice is used when a 

2What the body does to the drug; absorption, distribution, metabolism, elimination.
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recommendation or advice related to a DDI is given. Int is used when a DDI appears in a 

sentence without providing any additional information.

Non-interacting drug pairs are not explicitly provided in the DDI corpus. Hence, all drug 

pairs that do not overlap with positives are considered as negatives. Table 1 shows the 

number of positive and negative pairs before and after preprocessing. Removing pairs with 

the same drug mentions and the colon case described in Preprocessing filters out 29 positive 

and 3,972 negative pairs. The removed positive pairs constitute 0.58% of the positive set. 

We find the fraction to be negligible compared to the advantage of not showing nearly 14% 

negative pairs to SVM classifiers. In a basic setting where only word features are used, this 

step improves F1 by 4% using 10-fold document-level cross validation on the training set.

Table 2 shows the number of positive DDI pairs in the training and test sets for each DDI 

type. Mechanism and effect are dominant classes, while advice and int contain many fewer 

instances comprising about 25% of the positive set. This unbalanced size in the training data 

may be problematic, in particular, for a machine learning solution because it may lead to 

poor classification performance [47]. To address the issue, we apply the one-against-one 

approach for the DDI type classification task. Compared to the one-against-all strategy 

which takes negative examples from all non-positive classes, the one-against-one strategy 

uses only one negative class for each classifier; it alleviates the imbalance.

3.2. Performance comparison

Eight teams participated in the DDIExtraction 2013 challenge, and the official performance 

ranged from 21.4% to 65.1% F1 [8]. Table 3 compares our method with the top three 

ranking teams in the DDIExtraction task based on F1 scores. Our approach achieves 67% F1 

for detection and classification performance (‘CLA’), whereas FBK-irst, WBI and UTurku 

produced 65.1%, 60.9% and 59.4% F1, respectively. For DDI detection performance (DEC), 

i.e. before applying the one-against-one strategy, the proposed approach performs second 

best by achieving 77.5% F1.

FBK-irst [12] uses a hybrid kernel for combining linear features, shallow linguistic and 

path-enclosed tree kernels. WBI [13] utilizes an ensemble approach to combine outputs from 

other DDI prediction tools. UTurku [21] uses a linear kernel with domain knowledge from 

external resources as well as word and dependency graph features. For DDI type 

classification, FBK-irst uses binary SVMs with a one-against-all strategy. WBI and UTurku 

use a multi-class SVM, which does not require choosing either one-against-one or one-

against-all. Our method, on the other hand, uses a simple binary SVM classifier with linear 

kernel for identifying DDIs and the one-against-one strategy for assigning DDI types. We 

choose the one-against-one strategy to reduce the negative effect of unbalanced classes. In 

Table 3, our approach performs best for mechanism, effect and advice types. In contrast, the 

same approach does not perform well for int. This is different from the 10-fold document-

level cross validation results for the training set (Refer to 3.4). By definition, int contains 

DDIs which cannot be assigned to other three types. Thus, either the general description of 

3What the drug does to the body.
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int or insufficient evidence from the small number of training (188 examples) and testing 

(96 examples) sets may play a role.

Furthermore, Table 8 shows the separate performance of our system on DrugBank and 

MEDLINE test documents. While the DDI detection and classification (‘CLA’) performance 

on the DrugBank set shows 69.8% F1, the performance on the MEDLINE set is 

substantially lower (38.2% F1). This difference is consistent with the results from the 

DDIExtraction 2013 challenge [8]. It may be due to the small number of training examples 

provided for MEDLINE. The 232 DDI pairs in the MEDLINE training set constitute only 

6% of the overall training data. In addition, the DrugBank and MEDLINE documents may 

have different characteristics [12].

In the following subsections, we discuss the contribution of each feature type and the effect 

of the one-against-one strategy compared to the one-against-all strategy.

3.3. Feature analysis

Table 5 presents changes of DDI detection performance by adding each feature type to the 

baseline (word features). For the results, 10-fold document-level cross validation was 

performed ten times and the scores were averaged. Relative positions attached to word 

features improve the F1 performance by 24.1%. This significant improvement is 

understandable because relative position is a good indicator whether an individual word is 

used in describing DDIs.

Using word features with positions as a baseline, word pairs, dependency relations, parse 

trees and NPC are added and evaluated individually. From the table, word pairs and parse 

trees contribute the most by increasing F1 by 1.9% and 1.4%, respectively. Dependency 

relations and NPC have less impact on the performance, however, dependency relations help 

get higher precision and NPC helps the recall. While word features cover neighboring 

words, syntactic structure and word pair features seem to help with the overall picture of 

DDI sentences. It is understandable, yet remarkable that using words with relative positions 

alone achieves such high performance for identifying DDIs. Integrating position information 

into word features is important because one sentence often involves multiple drug mentions 

and the position information helps differentiate the context of interacting pairs from that of 

non-interacting ones. It would be interesting to see how the same strategy would work on 

other entity-entity relationship extraction tasks.

An advantage of using the linear kernel approach is that obtained results have an intuitive 

interpretation. Although Table 5 provides some information, it still lacks in explaining what 

features contribute to identify a particular DDI in a sentence. Figure 3 shows a simple visual 

aid, where significant words are highlighted based on the weights of word and word pair 

features from the SVM classifier. The features listed are the ones that classify the example 

as positive. The words with higher weights are emphasized by thicker lines and darker gray. 

From the highlighted words, one can understand that “DRUG with DRUG” and “not 

recommended” are the key elements for detecting a DDI in the sentence.
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3.4. DDI type detection

Our approach to DDI extraction has two steps. First, drug pairs are classified whether they 

interact or not. Second, one of four DDI types (mechanism, effect, advice and int) is assigned 

to interacting pairs.

Two popular ways to address multi-class classification using binary classifiers are the one-

against-one and one-against-all strategies [23]. The one-against-all method builds a 

classifier for each class vs. all other classes. The one-against-one strategy, however, builds a 

binary classifier for each pair of classes, and the output of the classifiers is aggregated using 

majority voting. DDI type classification requires 4 and 12 classifiers for one-against-all and 

one-against-one, respectively.

A critical issue for the DDI type classification is that the number of training examples differs 

significantly among the four classes (Table 2). For the one-against-all strategy, this 

imbalance may lead to poor performance on the small classes. Therefore, we use the one-

against-one strategy for the DDI classification task. Tables 6 and 7 present the performance 

difference between one-against-all and one-against-one. The performance is better and 

more balanced with the one-against-one strategy. Table 8 shows F1 scores for one-against-

all and one-against-one on the test set. Although there is a slight performance decrease on 

effect, F1 scores increase on other DDI types.

3.5. Annotation inconsistency

The proposed method is completely data-driven. Even though SVM classifiers are robust to 

noisy training examples to some degree, our approach is sensitive to the quality of the 

training set.

During algorithm development, we found that the DDI corpus contained irregularly 

formatted sentences. In one case, section titles are concatenated with the next sentence as 

shown in Fig. 4. A more severe problem can occur when tables are converted to text. 

Sentences derived from tables can cause false positive and false negative drug pairs. Positive 

drug pairs from a table are not useful because the proposed approach is designed for 

grammatically well-formed text. In our experiments, we kept the table-derived sentences 

because no rules could be found to remove them. We presume that DrugBank sentences 

were automatically extracted from HTML or XML data prior to annotation, or curators 

annotated the dataset in a structured form and it was later flattened by an automatic 

extraction process.

Another problem in the dataset is that not all drug mentions are annotated. In Figure 5, 

“calcium” in the first sentence and the second “corticosteroids” in the second sentence are 

not annotated as drug names. It is obvious that “corticosteroids” in the second example is 

overlooked by curators. However, it is difficult to decide whether “calcium” is a drug name 

here. While “calcium” is often annotated as a drug in the dataset, there are also exceptions 

where “calcium” is not considered a drug. We assume that it is either overlooked or not 

considered a drug.
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4. Conclusion

We present a two-step classification algorithm for identifying DDIs from biomedical 

literature. Unlike other state-of-the-art approaches, the proposed method focuses on word 

and syntactic features in a linear SVM. For assigning DDI types to drug pairs, positive DDI 

pairs are first identified by a single SVM classifier, and multiple SVM classifiers are used to 

decide DDI types through the one-against-one strategy in the second step. The features used 

in our approach are words with relative positions, pairs of non-adjacent words, dependency 

relations, syntactic structures and noun phrase-constrained co-ordination tags. Applied to the 

DDIExtraction corpus, the proposed method showed competitive performance to top-

ranking teams in the DDIExtraction 2013 challenge by obtaining 67% F1.

The main contribution of the proposed method is the rich-feature based approach using 

linear SVMs. Non-linear, composite kernel approaches can directly use structural 

information. However, they tend to be complex and may not be readily applicable to a large-

scale dataset. Our feature-based approach, on the other hand, is more flexible. Feature types 

can be easily evaluated, hence an intuitive interpretation is readily available. The linear 

kernel approach is also a practical alternative for large-scale problems. Moreover, the one-

against-one strategy used in the DDI type classification is found to be useful for achieving 

higher classification performance. It addresses some difficulties of solving multi-class 

classification with binary classifiers. As future work, we plan to extend our system by 

integrating it with named entity recognition tools. We also would like to evaluate the end-to-

end DDI extraction system for PubMed® abstracts in a large-scale setting.
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Highlights

• An urgent need for developing text mining techniques in DDI extraction.

• Linear kernel approaches have not achieved the state-of-the-art performance.

• We propose an efficient and scalable system using a linear kernel for DDI 

extraction.

• Linear SVMs are competitive when equipped with rich lexical and syntactic 

features.

• One-against-one approach addresses an imbalance issue in multi-class 

classification.

Kim et al. Page 15

J Biomed Inform. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Two-phase DDI extraction framework. DDI detection (①) decides whether a drug pair 

interacts. DDI type classification (②) assigns DDI types to interacting pairs.
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Figure 2. 
An example of preprocessing and feature extraction. The underlined drug pair, clidinium and 

phenothiazines, is the candidate DDI. ‘NPC’ means noun phrase-constrained coordination 

and ‘BE’ denotes between candidate drugs.
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Figure 3. 
A solution for presenting drug pairs with significant word and word pair features. Highly 

weighted words are highlighted in the sentence and emphasized according to all the weights 

they receive in the feature list. ‘BF’, ‘BE’ and ‘AF’ mean before, between and after, 

respectively. DRUG indicates a target drug.

Kim et al. Page 18

J Biomed Inform. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Example sentences which start with “[drug name]:”. “[drug name]:” is a section title which 

is concatenated with the next sentence in the DDIExtraction set.
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Figure 5. 
Example sentences, where some drug names are not annotated. “calcium” in the first 

sentence and the second “corticosteroids” in the second sentence are not annotated as drug 

names.
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Table 1

Number of positive and negative pairs in the dataset. 29 positive and 3972 negative pairs were removed 

through preprocessing.

Original set Preprocessed set

Positive Negative Positive Negative

Training 4023 23756 3996 20368

Test 979 4734 977 4150

Total 5002 28490 4973 24518

J Biomed Inform. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 22

Table 2

Positive drug pairs used for training and testing. The preprocessed set is compared with the original set.

Class
Original set Preprocessed set

Training Test Training Test

mechanism 1321 302 1309 301

effect 1688 360 1675 359

advice 826 221 824 221

int 188 96 188 96

Total 4023 979 3996 977

J Biomed Inform. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 23

T
ab

le
 3

Pe
rf

or
m

an
ce

 c
om

pa
ri

so
n 

be
tw

ee
n 

th
e 

pr
op

os
ed

 m
et

ho
d 

an
d 

to
p-

ra
nk

in
g 

ap
pr

oa
ch

es
 o

n 
th

e 
D

D
IE

xt
ra

ct
io

n 
20

13
 te

st
 d

at
a.

 T
he

 p
er

fo
rm

an
ce

 is
 m

ea
su

re
d 

ba
se

d 
on

 F
1 

sc
or

es
. ‘

C
L

A
’ 

in
di

ca
te

s 
de

te
ct

io
n 

an
d 

cl
as

si
fi

ca
tio

n 
pe

rf
or

m
an

ce
 f

or
 a

ll 
cl

as
se

s.
 ‘

D
E

C
’ 

in
di

ca
te

s 
de

te
ct

io
n 

pe
rf

or
m

an
ce

. ‘
M

E
C

’,
 ‘

E
FF

’,
 

‘A
D

V
’ 

an
d 

‘I
N

T
’ 

ar
e 

fo
r 

m
ec

ha
ni

sm
, e

ff
ec

t, 
ad

vi
ce

 a
nd

 in
t t

yp
es

 r
es

pe
ct

iv
el

y.

M
et

ho
d

C
L

A
D

E
C

M
E

C
E

F
F

A
D

V
IN

T

O
ur

 m
et

ho
d

0.
67

0
0.

77
5

0.
69

3
0.

66
2

0.
72

5
0.

48
3

FB
K

-i
rs

t
0.

65
1

0.
80

0
0.

67
9

0.
62

8
0.

69
2

0.
54

7

W
B

I
0.

60
9

0.
75

9
0.

61
8

0.
61

0
0.

63
2

0.
51

0

U
T

ur
ku

0.
59

4
0.

69
6

0.
58

2
0.

60
0

0.
63

0
0.

50
7

J Biomed Inform. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 24

T
ab

le
 4

Pe
rf

or
m

an
ce

 c
om

pa
ri

so
n 

be
tw

ee
n 

D
ru

gB
an

k 
an

d 
M

E
D

L
IN

E
 te

st
 s

et
s 

in
 D

D
IE

xt
ra

ct
io

n 
20

13
. T

he
 p

er
fo

rm
an

ce
 is

 m
ea

su
re

d 
ba

se
d 

on
 F

1 
sc

or
es

. ‘
C

L
A

’ 

in
di

ca
te

s 
de

te
ct

io
n 

an
d 

cl
as

si
fi

ca
tio

n 
pe

rf
or

m
an

ce
 f

or
 a

ll 
cl

as
se

s.
 ‘

D
E

C
’ 

in
di

ca
te

s 
de

te
ct

io
n 

pe
rf

or
m

an
ce

. ‘
M

E
C

’,
 ‘

E
FF

’,
 ‘

A
D

V
’ 

an
d 

‘I
N

T
’ 

ar
e 

fo
r 

m
ec

ha
ni

sm
, e

ff
ec

t, 
ad

vi
ce

 a
nd

 in
t t

yp
es

 r
es

pe
ct

iv
el

y.

D
at

as
et

C
L

A
D

E
C

M
E

C
E

F
F

A
D

V
IN

T

D
ru

gB
an

k
0.

69
8

0.
80

4
0.

71
4

0.
70

6
0.

73
6

0.
49

7

M
E

D
L

IN
E

0.
38

2
0.

47
1

0.
45

5
0.

35
2

0.
42

9
0.

25
0

J Biomed Inform. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 25

Table 5

Performance changes by varying feature types in DDI detection. The baseline performance was measured by 

using word features with position (‘pos’) information. ‘Change’ shows the F1 score difference between the 

baseline and the performance in each row. 10-fold document-level cross-validation was performed ten times 

for the training set and scores were averaged.

Features Precision Recall F1 Change

Baseline (w/o pos) 0.544 0.427 0.478 −24.1%

Baseline 0.774 0.670 0.719 -

+ Word pairs 0.780 0.700 0.738 +1.9%

+ Dependency 0.791 0.669 0.725 +0.6%

+ Parse trees 0.783 0.688 0.733 +1.4%

+ NPC 0.771 0.681 0.723 +0.4%

All features 0.798 0.711 0.752 +3.3%
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Table 6

Performance comparison on the one-against-all strategy. 10-fold document-level cross-validation was 

performed ten times for the training set and scores were averaged.

Class Precision Recall F1

mechanism 0.911 0.774 0.837

effect 0.885 0.839 0.861

advice 0.894 0.830 0.861

int 0.725 0.495 0.587
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Table 7

Performance comparison on the one-against-one strategy. 10-fold document-level cross-validation was 

performed ten times for the training set and scores were averaged.

Class Precision Recall F1

mechanism 0.941 0.964 0.952

effect 0.943 0.979 0.960

advice 0.921 0.960 0.940

int 0.912 0.953 0.932
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Table 8

Performance comparison (F1 scores) of the one-against-all and one-against-one strategies on the test set.

Class one-against-all one-against-one

mechanism 0.673 0.693

effect 0.671 0.662

advice 0.718 0.725

int 0.440 0.483
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