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Abstract

Breast cancer and its treatments are associated with mild cognitive impairment and brain changes 

that could indicate an altered or accelerated brain aging process. We applied diffusion tensor 

imaging (DTI) and graph theory to measure white matter organization and connectivity in 34 

breast cancer survivors compared to 36 matched healthy female controls. We also investigated 

how brain networks (connectomes) in each group responded to simulated neurodegeneration based 

on network attack analysis. Compared to controls, the breast cancer group demonstrated 

significantly lower fractional anisotropy (FA), altered small-world connectome properties, lower 

brain network tolerance to systematic region (node) and connection (edge) attacks and significant 

cognitive impairment. Lower tolerance to network attack was associated with cognitive 

impairment in the breast cancer group. These findings provide further evidence of diffuse white 

matter pathology following breast cancer and extend the literature in this area with unique data 

demonstrating increased vulnerability of the post-breast cancer brain network to future 

neurodegenerative processes.
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1. Introduction

Cancer is a common, age-related disease with approximately 1 in 2 adults being diagnosed 

during their lifetime at a median age of 66 years (Howlader, et al., 2013). Advances in 

cancer treatments have resulted in significantly improved survival rates but are often 

associated with side effects, such as cognitive decline, that may reduce quality of life. 

Although most cancer diagnoses originate outside the central nervous system (CNS), 

cognitive decline affects an estimated 19-78% of these patients (Wefel and Schagen, 2012). 

Neuroimaging studies suggest that this cognitive impairment stems from subtle but diffuse 

brain injury (Chao, et al., 2012; D'Agata, et al., 2013; Hsieh, et al., 2014; Koppelmans, et al., 

2014) [see reviews by: (de Ruiter and Schagen, 2013; McDonald and Saykin, 2013; 

Scherling and Smith, 2013)].

Many of the candidate mechanisms for brain injury following non-CNS cancer include 

oxidative stress, DNA damage and inflammation and these factors overlap significantly with 

those involved in aging (Mandelblatt, et al., 2013). Accordingly, older patients with breast 

cancer tend to have poorer cognitive outcome (Ahles, et al., 2010). Cognitive impairments 

following breast cancer and its treatments may worsen over time (Wefel, et al., 2010) 

indicating a persistent or even progressive phenotype. Therefore, cancer and/or its therapies 

have been theorized to possibly alter or accelerate age-related neurodegeneration (Ahles, 

2012; Kesler, 2014; Koppelmans, et al., 2013; Mandelblatt, et al., 2013).

Emerging evidence provides support for altered or accelerated neurodegeneration following 

breast cancer and its treatments, which has become an initial model for examining cognitive 

effects of adult onset, non-CNS cancer. Koppelmans, et al. (2012) measured gray matter 

volumes in a large sample of breast cancer survivors who had been off-treatment for 21 

years, on average. They demonstrated significant global gray matter atrophy in the breast 

cancer survivors compared to healthy controls, analogous to approximately 4 years of brain 

aging. Sanoff, et al. (2014) measured expression of cyclin-dependent kinase inhibitor 2A 

proteins (p16INK4a and ARF), markers of molecular aging, in patients with breast cancer 

before and after treatment as well as in survivors who were 3 years off-therapy, on average. 

Both longitudinal and cross-sectional analyses indicated significant p16INK4a and ARF 

elevation. Increase in p16INK4a among the survivor cohort was comparable to 

approximately 10 years of chronological aging.

We aimed to extend this literature by evaluating the brain network's response to simulated 

neurodegeneration using graph theory analysis and diffusion tensor imaging (DTI). DTI is a 

non-invasive neuroimaging method for evaluating the organization of white matter. It relies 

on the detection and quantification of anisotropic Brownian motion of water molecules 

along nerve fibers. The diffusion tensor is a model of this water displacement and the tensor 

eigenvalues provide an estimation of the diffusion shape and magnitude, including a single 

fiber orientation estimate per voxel (O'Donnell and Westin, 2011). These data can be used to 

measure scalar metrics, such as fractional anisotropy (FA), that provide insights regarding 

tissue organization. Tensor data is also used for tractography - the mapping of virtual fiber 

trajectories, or “streamlines” (Jones, et al., 2013; Mukherjee, et al., 2008). DTI 

measurements show strong correspondence with post-mortem dissection (Lawes, et al., 
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2008) however; DTI should be considered only a very indirect assessment of white matter 

organization (Jones, et al., 2013). Despite its limitations, DTI-based measures have been 

shown to be sensitive to various brain pathologies, including breast cancer-related cognitive 

impairment (Deprez, et al., 2013).

Graph theory is the mathematical study of graphs that model objects (“nodes”) and their 

connections (“edges”). It has been increasingly applied to the study of brain connectivity 

where nodes represent brain regions and edges represent structural or functional connections 

between regions. Evaluations of network topology using graph theory have distinct 

advantages over traditional univariate approaches (e.g. voxelwise FA, fMRI) by providing 

multivariate measures across various spatial and temporal scales (Feldt, et al., 2011). 

Network topology properties therefore better represent the covarying and multi-scale 

neurobiologic interactions that support cognition. Graph theory studies have demonstrated 

that brain networks, or “connectomes”, show a “small-world” organization characterized by 

high local clustering of nodes and minimal path length between nodes (Bassett and 

Bullmore, 2006). Specifically, the connectome is organized in such a manner that most 

regions are connected to their neighbors (high clustering) and can be reached by every other 

region via a small number of steps (low path length). Efficient information processing is 

assumed to following the shortest paths between nodes. This organization putatively allows 

the brain to balance the opposing demands of segregation and integration, providing high 

capacity for parallel information processing with minimal wiring cost (Bassett and 

Bullmore, 2006). We have previously demonstrated altered organization of gray matter 

structural and intrinsic functional connectomes in breast cancer survivors (Bruno, et al., 

2012; Hosseini, et al., 2012b). For the present study, we expand upon these findings by 

using DTI-based connectome graphs to evaluate the brain network's tolerance to simulated 

neurodegeneration.

Simulation of neurodegeneration was accomplished using network attack analysis. Like 

other complex biologic networks, the specific topology of the brain network appears to 

follow a power-law distribution (Achard, et al., 2006) meaning that the majority of 

information processing is handled by a small number of core regions. This organization 

makes the network surprisingly resilient to random errors but highly vulnerable to targeted 

attack. Accordingly, neurodegenerative processes tend to most closely resemble targeted 

attacks (Achard, et al., 2006; Albert, et al., 2000; Crossley, et al., 2014). In the context of 

graph theory analysis, targeted attacks involve systematic removal of vital nodes/edges, 

based on some criteria for defining node/edge importance. The impact of each attack is 

evaluated by measuring one or more characteristic of the global and/or local brain network 

organization (Albert, et al., 2000; Alstott, et al., 2009). The impact measure thus provides an 

indication of the network's attack tolerance.

Both normal and pathologic age-related changes in brain network graphs include alterations 

of various global and local network properties corresponding to disruption of both nodes and 

edges (Sun, et al., 2012; Tijms, et al., 2013). Therefore we conducted two different targeted 

attacks, one on nodes and one on edges. Targeted node attack involves systematic removal 

of highly central nodes, consistent with previous studies of age-related neurodegeneration 

(Crossley, et al., 2014; He, et al., 2008; Stam, et al., 2009). Highly central, “hub” regions 
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participate in a large number of functional interactions and therefore have high metabolic 

demands (Lord, et al., 2013). These high energy requirements make these regions more 

vulnerable to age-related reduction of physiologic resources as well as a variety of 

neuropathologic processes (Crossley, et al., 2014; Kesler, 2014). We have previously 

demonstrated that hub regions are vulnerable to breast cancer and its treatments (Hosseini 

and Kesler, 2013).

We also included a targeted attack on edges based on previous studies demonstrating diffuse 

disconnectivity and continuous white matter loss associated with normal and pathologic 

aging (Sachdev, et al., 2013; Wu, et al., 2011; Wu, et al., 2013). Additionally, DTI studies 

have demonstrated widespread alterations of white matter organization following breast 

cancer and its treatments that persist in very long-term survivors (de Ruiter, et al., 2012; 

Deprez, et al., 2012; Deprez, et al., 2011).

In terms of measuring the brain network's tolerance to attacks, we examined both global and 

local efficiency to represent network integration and segregation, respectively. Although 

metrics such as path length and clustering coefficient have been commonly used in general 

connectome studies, measures of efficiency are considered more directly related to error 

tolerance, more biologically relevant because they describe information flow and are less 

sensitive to disconnected and weakly connected nodes (Latora and Marchiori, 2001). The 

latter property is important in this case given that DTI connectomes tend to be relatively 

sparse (Bassett, et al., 2011) and also because networks will naturally become increasingly 

sparse across attack iterations.

Global efficiency is the inverse of the average shortest path between nodes and is high when 

nodes are able to interact directly. It is thus an indicator of the network's functional 

integration and capacity for parallel information processing (Latora and Marchiori, 2001). 

Previous studies have shown decreases in global efficiency with brain aging (Sun, et al., 

2012; Tijms, et al., 2013; Wu, et al., 2011; Wu, et al., 2013). Global efficiency is one of the 

most commonly used measures of network response to targeted attack, including studies of 

normal and pathologic aging (Crossley, et al., 2014; Crucitti, et al., 2003; Joyce, et al., 2013; 

Rubinov, et al., 2009; Santarnecchi, et al., 2014). Importantly, global efficiency is associated 

with increased cognitive reserve in healthy adults (Fischer, et al., 2014; Santarnecchi, et al., 

2014). Cognitive reserve refers to the brain's resilience to the clinical effects of aging, injury 

and disease (Stern, 2012) and has been shown to moderate the cognitive effects of breast 

cancer (Ahles, et al., 2010; Kesler, et al., 2011).

Local efficiency is the inverse of the average shortest path connecting all neighbors of a 

node, or in other words, the average efficiency of the local subgraphs or neighborhoods 

(Latora and Marchiori, 2001). It is a measure of local processing among adjacent nodes and 

therefore an indication of network segregation. Previous studies also demonstrate reduced 

local efficiency associated with normal and pathologic aging (Achard and Bullmore, 2007; 

Gong, et al., 2009; Sun, et al., 2012; Xiang, et al., 2013). Like global efficiency, local 

efficiency is a common measure of the brain network's response to computational attack 

(Joyce, et al., 2013; Santarnecchi, et al., 2014).
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2. Materials and Methods

2.1 Participants

This study included 36 women age 44-73 years with a history of primary breast cancer 

(stage I-IIIA) who had completed their primary treatment (surgery, chemotherapy and breast 

radiation therapy) more than 6 months (mean = 5.8 +/- 3.9 years; range = 0.5-14 years) prior 

to study entry and were currently without evidence of active cancer. They were compared 

with 36 healthy female controls. Some of the breast cancer (N = 14) and control (N = 17) 

participants were included in our previous studies demonstrating altered structural and 

functional connectomes (Bruno, et al., 2012; Hosseini, et al., 2012b). The cohort previously 

described was acquired during 2008-2012 and the data added here during 2013-2014, all at 

the same laboratory. Everyone for whom DTI was collected was included in this study. 

Participants in both groups were recruited using email listserv, internet, community flyer 

postings and local cancer support group advertisements.

All women in the breast cancer group underwent surgery with general anesthesia and 

received adjuvant chemotherapy as part of their treatment regimen. Additionally, 80% of 

them received loco-regional breast radiation and 60% received endocrine therapy 

(tamoxifen). Five women were still taking tamoxifen when studied. As shown in Table 1, 

there were no significant differences between the two groups in terms of age, educational 

level or minority status. There were significantly more women in the breast cancer group 

who were postmenopausal compared to the healthy control group, which was expected given 

that treatments can induce early menopause (Mar Fan, et al., 2010).

Individual treatment protocols included doxorubicin/cyclophosphamide/paclitaxel = 25, 

cyclophosphamide/methotrexate/fluorouracil = 3 and cyclophosphamide/paclitaxel = 5 and 

cyclophosphamide/docetaxel/fluorouracil = 3. Breast cancer survivors were excluded for 

history of relapse or prior anti-cancer treatment. All participants were excluded for 

diagnosed psychiatric, neurologic or comorbid medical conditions that are known to affect 

cognitive function as well as pregnancy, MRI contraindications or major sensory deficits 

(e.g. blindness). Participants were also excluded for significant (T > 69) Clinical Assessment 

of Depression score (Aghakhani and Chan, 2007). The Stanford University Institutional 

Review Board approved the present study. All participants provided written informed 

consent.

2.2 Neuroimaging Acquisitions and Preprocessing

As detailed in Supplementary Methods, DTI and T1-weighted scans were acquired for all 

participants. DTI data were visually inspected for quality and the data of one participant in 

the breast cancer was excluded from all further analyses due to excessive artifact. DTI 

volumes were corrected for eddy current distortion and tensor reconstruction was performed 

using the linear least-squares fitting method in FSL v4.0 (Smith, et al., 2004). A binary brain 

mask of the B0 image was created using FSL BET and applied to corrected DTI volumes to 

constrain tensor fitting and tractography to brain tissue. Deterministic tractography was 

performed in TrackVis v0.5.2.2 (Feigl, et al., 2014; Wang, et al., 2007) using the fiber 

assignment by continuous tracking (FACT) algorithm (Mori and van Zijl, 2002). This 

Kesler et al. Page 5

Neurobiol Aging. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method involves the placement of a single seed in the center of each voxel continuing the 

path in the adjacent voxel such that path curvature is minimized. We employed a curvature 

threshold of 60° consistent with previous studies (Fischer, et al., 2014; Lo, et al., 2010). 

Streamlines were smoothed using a spline filter (Brown, et al., 2011; Rudie, et al., 2012). 

Brain volumes were extracted from T1 images using SIENAX in FSL (Smith, et al., 2002). 

These data were used only to correct certain analyses for individual differences in brain size.

2.3 Structural Brain Network Construction and Measurement

We obtained 90 cortical and subcortical regions of interest (ROIs) in Montreal Neurological 

Institute (MNI) space from the Automated Anatomical Labeling Atlas (Tzourio-Mazoyer, et 

al., 2002). Non-brain tissue was removed from the T1 anatomic and B0 volumes for each 

participant using FSL BET. Using FSL FLIRT, the brain extracted T1 volumes were first 

linearly co-registered to the brain extracted B0 volumes to create a T1 volume in DTI space. 

The co-registered T1 volume was then normalized to an MNI T1 template. The resulting 

inverse transformation was applied to the ROI images to warp the ROIs into DTI native 

space as described in previous studies (Bassett, et al., 2011; Chen, et al., 2013).

The number of DTI streamlines connecting each pair of ROIs as well as streamline length 

and average FA were determined using the UCLA Multimodal Connectivity Package 

(UMCP) v13 (https://github.com/jbrown81/umcp). Brain masked, native space FA maps 

were entered into UMCP for streamline FA measurement. A pair of regions was considered 

to be connected if one streamline endpoint terminated within one region and the other 

endpoint terminated within the other region. This resulted in a 90×90 connectivity matrix for 

each participant. A threshold of three streamlines was applied to minimize false positive 

connections. This threshold has been utilized and validated in several previous studies 

(Brown, et al., 2011; Fischer, et al., 2014; Li, et al., 2009; Lo, et al., 2010).

We weighted each valid edge using the product of the streamline number and FA divided by 

average ROI volume (Brown, et al., 2011; Chen, et al., 2013; Lo, et al., 2010). We then 

modeled the brain network for each participant as a system of nodes and edges representing 

regions and their connections, respectively, using Brain Connectivity Toolbox (Rubinov and 

Sporns, 2010), our Graph Analysis Toolbox v1.4.1 (GAT, https://sites.google.com/site/

gat3362/) (Hosseini, et al., 2012a) and other in-house code implemented in Matlab v2014a 

(Mathworks, Inc, Natick, MA). Graphs were constructed with N = 90 nodes, network degree 

of E = number of edges and a network density of D = E/[(N × (N-1))/2] representing the 

fraction of present connections to all possible connections.

2.4 Small-worldness and Hub Profiles

Small-world organization of the DTI connectome for each group was evaluated as described 

in our previous publications (Bruno, et al., 2012; Hosseini, et al., 2012a; Hosseini, et al., 

2012b). Briefly, small-worldness index was defined as [C/Crand]/[L/Lrand] where C = 

clustering coefficient and L = characteristic path length and Crand and Lrand are the mean 

clustering coefficient and characteristic path length of 20 random networks. Small-world 

characteristics were computed at minimum connection density (0.15) as well as across a 

range of densities (0.15-0.28) using the area under the curve (AUC) (Hosseini, et al., 2012a). 
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A connectome was considered to be small-world when the small-worldness index at 

minimum density was greater than 1 (Humphries and Gurney, 2008). Hub structure was 

evaluated by defining a node as a hub if its degree was at least 1 standard deviation higher 

than the mean network degree (Sporns, et al., 2007). Minimum connection density for one 

participant in the breast cancer group could not be achieved and therefore this participant 

was excluded from the analyses leaving 34 total participants in this group.

2.5 Network Attack Analyses

2.5.1 Targeted Attack on A Priori Network Nodes—Nodes were removed in order of 

decreasing degree, a measure of the node's centrality in the network. Nodal degree is defined 

as the number of edges connected to a node and is therefore a straightforward, common 

measure of centrality that indicates how much a node is interacting with other nodes in the 

network (Rubinov and Sporns, 2010). Degree has been used in multiple previous studies to 

define nodes for targeted attack (Achard, et al., 2006; Crossley, et al., 2014; Mirzasoleiman 

and Jalili, 2011).

2.5.2 Targeted Attack on Network Edges—Edges were removed in order of 

decreasing edge betweenness centrality as in previous studies (Mirzasoleiman and Jalili, 

2011). Edge betweenness centrality is the fraction of shortest paths in a network that contain 

a particular edge. This centrality measure indicates the edge's contribution to the interactions 

between the nodes of the network (Brandes, 2001; Girvan and Newman, 2002).

2.5.3 Random Failure Attacks—As noted above, the brain network has previously been 

shown to be more resilient to random failure compared with targeted attack. Therefore, we 

also included random node and edge failure analyses for comparison. These analyses 

involved random removal of a node or edge with 1000 permutations as described in previous 

studies (Crossley, et al., 2014; Crucitti, et al., 2003; Hosseini, et al., 2012a).

2.5.4 Tolerance to Network Attacks—For each of the attack strategies described 

above, the brain network's attack tolerance was evaluated by measuring global and local 

efficiency following each node/edge removal. AUC was computed for efficiency curves 

across attacks for each participant. Thus, the attack AUC provides a measure of how quickly 

the network efficiencies declined across the attacks. An illustrative summary of the brain 

network attack analysis is presented in Figure 1.

2.6 Cognitive Status

Trained research staff administered the following standardized neuropsychological tests to 

all participants on the same day as the neuroimaging session: Wisconsin Card Sorting Test 

(WCST) 64 Computer Version (Heaton, 2004), Delis-Kaplan Executive Function System 

Letter Fluency (Homack, et al., 2005), Wechsler Adult Intelligence Scale 4th Edition Matrix 

Reasoning, Symbol Search (Wechsler, 2008) and Hopkins Verbal Learning Test-Revised 

(Total Recall and Delayed Recall) (Benedict, et al., 1998). We also administered domain-

specific self-report measures including the Multifactorial Memory Questionnaire Ability 

Scale (MMQ-A) (Troyer and Rich, 2002) and the Behavioral Rating Inventory of Executive 

Function (BRIEF) (Roth, et al., 2005). Testing required approximately 1.5 hours. We used 
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only the Total score from the WCST and the Global Executive Composite score from the 

BRIEF.

Raw test scores were converted to standard scores based on each test's education and/or age 

normative data using test-specific scoring software provided by the test publishers. All 

standard scores were converted to T scores for a consistent scale [mean of 50 and standard 

deviation (SD) of 10]. Additionally, z scores (mean = 0, SD = 1) for each cognitive test 

(excluding self-report measures) for each participant were computed based on the mean and 

SD for the control group [(score-mean)/SD]. A participant was rated as having impaired 

cognitive function if two or more tests had a z score at or below -1.5 and/or one test had a z 

score at or below -2.0 (Wefel, et al., 2011).

2.7 Cognitive Reserve

Education level in years was used as a proxy of cognitive reserve as in previous studies 

(Stern, 2013; Tucker and Stern, 2011).

2.8 Statistical Analyses

2.8.1 Fractional Anisotropy (FA)—As detailed in Supplementary Methods, whole-

brain, voxelwise statistical analysis of FA data was carried out using FSL's Tract-Based 

Spatial Statistics [TBSS, (Smith, et al., 2006)] with a threshold of p < 0.01, family-wise 

error corrected.

2.8.2 Tract Characteristics—Group differences in streamline number, length and mean 

FA were compared using analysis of variance (ANOVA). Total brain volume was used as a 

covariate in the streamline number and length models. Model p values were adjusted for 

multiple comparisons using false discovery rate (FDR).

2.8.3 Small-worldness and Hub Profiles—We evaluated between group differences in 

clustering coefficient, path length and small-worldness index using ANOVA with FDR 

correction. Hub profiles for each group are presented descriptively and visually using Brain 

Net Viewer (Xia, et al., 2013). Additionally, we computed an R2 for each group to describe 

the fit of the cumulative degree distribution with the power-law (Supplementary Methods), 

where R2 values close to 1 represent a strong fit (Hosseini, et al., 2012a). Fisher's r to z 

transformation was used to determine if there was any significant difference in these values 

between groups.

2.8.4 Tolerance to Network Attack—Between group differences in global and local 

efficiency AUCs for each attack strategy were determined using ANOVA with FDR 

correction. Since the measurement of attack tolerance begins following attack 1, global and 

local efficiency at minimum density were considered the “baseline” (attack zero) 

efficiencies. Differences in these measures between groups were computed using ANOVA. 

Effect sizes were calculated using Cohen's d (Cohen, 1998).

2.8.5 Cognitive Status—Between group differences in cognitive test scores were 

evaluated using ANOVA. The number of impaired participants was compared between 
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groups using Chi squared analysis. All p values were FDR corrected. Effect sizes were 

calculated using Cohen's d.

2.8.6 Predictors of Brain Network Tolerance to Attack—The effects of age, 

cognitive reserve (education level) and small-worldness index on network attack AUCs were 

explored in each group separately using two-tailed Pearson correlations (p < 0.05, 

uncorrected). Only small-worldness index was evaluated given that it is a summary measure 

that includes both clustering coefficient and characteristic path length and was derived here 

from streamline FA and number.

Within the breast cancer group, a backward stepwise linear regression was performed with 

medical variables (menopausal status, radiation, tamoxifen, time off-therapy and disease 

stage) as predictors of network attack AUCs. The model with the highest adjusted R squared 

was considered the best fitting.

2.8.7 Predictors of Cognitive Impairment—For the breast cancer group only, the 

effects of age, education, small-worldness index and significant network attack AUCs on 

cognitive impairment (1 = impaired, 0 = not impaired) were explored using two-tailed 

Spearman rank correlations (p < 0.05, uncorrected). Additionally, medical variables were 

examined using a backward conditional logistic regression.

Differences in correlation coefficients between groups were evaluated for significance using 

Fisher's r to z transformation.

3. Results

3.1 Fractional Anisotropy

As shown in Figure 2, the breast cancer group demonstrated significantly lower FA (p < 

0.01, corrected) compared to controls in multiple regions throughout the brain. Peak voxel 

locations (Table 2) included left corpus callosum, bilateral inferior longitudinal fasciculus 

and left inferior fronto-occipital fasciculus. Significant differences also included bilateral 

temporal and frontal lobe white matter.

Tract Characteristics—The breast cancer group showed a significantly greater number 

of streamlines compared to controls (p = 0.002, corrected) but these streamlines were shorter 

(p = 0.015, corrected) and had lower mean FA (p = 0.003, corrected, Table 3).

Small-worldness and Hub Profiles—Both groups demonstrated small-world brain 

network organization having mean small-world indices greater than 1 (Table 3, Figure 3). 

There were no individual participants in either group who demonstrated a small-worldness 

index less than 1. At minimum network connection density, the breast cancer group showed 

significantly greater clustering coefficient (p = 0.025, corrected), path length (p = 0.013, 

corrected) and small-worldness index (p = 0.045, corrected) compared to controls (Table 3). 

These results were confirmed by AUC analysis across network densities (p < 0.04, 

corrected). As shown in Figure 4, the two groups showed a similar profile of hubs although 

controls demonstrated additional hubs in bilateral precentral gyrus and bilateral fusiform 
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compared to the breast cancer group. The degree distributions of both groups followed an 

exponentially truncated power-law distribution (Figure 4). The R2 value for the breast 

cancer group was 0.962 and was 0.960 for the control group (z = 0.1, p = 0.46).

3.2 Tolerance to Network Attack

As shown in Table 3, there were no significant differences in global or local efficiency prior 

to onset of attacks. However, attack AUCs (Table 3, Figure 5) were significantly lower in 

the breast cancer group corresponding to reduced tolerance to targeted attack on both nodes 

and edges compared to controls (p < 0.043, corrected). Tolerance to random attacks was not 

different between groups (p > 0.400).

3.3 Cognitive Status

The breast cancer group demonstrated significantly reduced WCST, HVLT-R Total Recall 

and MMQ-A scores as well as significantly increased BRIEF scores compared to controls 

(Table 4). Higher BRIEF scores indicate elevated self-rated executive function difficulties. 

Cognitive impairment was significantly higher in the breast cancer group compared to 

controls (p = 0.005, corrected).

3.4 Predictors of Brain Network Tolerance to Attack

In the breast cancer group, small-worldness index was significantly positively correlated 

with targeted node global efficiency (p = 0.018, uncorrected). Attack tolerance was not 

associated with age, education or medical variables.

In the control group, small-worldness index was inversely correlated with targeted edge 

attack global efficiency AUC (p = 0.006, uncorrected). Education was inversely correlated 

with targeted edge attack local efficiency (p = 0.029, uncorrected). Age was not associated 

with attack tolerance.

The above correlations were significantly different between groups at p < 0.05, uncorrected.

3.5 Predictors of Cognitive Impairment

Lower global efficiency AUC following targeted nodal attack was associated with cognitive 

impairment in the breast cancer group (r = -0.605, p < 0.0001, uncorrected, Figure 6). 

Cognitive impairment was not associated with small-worldness index, age, education or 

medical variables.

4. Discussion

We examined brain network tolerance in chemotherapy treated breast cancer survivors in 

comparison with healthy controls using diffusion tensor imaging (DTI) and graph theory 

analyses. This approach allowed us to simulate the effects of neurodegeneration on brain 

network global and local efficiency, measures of the capacity for information processing. 

We demonstrated significantly reduced areas under the curve (AUC) following network 

attacks in the breast cancer group compared to controls. These findings indicate that the 

breast cancer group showed greater reduction of network efficiency in response to simulated 

Kesler et al. Page 10

Neurobiol Aging. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurodegeneration. Despite larger overall impact of the attacks on the breast cancer brain 

network, the shapes of the attack AUC curves were relatively similar for both groups 

suggesting a similar rate of decline. As Ahles (2012) recently explained, it is unknown 

whether age-related cognitive decline following cancer parallels that of individuals without 

history of cancer or whether decline is accelerated. Our findings provide support for a 

parallel rather than an accelerated decline.

Importantly, attack tolerance was reduced despite both groups demonstrating similar 

network efficiencies prior to attack onset. Following the very first attack, the two groups 

diverged with respect to attack tolerance with the breast cancer group requiring fewer 

number of attacks to reach zero efficiency compared to controls. Because attack targets were 

based on individual node/edge centrality distributions, the order of the nodes/edges removed 

across attacks was different for each participant. However, the profile of nodes that were 

high enough in degree to be classified as hubs was similar across the groups and the 

cumulative degree distributions did not differ between groups. Controls had some additional 

hubs compared to the breast cancer group that may have helped increase network attack 

tolerance. Although network attack tolerance was reduced in the breast cancer group across 

attacks, the attack AUCs inverted during the window of approximately 65-80 attack 

iterations (Figure 5). This was largely seen for local efficiency and may be related to the 

increased clustering noted in the breast cancer group.

Breast cancer survivors demonstrated significant cognitive impairment compared to controls 

and reduced tolerance to targeted node attack was associated with cognitive impairment. 

Cognitive deficits were most pronounced in executive function and verbal memory domains 

and these deficits were noted on both objective and subjective measures. However, cognitive 

function was preserved in the average breast cancer case, given that mean cognitive test 

scores were within the clinically normal range. This is consistent with the clinical 

presentation observed among breast cancer survivors wherein they tend to be able to 

complete various cognitive tasks but require more time, increased effort and/or different 

strategies than before (Kesler, et al., 2009; Von Ah, et al., 2013).

Consistent with previous studies (Albert, et al., 2000), brain networks in both groups were 

robust to random failures. Our findings also confirm prior studies showing preferential 

vulnerability of high degree nodes (hubs) to neuropathologic conditions (Crossley, et al., 

2014). Targeted attack therefore warrants further evaluation as a useful representation of the 

neurodegenerative processes underlying breast cancer-related cognitive impairment. Future 

comparison of more sophisticated attack models could provide insight regarding specific 

mechanisms underlying brain network alterations following breast cancer. For example, it 

would be useful to know if inflammation more closely corresponds to a particularly network 

attack compared to chemotherapy or disease severity, for example.

Reduced brain network attack tolerance is consistent with lower cognitive reserve as well as 

the frail phenotype of aging, both significant predictors of cognitive decline (Mandelblatt, et 

al., 2013; Stern, 2012). We demonstrated that education, our cognitive reserve proxy, was 

inversely associated with local efficiency following network attack in controls. The 

surprisingly inverse direction of this correlation is a hallmark of cognitive reserve research 
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and is interpreted to mean that, in individuals with higher cognitive reserve, greater 

neuropathology is required before clinical effects are manifest. Previous studies tend to 

show this inverse correlation only in disease groups while healthy individuals demonstrate a 

positive correlation between neurobiologic metrics and cognitive reserve proxies (Haut, et 

al., 2007; Kesler, et al., 2010; Sole-Padulles, et al., 2009). Our present findings are based on 

a simulated neuropathologic process being applied to both groups and therefore these results 

provide support for our network attack methods being accurate approximations of 

neurodegeneration. However, education was not associated with attack tolerance in the 

breast cancer group. This may partly relate to the difference in brain network topology 

between the groups. It is possible that there are one or more variables mediating this 

relationship in breast cancer such that the protectiveness of education on certain brain 

network characteristics is reduced. However, alternate proxies for cognitive reserve may be 

produce different results (Ahles, et al., 2010).

Unlike our prior studies of connectomes in breast cancer that demonstrated reduced small-

world characteristics compared to controls, our present results indicate that small-worldness 

index was significantly increased in the breast cancer group. Our previous studies involved 

gray matter and resting state functional MRI connectomes that measure very different 

neurobiologic properties compared to DTI and are also associated with significantly 

different network densities. A recent review of connectome studies in Alzheimer's disease 

illustrates how structural and functional connectomes can produce opposite results with 

respect to small-world characteristics (Dai, et al., 2014). Importantly, studies that have 

compared multimodal connectome properties within the same samples show an inverse 

relationship between resting state functional MRI and DTI-based connectome properties 

(Caeyenberghs, et al., 2013; Rudie, et al., 2012). Further, the balance between functional and 

structural network characteristics appears to be associated with disease-related phenotype 

(Hawellek, et al., 2011; Rudie, et al., 2012) suggesting that this inverse association has 

biologic significance.

We found an increased number of streamlines in the breast cancer group compared to 

controls. These streamlines were shorter in length and had reduced mean FA compared to 

controls suggesting that they reflect brain network disconnectivity in breast cancer. This is 

consistent with our TBSS analysis showing widespread reduction in FA associated with 

breast cancer. There are several potential reasons for white matter vulnerability following 

breast cancer including toxicity of treatments to white matter progenitor cells (Dietrich, 

2010) and toxicity of chronic inflammation to white matter myelin (Bettcher, et al., 2015).

The increased small-worldness in the breast cancer group was due to higher clustering as 

well as higher path length. Thus, lower white matter connectivity following breast cancer 

and its treatments may result in a re-organization of the large-scale brain network such that 

segregation (clustering) is increased while integration (path length) is reduced (greater path 

length = greater number of steps required to pass information to a neighboring region). This 

is consistent with the notion that white matter pathways support information transfer in the 

brain (Filley, 2010). This finding also provides insight regarding the neurobiologic 

mechanisms of breast cancer-related cognitive impairment as it is consistent with the clinical 

cognitive presentation observed among breast cancer survivors as described above. 
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Specifically, these women are typically able to complete various cognitive tasks accurately 

(intact segregation) but require more time, increased effort and/or different strategies than 

before (impaired integration).

Based on previous studies as described above, a small-world network organization – in the 

typical case – is resilient to random failure but more vulnerable to targeted attack. 

Accordingly, we demonstrated that higher small-worldness was inversely correlated with 

targeted attack tolerance in healthy controls. However, higher small-worldness index was 

associated with increased targeted attack tolerance in the breast cancer group. Additionally, 

the breast cancer group showed slightly, though non-significantly, higher tolerance to 

random failure. Therefore, the alteration in small-worldness network organization following 

breast cancer could reflect a type of compensatory mechanism that strives to maintain 

overall network robustness at the expense of other network properties such as integration.

Cognition is negatively affected in the context of this altered network organization, although 

in some survivors more than others. We were unable to determine any specific host, medical 

or treatment predictors of these effects, likely due to our small, heterogeneous sample. 

Factors that we could not examine in the present study such as genotypic variations and/or 

specific treatment regimens, for example, may play important roles in brain network 

organization and attack tolerance based on previous studies (Ahles, et al., 2003; Small, et al., 

2011; Stouten-Kemperman, et al., 2014). Further research in this area is required involving 

larger samples and longitudinal designs to determine the long-term impact of altered brain 

network organization and reduced network attack tolerance on cognitive outcome as well as 

individual factors that mediate or moderate these effects.

5. Conclusions

Our results provide further evidence that that breast cancer and/or its treatments are 

associated with lower white matter organization and connectivity. These effects were shown 

using convergent DTI measurements that assessed fractional anisotropy as well as 

tractography properties. Additionally, we demonstrated novel evidence that white matter 

disconnectivity alters the organization of the large-scale DTI white matter network such that 

segregation is increased but integration is lower compared to controls. This altered topology 

appears to make the brain network more vulnerable to targeted attack. The breast cancer 

group demonstrated significant cognitive impairment compared to controls and this 

impairment was associated with lower network attack tolerance. Lower brain resilience may 

help explain the new onset of previously non-existent cognitive impairment and progressive 

worsening of existing symptoms that have been noted in some breast cancer survivors 

(Wefel, et al., 2010).

Limitations of the current study include the cross-sectional design, restricted cognitive 

reserve measurement, heterogeneity of the breast cancer sample and lack of a non-

chemotherapy treated comparison group with DTI data. As with other studies in the field of 

connectomics, different network construction approaches may yield different results, 

although it should be noted that global and local efficiency differences tend to be quite well 

preserved across divergent methods (Zhong, et al., 2015). Definitions of cognitive 
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impairment in this field remain arbitrary and the definition used here has not been validated 

in terms of its accuracy, sensitivity or specificity. Our finding that impairment was 

correlated with global efficiency suggests this definition of impairment may have some 

biologic significance. However, correlational analyses were exploratory and uncorrected and 

results should therefore be considered preliminary. Despite the limitations, this study 

provides further evidence of brain injury following breast cancer and its treatments. The 

effects of this injury appear to extend several years beyond treatment completion and may 

increase the brain's vulnerability to the effects of aging, injury and disease. Additionally, this 

research further demonstrates the importance of the intersection between disease and 

neurobiologic status as well as the relevance of cognitive neuroscience for non-CNS medical 

conditions.
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Highlights

We constructed brain network models in breast cancer survivors and healthy females

Brain network models were subjected to simulated neurodegeneration

Breast cancer survivors showed reduced brain network tolerance to simulated 

neurodegeneration

Reduced brain network tolerance was associated with cognitive impairment in the breast 

cancer group
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Figure 1. Analysis Summary
Diffusion tensor imaging (DTI) volumes were first corrected for eddy current distortion. 

Tensor reconstruction was performed using the linear least-squares fitting method. Resultant 

fractional anisotropy (FA) maps were nonlinearly registered to a standard space FA template 

and then tract-based spatial statistics (TBSS) were conducted to determine voxel-wise 

differences in FA between groups. Deterministic tractography was performed using fiber 

assignment by continuous tracking. Regions of interest (ROIs) were transformed into DTI 

native space by first coregistering the T1 volume to the B0 volume. The coregistered T1 was 

then normalized to a standard space anatomic template and the inverse warp of this 

transformation (w′) was applied to the ROI images. The number of virtual fibers, or 

“streamlines”, connecting each pair of ROIs was determined resulting in a 90×90 weighted 

connectivity matrix for each participant. Graph theory analyses were applied to the weighted 

matrices to construct brain graphs for each participant consisting of nodes (regions) and 

edges (connections). Attack analyses involving targeted or random removal of nodes or 

edges were conducted to simulate a neurodegenerative process. The brain network's 

response to these attacks was measured using global and local efficiency. The area under the 

curve (AUC) for each of these response metrics was compared between groups.
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Figure 2. Whole-brain Fractional Anisotropy (FA)
Results from Tract-based Spatial Statistics analysis demonstrating significantly lower FA in 

the breast cancer group compared to controls (p < 0.01, corrected). Color bar shows 1-p 

value.
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Figure 3. Small-worldness
Both groups demonstrated a small-worldness brain network organization (i.e. small-

worldness index > 1) across densities. The breast cancer (bc) group demonstrated 

significantly increased small-worldness index at minimum density (0.15) as well as across 

densities (p < 0.05, corrected) compared to controls (con).
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Figure 4. Brain Graphs with Hub Profiles
Spheres represent nodes with size indicating degree. Hub regions are colored green. Gray 

lines represent edges which are shown here unweighted for illustration purposes. The breast 

cancer group (bc) showed hubs in bilateral superior frontal gyrus, bilateral insula, bilateral 

precuneus, bilateral supplementary motor area and right middle temporal gyrus. Controls 

(con) also showed hubs in bilateral superior frontal gyrus, bilateral insula, bilateral 

precuneus and bilateral supplementary motor area as well as bilateral precentral gyrus and 

bilateral fusiform. The log-log plot of cumulative degree distributions is shown to the right 

of each brain graph. The solid line indicates the exponentially truncated power-law curve 

fitted to the cumulative degree distribution of the networks (dotted line).
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Figure 5. Brain Network Attack Tolerance
Compared to controls (con), the breast cancer group (bc) showed significantly lower 

tolerance to various targeted attacks on brain network nodes and edges as measured by both 

global and local efficiency. (A) Targeted node attack global efficiency, (B) targeted node 

attack local efficiency, (C) targeted edge attack global efficiency, (D) targeted edge attack 

local efficiency. Edge attacks were scaled to 1:90 to be more easily comparable visually 

with targeted attacks.
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Figure 6. Predictors of Cognitive Impairment
Cognitive impairment (0 = not impaired, 1 = impaired) in the breast cancer group was 

associated with global efficiency AUC following targeted node attack (r = -0.605, p < 

0.0001, uncorrected). Black line indicates the mean.
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Table 1

Demographic and medical data shown as mean (standard deviation) unless otherwise noted.

Breast cancer N = 34 Healthy controls N = 36 Stat p

Age 56.9 (7.6) 56.9 (8.2) 0.045 0.964

Age range 43.8-72.7 42.8-73.4

Education (years) 17.1 (2.5) 16.3 (2.4) 1.28 0.215

Education range 12-23 12-20

Minority status 9% 17% 1.05 0.305

Postmenopausal 91% 76% 23.4 <0.0001

Time off-therapy* (years) 5.9 (3.7)

Loco-regional breast radiation therapy 80%

Tamoxifen 60%

Disease stage at diagnosis I, II, III 20%, 46%, 34%

*
Time since completion of chemotherapy and loco-regional breast radiation treatments
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