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Abstract

Background—Simultaneous inactivation of pig GGTA1 and CMAH genes eliminates 

carbohydrate xenoantigens recognized by human antibodies. The β4GalNT2 glycosyltransferase 

may also synthesize xenoantigens. To further characterize glycan-based species incompatibilities, 

we examined human and non-human primate antibody binding to cells derived from genetically 

modified pigs lacking these carbohydrate-modifying genes.

Methods—The Cas9 endonuclease and gRNA were used to create pigs lacking GGTA1, 

GGTA1/CMAH, or GGTA1/CMAH/β4GalNT2 genes. Peripheral blood mononuclear cells were 

isolated from these animals and examined for binding to IgM and IgG from humans, rhesus 

macaques, and baboons.

Results—Cells from GGTA1/CMAH/β4GalNT2 deficient pigs exhibited reduced human IgM 

and IgG binding compared to cells lacking both GGTA1 and CMAH. Nonhuman primate antibody 

reactivity with cells from the various pigs exhibited a slightly different pattern of reactivity than 

that seen in humans. Simultaneous inactivation of the GGTA1 and CMAH genes increased 

nonhuman primate antibody binding compared to cells lacking either GGTA1 only or to those 

deficient in GGTA1/CMAH/β4GalNT2.

Conclusions—Inactivation of the β4GalNT2 gene reduces human and nonhuman primate 

antibody binding resulting in diminished porcine xenoantigenicity. The increased humoral 
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immunity of nonhuman primates towards GGTA1/CMAH-deficient cells compared to pigs 

lacking either GGTA1 or GGTA1/CMAH/β4GalNT2 highlights the complexities of carbohydrate 

xenoantigens and suggests potential limitations of the nonhuman primate model for examining 

some genetic modifications. The progressive reduction of swine xenoantigens recognized by 

human immunoglobulin through inactivation of pig GGTA1/CMAH/β4GalNT2 genes 

demonstrates that the antibody barrier to xenotransplantation can be minimized by genetic 

engineering.
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Introduction

Clinical transplantation continues to be limited by the shortage of suitable human donor 

organs. The UNOS waitlist continues to grow and now more than 120,000 people await 

transplantation in the United States [1]. Xenotransplantation using pig organs is a possible 

solution to the organ shortage, but has not been applied clinically because antigens on the 

surface of pig cells lead to antibody mediated rejection (AMR) in pig-to-nonhuman primate 

models [2].

Two well-characterized xenoantigens on pig cells are the carbohydrates Galactose α1-3 

galactose (αGal) and N-glycolylneuraminic acid (Neu5Gc) [3, 4]. Though disrupting the 

swine GGTA1 gene eliminated expression of αGal and increased the survival of pig-to-

primate transplants, AMR remained as a significant problem [5]. Nuclease-based genome 

editing has simplified the manipulation of mammalian genomes enabling the disruption of 

additional pig genes and the production of GGTA1/CMAH KO pigs [6-14]. Inactivation of 

both GGTA1 and CMAH created pigs with reduced human antibody binding to their red 

blood cells and peripheral blood mononuclear cells (PBMC) when compared to GGTA1 

knockout (KO) pigs [7, 15]. In addition, there was less human antibody binding to PBMCs 

from these double KO pigs than to chimpanzee PBMCs [16]. This finding was significant 

since chimpanzee kidneys were not hyperacutely rejected by humans in Reemtsma's series 

in 1963 despite using very crude immunosuppression available at that time [17]. It may be 

possible to consider transplanting GGTA/1CMAH KO pig organs into humans taking 

advantage of new desensitization protocols, but xenoreactive antibodies are still a concern 

for clinical xenotransplantation [16].

Byrne and McGregor identified additional candidate xenoantigens using cDNA expression 

libraries from GGTA1 KO pigs and screened them with serum from baboons that had 

rejected GGTA1 KO pig hearts [5, 18]. Glycans produced by β1,4 N-acetylgalactosaminyl 

transferase (β4GalNT2) were of interest because the baboons had preformed antibodies to 

this glycan [19]. We describe the production of a GGTA1/CMAH/β4GalNT2 KO pig using 

Cas9 and gRNA technology, and evaluate human, rhesus macaque, and baboon antibody 

binding to PBMCs from this pig. Our data suggest that glycans produced by β4GalNT2 are 

xenoantigens for many humans.
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Methods

Generation and selection of porcine liver derived cells deficient in GGTA1, CMAH and 
β4GalNT2

Oligo annealing and cloning into the PX330 plasmid to drive gRNA expression was 

performed as described previously [9] using Addgene plasmid 42230 [http://

www.addgene.org/42230/, and reference 20]. Oligo pairs for the targeted genes are: GGTA1 

(NCBI Accession: XM_005660398.1) 5’- CACCGAGAAAATAATGAATGTCAA-3’ 

(forward), 5’-AAACTTGACATTCATTATTTTCTC-3’ (reverse); CMAH (NCBI 

Accession: NM_001113015.1) 5’-CACCGAGTAAGGTACGTGATCTGT-3’ (forward), 5’-

AAACACAGATCACGTACCTTACTC-3’ (reverse); β4GalNT2 (NCBI Accession: 

NM_001244330.1) 5’-CACCGTGTATCGAGGAACACGCTT-3’ (forward), 5’-

AAACAAGCGTGTTCCTCGATACAC-3’ (reverse).

Liver derived cells [21] were co-transfected with all three gRNA/Cas9 plasmids. After 48 

hours, the treated cells were passed over an IB4 lectin column to isolate αGal null cells [6]. 

Two million α-Gal negative cells were further stained with fluorescein labeled Dolichos 

biflorus Agglutinin (DBA)-FITC (Vector Laboratories, Burlingame, CA, USA) at 2 ug/ml in 

500ul HBSS with 0.5% BSA and flow sorted for DBA negative cells using a BD FACSAria 

sorter (BD Bioscience, San Jose, CA). The presence of Neu5Gc, an indicator of CMAH 

gene function, was not analyzed prior to somatic cell nuclear transfer (SCNT).

Somatic cell nuclear transfer

SCNT was performed as described [22] using in vitro matured oocytes (DeSoto Biosciences 

Inc., St. Seymour, TN). Cumulus cells were removed from the oocytes by pipetting in 0.1% 

hyaluronidase. Only oocytes with normal morphology and a visible polar body were selected 

for SCNT. Oocytes were incubated in manipulation media (Ca-free NCSU-23 with 5% FBS) 

containing 5 μg/mL bisbenzimide and 7.5 μg/mL cytochalasin B for 15 min. Oocytes were 

enucleated by removing the first polar body plus metaphase II plate, and one cell was 

injected into each enucleated oocyte. Couples were fused and activated simultaneously by 

two DC pulses of 180 V for 50 μsec (BTX cell electroporator, Harvard Apparatus, Hollison, 

MA, USA) in 280mM Mannitol, 0. 1mM CaCl2, and 0.05mM MgCl2. Activated embryos 

were placed back in NCSU-23 medium with 0.4% bovine serum albumin (BSA) and 

cultured at 38.5 °C, 5% CO2 in a humidified atmosphere for less than 1 h, before being 

transferred into the recipient. Recipients were synchronized occidental gilts on their first day 

of estrus. Swine used in this study followed protocols approved by the Institutional 

Biosafety and Institutional Animal Care and Use Committees of IUPUI.

DNA sequencing of cloned pig

DNA sequencing analysis of the gRNA/Cas9 targeted GGTA1, CMAH, and β4GalNT2 

regions in the cloned pig Genomic DNA from the cloned pig was extracted using GenElute 

Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich, St. Louis, MO). PCR was 

performed with GGTA1, CMAH, and β4GalNT2-specific primer pairs, respectively. The 

primers were designed to flank the gRNA/Cas9 target sites and amplified 428 bases of 

GGTA1, 5’-CCTTAGTATCCTTCCCAACCCAGAC-3’ (forward), 5’-
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GCTTTCTTTACGGTGTCAGTGAATCC-3’ (reverse); 485 bases of CMAH, 5’-

CTTGGAGGTGATTTGAGTTGGG-3’ (forward), 5’-

CATTTTCTTCGGAGTTGAGGGC-3’ (reverse); 530 bases of β4GalNT2, 5’-

CGCAAGTGACCAGACATCGTTC 3’ (forward), 5’ AAAGCCACAGGAGGAGCCAG-3’ 

(reverse). Pwo SuperYield DNA polymerase, dNTPack (Roche Applied Science, 

Indianapolis, IN) was used and PCR conditions for GGTA1 were as follows: 94°C, 2 min; 

94°C, 15 sec, 54°C, 30 sec, and 72°C, 45 sec for 15 cycles; 94°C, 15 sec, 54°C, 30 sec, 

72°C, 45 sec with additional 5 sec each cycle for 25 cycles; and a final extension step of 

72°C for 5 min. For CMAH, 94°C, 2 min; 94°C, 15 sec, 56°C, 30 sec, and 72°C, 45 sec for 

15 cycles; 94°C, 15 sec, 56°C, 30 sec, 72°C, 45 sec with additional 5 sec each cycle for 25 

cycles; and a final extension step of 72°C for 5 min. For B4GALNT2, 94°C, 2 min; 94°C, 15 

sec, 62°C, 30 sec, 72°C, 40 sec for 15 cycles, 94°C 15 sec, 62°C, 30 sec, 72°C 40 sec with 

additional 5 sec each cycle for 25 cycles; and a final extension step of 72°C for 5 min. The 

PCR products were separated on 1% agarose gel, purified by GenElute Gel Extraction Kit 

(Sigma-Aldrich, St. Louis, MO) and sequenced by the Sanger method (DNA Sequencing 

Core Facility, Indiana University School of Medicine) with the specific sequencing primer, 

5’-CCTTAGTATCCTTCCCAACCCAGAC-3’ for GGTA1; 5’-

CATTTTCTTCGGAGTTGAGGGC-3’ for CMAH; 5’-

AAAGCCACAGGAGGAGCCAG-3’ for β4GalNT2. PCR products were inserted into 

pCR4blunt-TOPO vector, transformed into E. Coli, and individual clones were sequenced to 

analyze individual alleles of each targeted gene.

Flow cytometric phenotyping of PBMCs

Whole blood was obtained in Acid-Citrate-Dextrose (ACD) and prepared using Ficoll-Paque 

Plus (GE) to isolate PBMCs. Cells were stained with isolectin Griffonia simplicifolia GS-

IB4 (IB4 lectin), Alexa Fluor 488 (Molecular Probes, Grand Island, NY, USA) and 

compared to cells alone. Neu5Gc phenotype was determined with chicken anti-Neu5Gc 

antibody, donkey anti-chicken Dylight 649, and negative control isotype from Neu5Gc kit 

(BioLegend, San Diego, CA, USA). β4GalNT2 phenotype determined with Dolichos 

biflorus agglutinin (DBA lectin), labeled with fluorescein (Vector Laboratories, Burlingame, 

CA, USA). All cells were suspended at 2×106/mL in HBSS with Neu5Gc free blocking 

buffer for 15 minutes and then incubated for 30min at room temperature with appropriate 

lectin or antibody. Cells were washed with blocking buffer. Flow cytometric analysis was 

completed on BD Accuri C6 flow cytometer with the C6 Software (BD Biosciences, San 

Jose, CA, USA).

Human antibody binding to Swine PBMCs

Human sera were obtained from volunteers or de-identified remnant clinical lab samples 

with IRB approval. Swine PBMCs were isolated using Ficoll-Paque Plus and suspended in 

EX-CELL 610-HSF Serum-Free Medium (Sigma, St. Louis, MO, USA). A 25% mixture of 

heat-inactivated serum and 2×105 cells in EX-CELL with 0.1% sodium azide were 

incubated for 30 min at 4 °C. Cells were washed three times with EX-CELL + azide and 

stained with Goat anti-human IgG Alexa Fluor 488 and Donkey anti-human IgM Alexa 

Fluor 488 (Jackson ImmunoResearch Laboratories Inc.) for 30 min at 4 °C. Cells were 
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washed using EX-CELL medium as above and flow cytometric analysis completed on BD 

Accuri C6 flow cytometer.

Rhesus and baboon antibody binding to triple β4GALNT2 -KO PBMCs

Sera samples were obtained from thirty-four Rhesus Macaques following IACUC-approved 

protocols (Yerkes Primate Center, Atlanta, GA, USA) and heat inactivated at 57 °C for 30 

min. Baboon sera were obtained from ten animals (Texas Biomedical Research Institute, 

San Antonio, TX, USA) and heat inactivated. Multiple anti-immunoglobulin products were 

tested for cross reactivity with Baboon and Rhesus immunoglobulin using serial dilution. 

Goat anti-human IgG Alexa Fluor 488 and Donkey anti-human IgM Alexa Fluor 488 

(Jackson ImmunoResearch Laboratories Inc.) were selected. A 25% mixture of serum was 

incubated with 2×105 cells for 30min at 4°C, washed three times with EX-CELL plus azide, 

and stained with anti-IgG or IgM secondary. Cells were washed again and analyzed flow 

cytometrically.

Statistical Analysis

Antibody binding results were reported as median fluorescence intensity (MFI) of the FL1 

channel. Graph and data analyses were completed using Prism 6 for windows (GraphPad 

Software Inc. La Jolla, CA, USA). Human serum antibody binding assays were analyzed 

using two-tailed paired t-test comparing single MFI results for each animal. The primate 

serum antibody binding was completed in duplicate, and averaged values used in the graphs 

and analyzed using one-way ANOVA, comparing column means with Tukey correction for 

multiple comparison.

Results

The β4GalNT2 pig was generated as described in Figure 1. Primary liver-derived cells were 

simultaneously transfected with three plasmids encoding the Cas9 endonuclease and gRNA 

specific for the GGTA1, CMAH, and β4GalNT2 genes. Treated cells were passed over an 

IB4 lectin column, which binds αGal. Cells having disrupted GGTA1 pass through the 

column because they lack this carbohydrate xenoantigen. αGal deficient cells were then 

subjected to fluorescence-activated cell sorting to isolate cells that failed to bind the DBA 

lectin, which targets carbohydrate structures produced by the β4GalNT2 enzyme. Cells 

determined to lack GGTA1 and β4GalNT2 function by phenotypic selection were used in 

somatic cell nuclear transfer. Expression of the Neu5Gc isoform of sialic acid, a marker of 

CMAH gene activity, was not examined prior to SCNT as this analysis is challenging 

because CMAH deficient cells acquire Neu5Gc from cell culture components [9, 23]. Pig 

cloning statistics are shown in Table 1.

PBMC collected from a single engineered pig were subjected to phenotypic analysis, with 

PBMC from WT pigs serving as positive controls (Figure 2A). The individual alleles from 

all three targeted genes were also subjected to DNA sequence analyses (Figure 2B). 

Deletions of 5 and 7 bases from exon 3 of the GGTA1 gene (Figure 2B) prevented 

expression of the αGal carbohydrate (Figure 2A) by creating frameshifts immediately after 

the start codon in both alleles. One copy of the CMAH gene had a 3 base deletion combined 
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with a 5 base insertion, and the second allele contained a 12 base deletion (Figure 2B). Each 

of these modifications may have disrupted exon 6 of CMAH by shifting its reading 

destroying the immediate upstream canonical splice acceptor site. Either defective mRNA 

splicing or frame shift mutations would cause an enzyme deficiency eliminating Neu5Gc 

synthesis (Figure 2A). β4GalNT2 exhibited three distinct, and apparently mutually 

exclusive, mutant alleles consisting of either a 1 base insertion, or a 5 base deletion, or a 12 

base deletion. These modifications all occur in exon 2 and precede the coding region for the 

catalytic domain of the β4GalNT2 enzyme. The 1- and 5- base deletions lead to frameshifts 

in the translational reading frame. The 12-base deletion likely disrupts targeting of the 

β4GalNT2 enzyme to the secretory pathway by eliminating four amino acids from the signal 

sequence that targets the enzyme to the secretory pathway. The presence of more than two 

alleles may represent gene duplication rather than aneuploidy because the animal has a 

normal karyotype and only carries two copies of chromosome 12 (Figure 3), which is the 

location of the β4GalNT2 gene (Ensembl database, β4GALNT2 ENSSSCG00000030269).

Next we examined antibody binding to cells from the triple knockout animal because Byrne 

and McGregor have demonstrated that baboon antibodies recognize xenoantigens produced 

by the β4GalNT2 gene. We compared IgM and IgG binding of NHP antibodies to PBMC 

isolated from swine deficient in GGTA1 only (KO-1); GGTA1 and CMAH (KO-2); or 

GGTA1, CMAH, and β4GalNT2 (KO-3).

Swine PBMC, deficient in GGTA1 and CMAH, bound more baboon IgM than did cells 

lacking only GGTA1 (Figure 4A; KO-1 vs. KO-2, p=0.041). Disrupting β4GalNT2 in 

addition to CMAH and GGTA1 reduced pig xenoantigen expression as shown by 

diminished baboon IgM fluorescence (Figure 4A; KO-2 vs. KO-3, p<0.010). The grouped 

analyses did not reflect significant differences in the binding of baboon IgG to the various 

swine PBMC (KO-1 vs. KO2, p=0.132; KO-2 vs. KO-3, p=0.073). This may have resulted 

from analyzing too few samples. When examined individually, the IgG from 9 of 10 baboon 

sera recognized more antigens on KO-2 swine PBMC than on KO-1cells (Figure 4B). 

Disruption of swine β4GalNT2 in the KO-3 cells reduced binding of IgG from all 10 

baboons compared to KO-2 cells (Figure 4C). These patterns of IgG reactivity, increased 

binding in the absence of CMAH activity and diminished binding as a result of β4GalNT2 

inactivation, mirrored the results with baboon IgM.

In an effort to overcome the issues of small sample size and to extend the observations to 

additional NHP, we obtained serum from 34 rhesus macaques and repeated the 

immunoglobulin binding studies. Swine cells with disrupted GGTA1 and CMAH bound 

more rhesus IgM and IgG than did cells lacking GGTA1 only (Figure 4A; IgM and IgG 

KO-1 vs. KO-2, p<0.001). The elimination of swine β4GalNT2 activity concomitantly with 

CMAH and GGTA1 in KO-3 reduces antibody binding below both KO-2 and KO-1 cells 

(Figure 4A; IgM and IgG KO-2 vs. KO-3, and KO-1 vs. KO-3 p<0.006).

We previously showed that the majority of human donors had reduced antibody binding to 

PBMCs from swine deficient in both GGTA1 and CMAH gene function compared to cells 

devoid of GGTA1 alone [16]. Disrupting GGTA1/CMAH/β4GALNT2 further reduces 

swine xenoantigenicity as shown by grouped comparisons of human IgM and IgG binding 
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(Figure 5A; KO-2 vs. KO-3, p<0.001). While three-gene disruption simultaneously 

minimized IgM and IgG binding in over 90% of humans (Figure 5B, lower left quadrant), a 

small fraction of samples retained either IgM or IgG xenoreactive antibodies (Figure 5B, 

upper left and lower right quadrants respectively). In contrast to results obtained for KO-2 

analyses, no subject demonstrated simultaneously elevated binding levels of both IgM and 

IgG to cells taken from KO-3 pigs (Figure 5B, upper right quadrant). Comparing reactivity 

of individual sera with KO-2 and KO-3 cells (Figure 5C and 5D) confirmed that most 

humans have immunoglobulin specific for the products of β4GalNT2 in the background of a 

GGTA1 and CMAH deficient cell.

Discussion

Solid organ transplantation has made tremendous improvements in the past 50 years, but its 

success is now threatened by the shortage of suitable donor organs [1]. Xenotransplantation 

could eliminate the shortage of donor organs, but has never made it to the clinic because of 

the xenoreactive antibody barrier. In 1970, Calne coined the terms concordant and 

discordant to describe xenografts that were rejected more or less vigorously with discordant 

species combinations having higher antibody titers than concordant ones [24]. In 1989 Calne 

suggested that the first step toward clinical xenotransplantation using pig organs would be to 

convert the rejection from a discordant to a concordant form [25]. We have shown that, with 

respect to human antibody binding, PBMC and erythrocytes from GGTA1/CMAH deficient 

swine express fewer xenoantigens than chimpanzee cells suggesting the antigenic burden on 

pig tissues could be reduced to concordant levels [15, 16]. These results were encouraging 

but needed improvement with regard to further xenoantigen reduction.

Byrne and McGregor showed porcine β4GALNT2 encoded a xenoantigen using a GGTA1 

deficient and CD46 transgenic pig expression library and screening for baboon antibody 

binding using serum from animals that had rejected porcine hearts [18, 19]. In humans and 

mice, β4GALNT2 catalyzes the addition of N-acetylgalactosamine to a sialic acid modified 

lactosamine to produce GalNAc β1-4(Neu5Ac α2-3) Gal β1-4GlcNAc β1-3Gal, the Sda 

blood group antigen. This gene is functional in transplantable organs (kidney, heart, liver, 

lung, and pancreas) and endothelial cells in the pig [19].

Mammalian immune systems typically develop humoral non-responsiveness towards 

molecules expressed by the host. Consequently, the lack GGTA1 and CMAH gene function 

in all humans prohibits their immune system from becoming tolerant to the αGal and 

Neu5Gc carbohydrates which likely explains their importance as xenoantigens [16]. 

Approximately 5% of humans possess inactive β4GaltNT2 and consequently develop 

antibodies against the SDa and CAD carbohydrates produced by this gene [25]. Therefore 

we hypothesized that a small percentage of humans would contain xeno-reactive antibodies 

specific for glycans produced by β4GaltNT2 in pig cells. Contrary to our hypothesis, the 

majority of humans demonstrated humoral immunity towards pig cells expressing the 

β4GalNT2 gene (Figure 5). Further studies comparing the activities of swine and human 

β4GalNT2 may reveal why the pig enzyme creates antigens that broadly react with human 

immunoglobulin.
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The pig-to-nonhuman primate model has been important for the development of 

xenotransplantation. β4GALNT2 was identified as a candidate for genome editing using this 

model. Old-world NHPs have an intact CMAH gene and thus express Neu5Gc [26]. Our 

results show that PBMCs from GGTA1/CMAH KO pigs bind more baboon and rhesus 

antibodies than PBMCs from the GGTA1 KO pigs (Figure 4). It is clear that the impact of 

the CMAH deletion cannot be evaluated in the pig-to-NHP model [4]. Our results show that 

deletion of β4GALNT2 reduces baboon and rhesus antibody binding to the GGTA1/CMAH 

KO PBMCs. Since deletion of CMAH on the GGTA1 background increases NHP antibody 

binding, it is possible that a GGTA1/ β4GALNT2 KO pig will be more advantageous for 

testing in the pig-to-NHP xenotransplant model. Unlike what was seen in NHP, the 

sequential deletion of all three genes progressively reduced antigenicity of pig cells with 

regard to human IgM and IgG [16 and Figure 5]. The lack of antibody binding to PBMCs 

from the GGTA1/CMAH/β4GALNT2 KO pig suggests that organs from this animal will not 

face significant AMR when transplanted into humans.
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Figure 1. Genetic modification and cell selection
Step 1: Wild type liver-derived cells were treated with the Cas9 endonuclease and gRNA 

targeting the GGTA1, CMAH, and β4GalNT2 genes. Step 2: This heterogenous population 

was subjected to an IB4 lectin column to enrich for GGTA1 mutant cell types. Step 3: 

GGTA1 mutant cells were incubated with DBA lectin and sorted to isolate DBA-negative 

cells, which do not express β4GalNT2-derived carbohydrates. Step 4: SCNT was performed 

with cells determined to lack GGTA1 and β4GalNT2 gene function by the phenotypic 

selection. Phenotypic analysis of CMAH gene activity is difficult to perform on cells in 

culture and was not attempted prior to SCNT.
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Figure 2. Phenotype and genotype of GGTA1/CMAH/β4GalNT2 knockout pig
A) PBMCs from wild type (WT) or KO pigs were incubated with fluorescent probes: IB4 

lectin to detect αGal carbohydrates (green histograms); chicken antibodies specific for the 

Neu5Gc carbohydrate (red histograms); DBA lectin specific for carbohydrates produced by 

the β4GalNT2 gene (blue histograms). Gray histograms outlined in black represent negative 

controls that were unstained cells for lectin experiments and an irrelevant isotype matched 

antibody for Neu5Gc staining. The appearance of a single histogram in KO samples 

indicates overlap with negative control. B) DNA sequence analysis was performed on 

isolated alleles of GGTA1, CMAH and β4GalNT2.

Electropherograms revealed mutations in all alleles of each gene. WT sequence (WT) is 

shown for comparison to the modified alleles.
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Figure 3. Normal Karyotype of the GGTA1/CMAH//β4GalNT2 knockout pig
Chromosome 12 contains the β4GalNT2 gene.
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Figure 4. Plots of NHP antibody binding to single, double, and triple KO PBMCs
NHP sera (34 rhesus macaques and 10 baboons) were incubated with PBMC from swine 

containing inactivated GGTA1 (KO-1), GGTA1/CMAH (KO-2), or GGTA1/CMAH/

β4GALNT2 (KO-3). Secondary fluorescent antibodies were used to detect IgM and IgG 

binding to the cells with median fluorescence intensity being evaluated (MFI). A) Summary 

data are shown in box and whisker plots comparing binding of antibodies to swine PBMC of 

each genotype. Oneway ANOVA, and Tukey post hoc analyses were used to analyze the 

differences between each group. All comparisons of rhesus IgM and IgG binding yielded p 

values less than 0.006. GGTA1 and CMAH deficient pig cells bound the most baboon IgM 

(KO-1 vs. KO-2, p=0.041, and KO-2 vs. KO-3, p=0.010). Comparisons of baboon IgM 

binding to KO-1 versus KO-3 cells (NS, p=0.626), and baboon IgG binding comparisons did 

not achieve statistical significance (IgG not shown). B) MFI from baboon IgG binding to 

KO-2 and KO-1 PBMC were plotted individually. The diagonal line indicates equivalent 

binding to both KO-1 and KO-2 cells. Dots falling below the line represent samples where 
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KO-1 cells bound fewer antibodies than KO-2 PBMC. C) Baboon IgG binding to KO-2 

relative to KO-3 where data points below the line represent samples where KO-3 cells 

bound fewer antibodies than KO-2 PBMC.
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Figure 5. Plot of human IgG and IgM antibody binding to PBMCs from GGTA1/CMAH KO 
and GGTA1/CMAH/β4GALNT2 KO pigs
Human sera (n=82) were incubated with PBMC from swine having inactivated GGTA1/

CMAH (KO-2), or GGTA1/CMAH/β4GALNT2 (KO-3). Secondary fluorescent antibodies 

were used to detect IgM and IgG binding and fluorescence reported as median fluorescence 

intensity (MFI). A) Grouped analysis of human IgM and IgG binding to KO-2 and KO-3 

swine PBMC. One-way ANOVA and Tukey post hoc analyses indicate significantly 

different antibody binding in ever comparison (p<0.01). B) Each data point represents a 

matched IgG and IgM MFI from individual human sera samples to either KO-2 or KO-3 

PBMC. Dotted lines were placed at 6,000 MFI to highlight transitions from minimal to 

elevated antibody binding as determined by visual inspection of the data. More than 90% of 

samples are in left lower quadrant for KO-3. C) Individual data is plotted to allow 

simultaneous comparison of human IgG binding to KO-2 and KO-3 cells. The diagonal line 
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represents equivalent binding to both sources of PBMC. Values falling below the line 

indicate less antibody binding to the KO-3 PBMCs relative to KO-2 cells. D) Human IgM 

binding to KO-2 and KO-3 was analyzed exactly as described in panel C. Dots falling below 

the line represent samples where KO-3 cells bound less IgM than KO-2 PBMC.
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Table 1

Somatic cell nuclear transfer with B4GALCMAH genetically modified cells.

Recipient Transferred embryos Pregnancy Fetuses collected Piglets KO Cloning efficiency
**

1 82 No

2 102 Yes Aborted

3 69 No

4 65 Yes Aborted

5 69 No

6 96 Yes 1 1 1.04

Total 483
50%

* 0 1 1
0.2 (1.04%

***
)

*
Pregnant animals/ total recipients

**
Fetuses and piglets/ total embryos transferred

***
Fetuses and piglets/ embryos transferred to pregnant recipients
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