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SUMMARY

Artificial microRNAs (amiRNAs) are used for selective gene silencing in plants. However, current methods to

produce amiRNA constructs for silencing transcripts in monocot species are not suitable for simple, cost-

effective and large-scale synthesis. Here, a series of expression vectors based on Oryza sativa MIR390

(OsMIR390) precursor was developed for high-throughput cloning and high expression of amiRNAs in

monocots. Four different amiRNA sequences designed to target specifically endogenous genes and

expressed from OsMIR390-based vectors were validated in transgenic Brachypodium distachyon plants. Sur-

prisingly, amiRNAs accumulated to higher levels and were processed more accurately when expressed from

chimeric OsMIR390-based precursors that include distal stem–loop sequences from Arabidopsis thaliana

MIR390a (AtMIR390a). In all cases, transgenic plants displayed the predicted phenotypes induced by target

gene repression, and accumulated high levels of amiRNAs and low levels of the corresponding target tran-

scripts. Genome-wide transcriptome profiling combined with 50-RLM-RACE analysis in transgenic plants

confirmed that amiRNAs were highly specific.

Keywords: RNA silencing, artificial microRNA, MIRNA precursor, Brachypodium distachyon, monocot,

Arabidopsis thaliana, technical advance.

INTRODUCTION

MicroRNAs (miRNAs) are a class of �21 nt long endoge-

nous small RNAs that posttranscriptionally regulate gene

expression in eukaryotes (Bartel, 2004). In plants, DICER-

LIKE1 processes MIRNA precursors with imperfect self-

complementary foldback structures into miRNA/miRNA*

duplexes (Bologna and Voinnet, 2014). Typically, one

strand of the miRNA duplex is sorted into an ARGONAUTE

(AGO) protein according to the identity of the 50-terminal

nucleotide (nt) of the miRNA (Mi et al., 2008; Montgomery

et al., 2008; Takeda et al., 2008) and/or to other sequence

or structural properties of the miRNA duplex (Zhu et al.,

2011; Endo et al., 2013; Zhang et al., 2014). Plant miRNAs

target transcripts with highly complementary sequence

through direct AGO-mediated endonucleolytic cleavage, or

through other cleavage-independent mechanisms (Axtell,

2013).

Artificial miRNAs (amiRNAs) can be produced accurately

by modifying the miRNA/miRNA* sequence within a

functional MIRNA precursor (Alvarez et al., 2006; Schwab

et al., 2006). AmiRNAs have been used in plants to selec-

tively and effectively knockdown reporter and endogenous

genes, non-coding RNAs and viruses (Ossowski et al.,

2008; Tiwari et al., 2014). Recently, cost- and time-effective

methods to generate large numbers of amiRNA constructs

were developed and validated for eudicot species (Carbo-

nell et al., 2014). These included a series of eudicot ami-

RNA vectors based on Arabidopsis thaliana MIR390a

(AtMIR390a) precursor, whose relatively short distal stem–
loop allows the cost-effective synthesis and cloning of the

amiRNA inserts into ‘B/c’ expression vectors (Carbonell

et al., 2014). In monocots, OsMIR528 precursor has been

used successfully to express amiRNAs for silencing endog-

enous genes in rice (Warthmann et al., 2008; Butardo

et al., 2011; Chen et al., 2012a,b). However, OsMIR528-

based cloning methods have not been optimized for effi-

cient generation of monocot amiRNA constructs.
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In this report, a series of amiRNA expression vectors for

high-throughput cloning and high-level expression in mono-

cot species are described and tested. These vectors contain

a truncated sequence from Oryza sativa MIR390 (OsMIR390)

precursor in a configuration that allows the direct cloning of

amiRNAs. OsMIR390-based amiRNAs were generally more

accurately processed and accumulated to higher levels in

transgenic Brachypodium distachyon (Brachypodium) when

processed from chimeric precursors (OsMIR390-AtL)

containing Arabidopsis thaliana (Arabidopsis) MIR390a

(AtMIR390a) distal stem–loop sequences. Functionality of

OsMIR390-AtL-based amiRNAs was confirmed in Brachypo-

dium transgenic plants that displayed the predicted pheno-

types, accumulated high levels of amiRNAs and low levels

of the corresponding target transcripts. Moreover, genome-

wide transcriptome profiling in combination with 50-RLM-

RACE analysis confirmed that the amiRNAs were highly spe-

cific. We also describe a cost-optimized alternative to gener-

ate amiRNA constructs for eudicots, as amiRNAs produced

from chimeric AtMIR390a-based precursors including At-

MIR390a basal stem and OsMIR390 short distal stem–loop
sequences are highly expressed, accurately processed, and

effective in target gene knockdown in A. thaliana.

RESULTS AND DISCUSSION

AmiRNA vectors based on the OsMIR390 precursor

Previously, the short AtMIR390a precursor was selected as

the backbone for high-throughput cloning of amiRNAs in a

series of vectors for eudicot species (Carbonell et al.,

2014). These vectors allow a zero-background, oligonucleo-

tide cloning strategy that requires no enzymatic modifica-

tions, PCR steps, restriction digestions, or DNA fragment

isolation (Carbonell et al., 2014). The short distal stem–
loop (Figure 1a) of AtMIR390a precursor provides a cost

advantage by reducing the length of synthetic oligonucleo-

tides corresponding to the amiRNA precursor sequence.

To develop a comparable system for monocot species, a

search for conserved, short Oryza sativa (rice) MIRNA

(OsMIRNA) precursors that could be adapted for amiRNA

vectors was done. Rice MIRNA precursors were analyzed

as they have been subjected to extensive prior analysis

(Arikit et al., 2013). The distal stem–loop length of 142 Os-

MIRNA precursor sequences (median length = 54 nt, Fig-

ure 1b) from 23 conserved miRNA families (Table S1)

revealed that the OsMIR390 precursor was one of the

shortest (16 nt). Moreover, OsMIR390 contains the shortest

distal stem–loop of all 51 sequenced MIR390 precursors

from 36 species (median length = 47 nt; Figure 1b and

Table S2), including those from maize (ZmaMIR390a and

ZmaMIR390b), sorghum (SbiMIR390a) and B. distachyon

(BdiMIR390) with lengths of 137, 148, 134 and 107 nt

respectively. The MIR390 family is among the most deeply

conserved miRNA families in plants (Axtell et al., 2006;

Cuperus et al., 2011).

Publicly available small RNA data sets from rice (Heisel

et al., 2008; Zhu et al., 2008; Johnson et al., 2009; Zhou

et al., 2009; He et al., 2010) were analyzed to assess the

(a)

(b)

(c)

Figure 1. Oryza sativa MIR390 (OsMIR390) is an accurately processed, conserved MIRNA precursor with a particularly short distal stem–loop.
(a) Diagram of a canonical plant MIRNA precursor (adapted from Cuperus et al., 2011). miRNA guide and miRNA* strands are highlighted in blue and green,

respectively. Distal stem–loop and basal stem regions are highlighted in black and grey, respectively.

(b) Distal stem–loop length of O. sativa conserved MIRNA precursors and of all plant catalogued MIR390 precursors. Box-plot showing the distal stem–loop
length of O. sativa conserved MIRNA precursors and all catalogued MIR390 precursors. The distal stem–loop length of OsMIR390 is highlighted with an orange

dot and indicated with an orange arrow. Outliers are represented with black dots.

(c) OsMIR390 precursor processing diagram. miR390 and miR390* nucleotides are highlighted in blue and green, respectively. Proportion of small RNA reads

for the entire OsMIR390 precursor are plotted as stacked bar graphs. Small RNAs are color-coded by size. Publicly available small RNA data sets from rice

grains, roots, shoots, leaves and inflorescences (Heisel et al., 2008; Zhu et al., 2008; Johnson et al., 2009; Zhou et al., 2009; He et al., 2010) were analyzed.
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OsMIR390 precursor processing accuracy. Approximately

70% of reads mapping to the OsMIR390 foldback corre-

spond to the authentic 21-nt miR390 guide strand (Fig-

ure 1c). Given the short distal stem–loop sequence and

relatively accurate precursor processing characteristics, Os-

MIR390 was selected as the backbone for amiRNA vector

development.

A set of amiRNA cloning vectors based on OsMIR390

and named ‘OsMIR390-B/c’ (from OsMIR390-BsaI/ccdB)

was developed for rapid cloning of amiRNAs (Figure S1

and Table 1). OsMIR390-B/c vectors include a truncated

OsMIR390 precursor sequence whose miRNA/distal stem–
loop/amiRNA* region was substituted by a DNA cassette

containing the counter-selectable ccdB gene (Bernard and

Couturier, 1992) flanked by two BsaI sites. AmiRNA inserts

corresponding to amiRNA/OsMIR390-distal-stem–loop/ami-

RNA* sequences are synthesized using two overlapping

and partially complementary 60-base oligonucleotides (Fig-

ure S2). Forward and reverse oligonucleotides must have

50-CTTG and 50-CATG overhangs, respectively, for direct

cloning into OsMIR390-based vectors (Figure S2).

OsMIR390-B/c vectors include pMDC32B-OsMIR390-B/c,

pMDC123SB-OsMIR390-B/c and pH7WG2B-OsMIR390-B/c

plant expression vectors, each of which contains an exclu-

sive combination of regulatory sequences and plant and

bacterial antibiotic resistance genes (Figure S1 and

Table 1). Additionally, a GATEWAY-compatible entry vec-

tor named pENTR-OsMIR390-B/c was developed for rapid

amiRNA insert cloning and posterior recombination into

the GATEWAY expression vector of choice (Figure S1 and

Table 1).

High accumulation of amiRNAs derived from chimeric

precursors in Brachypodium calli

To test amiRNA expression from OsMIR390 precursors,

transformed B. distachyon calli containing amiRNA

constructs expressing miR390 or modified versions of

several miRNAs from Arabidopsis (amiR173-21, amiR472-21

or amiR828-21) (Cuperus et al., 2010) were analyzed

(Figure 2a). In addition, the same amiRNAs were expressed

from a chimeric precursor (OsMIR390-AtL) composed of the

OsMIR390 basal stem and AtMIR390a distal stem–loop (Fig-

ures 2a and S3). Each amiRNA was also expressed from the

reciprocal chimeric precursors (AtMIR390a-OsL) containing

the AtMIR390a basal stem and OsMIR390 distal stem–loop
(Figures 2a and S4). A 35S:GUS construct expressing the ß-

glucuronidase transcript was used as negative control.

Surprisingly, miR390 accumulated to highest levels

when expressed from the chimeric OsMIR390-AtL precur-

sor compared with each of the other three precursors

(P ≤ 0.001 for all pairwise t-test comparisons; Figure 2b).

Moreover, each amiRNA expressed from OsMIR390-AtL

chimeric precursors also accumulated to significantly

higher levels when compared with the other precursors

(P < 0.026 for all pairwise t-test comparisons; Figure 2b).

miR390 and each amiRNA derived from authentic At-

MIR390a or chimeric AtMIR390a-OsL precursors accumu-

lated to low or non-detectable levels, indicating that the

AtMIR390a stem is suboptimal for the accumulation and/or

processing of amiRNAs in Brachypodium.

To assess the accuracy of precursor processing, small

RNA libraries from samples expressing OsMIR390-AtL-

based amiRNAs were prepared and sequenced (Figure 2c).

For comparative purposes, small RNA libraries from sam-

ples containing amiRNAs produced from authentic

OsMIR390 precursors were also analyzed. In each case, the

majority of reads mapping to the chimeric OsMIR390-AtL

precursors corresponded to correctly processed 21 nt

amiRNAs (Figure 2c). In contrast, processing of authentic

OsMIR390 precursors including amiRNA sequences was

less accurate, as revealed in each case by a lower propor-

tion of reads corresponding to correctly processed

sequences (Figure 2c).

Gene silencing in Brachypodium and Arabidopsis by

amiRNAs derived from chimeric precursors

To assess the functionality of OsMIR390-AtL-derived

amiRNAs in silencing target transcripts in Brachypodium,

BRASSINOSTEROID-INSENSITIVE 1 (BdBRI1), CINNAMYL

ALCOHOL DEHYDROGENASE 1 (BdCAD1), CHLOROPHYL-

LIDE A OXYGENASE (BdCAO) and SPOTTED LEAF 11

(BdSPL11) gene transcripts were targeted by amiRNAs

expressed from the chimeric OsMIR390-AtL and from

authentic OsMIR390 precursors (Figure 3a). The sequences

for amiR-BdBri1, amiR-BdCad1, amiR-BdCao and amiR-

BdSpl11 (Figure S5) were designed using the ‘P-SAMS

Table 1 OsMIR390-BsaI/ccdB (‘B/c’) vectors for direct cloning of amiRNAs

Vector

Bacterial
antibiotic
resistance

Plant
antibiotic
resistance

GATEWAY
use Backbone Promoter Terminator Plant species tested

pENTR-OsMIR390-B/c Kanamycin – Donor pENTR – – –
pMDC123SB-OsMIR390-B/c Kanamycin BASTA – pMDC123 CaMV 2x35S nos N. benthamiana
pMDC32B-OsMIR390-B/c Kanamycin

Hygromycin
Hygromycin – pMDC32 CaMV 2x35S nos N. benthamiana

B. distachyon
pH7WG2B-OsMIR390-B/c Spectinomycin Hygromycin – pH7WG2 Os Ubiquitin CaMV B. distachyon
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amiRNA Designer’ tool (http://p-sams.carringtonlab.org).

Plants expressing 35S:GUS were used as negative con-

trols. Phenotypes of transgenic plants, amiRNA accumula-

tion, processing of amiRNA precursors, and target

transcript accumulation were analyzed in Brachypodium

T0 transgenic lines.

Sixteen out of 20 and 11 out of 17 transgenic lines con-

taining 35S:OsMIR390-AtL-Bri1 or 35S:OsMIR390-Bri1,

respectively, which were predicted to have brassinosteroid

signalling defects, had reduced height and altered architec-

ture (Figures 3b and S6 and Table S3). Most organs, partic-

ularly leaves, exhibited a contorted phenotype since the

earliest stages of development (Figure 3b). Inflorescences

had reduced size (Figure 3b), and contained smaller seeds

compared to control lines (Figure S6). AmiR-BdBri1-

induced phenotypes were similar to those described for

the Brachypodium bri1 T-DNA mutants from the Brachy-

TAG collection (Thole et al., 2012). These phenotypes are

consistent with the expectation of plants with brassinoster-

oid signalling defects (Zhu et al., 2013). All 27 transgenic

lines containing 35S:OsMIR390-AtL-Cad1, and 52 out of 55

lines including 35S:OsMIR390-Cad1, exhibited reddish col-

oration of lignified tissues such as tillers, internodes and

nodes (Figure 3c and Table S3), as expected from Cad1

knockdown and loss of function mutant analyses (Bouvier

d’Yvoire et al., 2013; Trabucco et al., 2013).

Each of 27 35S:OsMIR390-AtL-Cao-expressing plants,

and 12 of 12 of 35S:OsMIR390-Cao-expressing plants exhib-

ited light green color compared with control plants (Fig-

ure 3d and Table S3), as expected due to reduction in

chlorophyllide a to b conversion during chlorophyll b syn-

thesis (Tanaka et al., 1998; Oster et al., 2000; Philippar

et al., 2007). Biochemical analysis of chlorophyll content in

transgenic lines confirmed that chlorophyll b content in

35S:OsMIR390-AtL-Cao and 35S:OsMIR390-Cao lines was

reduced to approximately 57 and 67%, respectively, com-

pared with levels measured in control plants (Figure S7).

Carotenoid content was also notably reduced (to almost

50%) in lines expressing amiR-BdCao from chimeric or

authentic precursors (Figure S7), as observed before in

Arabidopsis cao mutants (Philippar et al., 2007). Finally, 39

of 43 transgenic lines containing 35S:OsMIR390-AtL-Spl11,

and 22 of 24 35S:OsMIR390-Spl11-expressing plants dis-

played a spontaneous cell death phenotype characterized

by the development of necrotic lesions in leaves (Fig-

ure 3e). This was consistent with expectations based on

(a) (b)

(c)

Figure 2. Comparative analysis of accumulation and processing of several amiRNAs produced from AtMIR390a, AtMIR390a-OsL, OsMIR390 and OsMIR390-AtL

precursors in Brachypodium transgenic calli.

(a) Diagrams of AtMIR390a, AtMIR390a-OsL, OsMIR390 and OsMIR390-AtL precursors. Nucleotides corresponding to the miRNA guide strand are in blue, and

nucleotides of the miRNA* strand are in green. Other nucleotides from AtMIR390a and OsMIR390 precursors are in black and grey, respectively. Shapes of

AtMIR390a and OsMIR390 precursors are in black and grey, respectively.

(b) Accumulation of miR390 (left) and of several 21-nucleotide amiRNAs (right) expressed from the AtMIR390a, AtMIR390a-OsL, OsMIR390 or OsMIR390-AtL pre-

cursors in Brachypodium transgenic calli. Mean (n = 3) relative amiRNA levels + standard deviation (SD) when expressed from the OsMIR390 (light grey,

amiRNA level = 1.0). Only one blot from three biological replicates is shown. U6 RNA blot is shown as loading control.

(c) Processing analysis of OsMIR390 and OsMIR390-AtL amiRNA precursors. Pie charts show the percentage of reads corresponding to accurately processed 21-

nt mature amiRNAs (grey sectors) or to other small RNAs (pink sectors).
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phenotypes of SPL11-knockdown amiRNA rice lines (Zeng

et al., 2004). Phenotypes induced by all four sets of amiR-

NAs were heritable in self-pollinated T1 plants expressing

OsMIR390- or OsMIR390-AtL-based amiRNA precursors

from pMC32B vectors containing 35S regulatory sequences

(Table S4).

Quantitative real-time RT-PCR (RT-qPCR) assays were

used to measure the accumulation of amiRNA-target tran-

scripts in Brachypodium transgenic lines expressing Os-

MIR390-AtL- or OsMIR390-based amiRNAs. All target

transcripts were expressed to significantly reduced levels

compared with control plants (P < 0.005 for all pairwise t-

test comparisons, Figure 4a) in transgenic lines expressing

the specific amiRNA. No significant differences were

observed in target mRNA levels between lines expressing

OsMIR390-AtL- or OsMIR390-based amiRNAs.

AmiR-BdBri1, amiR-BdCao and amiR-BdSpl11 produced

from chimeric OsMIR390-AtL precursors were also

(a) (b)

(c) (d)

(e)

Figure 3. Functionality of amiRNAs produced from authentic OsMIR390- or chimeric OsMIR390-AtL-based precursors in Brachypodium T0 transgenic plants.

(a) OsMIR390- and OsMIR390-AtL-based precursors containing Bri1-, Cad1-, Cao and Spl11-amiRNAs. Nucleotides corresponding to the miRNA guide and

miRNA* strands are in blue and green, respectively; nucleotides from AtMIR390a or OsMIR390 precursors are in black or grey, respectively, except those that

were modified to preserve authentic AtMIR390a or OsMIR390 precursor secondary structures (in red).

(b–e) Representative images of plants expressing amiRNAs from OsMIR390-AtL or OsMIR390 precursors, or the control construct.

(b) Adult control plant (left), or plants expressing 35S:OsMIR390-Bri1 (center) or 35S:OsMIR390-AtL-Bri1 (right).

(c) Adult control plant (left), or plants expressing 35S:OsMIR390-Cad (center) or 35S:OsMIR390-AtL-Cad1 (bottom).

(d) Adult control plant (left), or plants expressing 35S:OsMIR390-Cao (center) or 35S:OsMIR390-AtL-Cao (right).

(e) Adult control plant (left), or plants expressing 35S:OsMIR390-Spl11 (center) or 35S:OsMIR390-AtL-Spl11 (right).
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expressed using pH7WG2B-based constructs that contain

the rice ubiquitin (UBI) regulatory sequences. Each of the

three UBI promoter-driven amiRNAs induced the expected

phenotypes in a relatively high proportion of Brachypodi-

um T0 lines (Table S3), and in the one case tested (amiR-

BdSpl11), phenotypes were heritable in the T1 generation

(Table S4).

Finally, we tested if the reciprocal chimeric AtMIR390a-

OsL precursor could be used to express amiRNAs effi-

ciently in eudicots. The synthesis of AtMIR390a-OsL-based

constructs requires shorter oligonucleotides than the gen-

eration of AtMIR390a-based constructs, and therefore

would be a further cost-optimized alternative. As shown in

Nicotiana benthamiana and Arabidopsis assays, AtMIR390-

OsL precursors are accurately processed (Appendix S1 and

Figures S8–S10). Indeed, amiRNAs produced from chimeric

AtMIR390a-OsL precursors are highly expressed, accu-

rately processed and highly effective in target gene knock-

down in T1 Arabidopsis transgenic plants (Appendix S1,

Figures S9–S11 and Table S5). Moreover, amiRNA-induced

phenotypes were still obvious in T2 plants confirming the

heritability of the effects (Table S6). Therefore, the use of

AtMIR390a-OsL precursors may be an attractive alternative

to express effective amiRNAs in eudicots in a cost-opti-

mized manner.

Accuracy of processing of OsMIR390 and OsMIR390-AtL

chimeric precursors in Brachypodium

The accumulation of each amiRNA from chimeric and Os-

MIR390 precursors was analyzed by RNA blot analysis in

T0 transgenic lines exhibiting phenotypes induced by

amiRNAs (Figure 4b). In most cases, OsMIR390-AtL-

derived amiRNAs accumulated to higher levels and as

more uniform RNA species (Figure 4b). AmiRNAs from the

OsMIR390 precursor accumulated to rather low levels

(except in transgenic lines containing 35S:OsMIR390-Cao)

and generally as multiple species (Figure 4b).

Small RNA libraries from transgenic lines expressing

amiRNAs from chimeric OsMIR390-AtL or authentic Os-

MIR390 precursors were prepared to further analyze pro-

cessing and accumulation of the amiRNA species

(Figure 5). Three of the four amiRNAs produced from chi-

meric OsMIR390-AtL precursors accumulated predomi-

nantly as 20-nt species (Figure 5a,c,d); only amiR-BdCad1

accumulated mainly as a 21 nt RNA (Figure 5b). Processing

of authentic OsMIR390 precursors generally resulted in a

high proportion of small RNAs of diverse sizes, except for

OsMIR390-Cad1 precursors (Figure 5).

The reasons explaining the accumulation of OsMIR390a-

AtL-based amiRNAs that are 1 nt-shorter than expected are

not clear. AmiRNAs shorter than expected and differing on

their 30 end were also described using AtMIR319a precur-

sors in Arabidopsis (Schwab et al., 2006). Importantly, a

recent study has shown that amiRNA efficacy is not

affected by the loss of the base-pairing at the 50 end of the

target site (Liu et al., 2014). Regardless, the inaccurate pro-

cessing of an amiRNA precursor leading to the accumula-

tion of diverse small RNA populations could conceivably

induce undesired off-target effects. This potential compli-

cation argues against using authentic OsMIR390 precur-

sors to express amiRNAs in Brachypodium and possibly

other monocot species.

Reads from the amiRNA* strands from each of the Os-

MIR390 and OsMIR390-AtL-derived precursors were under-

represented, relative to the amiRNA strands (Figure 5). The

rational P-SAMS design tool uniformly specifies an

(a)

(b)

Figure 4. amiRNA and target mRNA accumulation

analysis in Brachypodium T0 transgenic plants.

(a) Mean relative level � standard error (SE) of

B. distachyon BdBRI1, BdCAD1, BdCAO and

BdSPL11 mRNAs after normalization to BdSAMDC,

BdUBC, BdUBI4 and BdUBI10, as determined by

quantitative real-time RT-PCR (35S:GUS = 1.0 in all

comparisons).

(b) Accumulation of amiRNAs in Brachypodium

transgenic plants. In each blot the amiRNA accumu-

lation of a single independent transgenic line per

construct is analyzed. U6 RNA blot is shown as a

loading control.
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amiRNA* strand containing an AGO-non-preferred 50 G

residue, which likely promotes amiRNA* degradation.

High specificity of amiRNA derived from chimeric

precursors in Brachypodium

To assess amiRNA-target specificity at a genome-wide

level, transcript libraries from control (35S:GUS) and

amiRNA-expressing lines were generated and analyzed.

Only lines expressing amiRNAs from the more accurately

processed OsMIR390-AtL precursors were analyzed. Differ-

ential gene expression analyses were done by comparing,

in each case, the transcript libraries obtained from four

independent control lines with those obtained from four

independent amiRNA-expressing lines exhibiting the

(a)

(b)

(c)

(d)

Figure 5. Mapping of amiRNA reads from

OsMIR390-AtL- or OsMIR390-based precursors

expressed in Brachypodium T0 transgenic plants.

Analysis of amiRNA and amiRNA* reads in plants

expressing (a) amiR-BdBri1, (b) amiR-BdCad1, (c)

amiR-BdCao or (d) amiR-BdSpl11. amiRNA guide

and amiRNA* strands are highlighted in blue and

green, respectively. Nucleotides from the

AtMIR390a or OsMIR390 precursors are in black

and grey, respectively, except those that were mod-

ified to preserve the corresponding authentic pre-

cursor secondary structure (in red). Proportion of

small RNA reads are plotted as stacked bar graphs.

Small RNAs are color-coded by size.
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expected phenotypes. In total, 494, 1847 and 818 genes

were differentially expressed in plants expressing amiR-

BdBri1, amiR-BdCao and amiR-BdSpl11, respectively (Fig-

ure 6 and Data S1). In contrast, only 21 genes were differ-

entially expressed in plants expressing amiR-BdCad1

(Figure 6 and Data S1). The high number of differentially

expressed genes in amiR-BdBri1-, amiR-BdCao- and amiR-

BdSpl11-expressing lines may reflect the complexity of the

corresponding targeted gene pathways involving hormone

signalling, photosynthesis and cell death/pathogen resis-

tance respectively. As expected, BdCAD1, BdCAO and

BdSPL11 were differentially underexpressed in plants

expressing amiR-BdCad1, amiR-BdCao and amiR-BdSpl11,

respectively (q < 0.01, Wald test) (Figure 6 and Data S1).

However, BdBRI1 was not called as differentially expressed

(q = 0.42, Wald test) (Figure 6 and Data S1) despite being

notably downregulated in 35S:OsMIR390-AtL-Bri1 plants as

shown by RT-qPCR analysis (Figure 4a). Because the

power of statistical tests involving count data decreases

with lower count numbers (Rapaport et al., 2013), this

result could be explained by the low accumulation of

BdBRI1 even in control plants (Figure S12 and Data S2).

Therefore, the differential expression analysis on RNA-Seq

data approach may not be appropriate to evaluate the

Figure 6. Transcriptome analysis of transgenic Brachypodium plants expressing amiRNAs from chimeric OsMIR390-AtL precursors. MA plots show log2 fold

change versus mean expression of genes for each 35S:OsMIR390-AtL amiRNA line compared with the control lines (35S:GUS). Green, red and grey dots repre-

sent differentially underexpressed, differentially overexpressed or non-differentially expressed genes, respectively, in each amiRNA versus control comparison.

The position of expected amiRNA targets is indicated with a circle.
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differential expression of genes with genuine low expres-

sion and/or low coverage, as suggested before (Rapaport

et al., 2013).

To assess potential off-target effects of the amiRNAs,

TARGETFINDER (Fahlgren and Carrington, 2010) was used to

generate a genome-wide list of potential candidate targets

that share relatively high sequence complementarity with

each amiRNA. TARGETFINDER ranks the potential amiRNA tar-

gets based on a Target Prediction Score (TPS) assigned to

each amiRNA-target interaction. Scores range from 1 to 11,

that is, from highest to lowest levels of sequence comple-

mentarity between the small RNA and putative target RNA.

Indeed, when designing amiRNAs with the ‘P-SAMS ami-

RNA Designer’ tool, ‘optimal’ amiRNAs are selected when:

(i) their interaction with the desired target has a TPS = 1;

and (ii) no other amiRNA-target interactions have a

TPS < 4. Therefore, direct off-target effects with amiRNAs

described here can only occur through amiRNA-target RNA

interactions with a TPS in the [4, 11] interval. It was

hypothesized that off-target effects, if due to base-pairing

between amiRNAs and the affected transcripts, would be

reflected by the presence of differentially underexpressed

genes corresponding to target RNAs with lower TPS scores

in the [4, 11] interval. Therefore, we next analyzed for all

TARGETFINDER-predicted targets for each amiRNA if their cor-

responding genes were differentially underexpressed in

amiRNA-expressing lines versus controls.

As expected from P-SAMS design, BdCad1, BdCao and

BdSpl11 were the only genes differentially underexpressed

in the [1, 4] TPS interval in plants expressing amiR-

BdCad1, amiR-BdCao and amiR-BdSpl11, respectively (Fig-

ure 7, Data S3). On the other hand, 2958, 1290, 1528 and

1533 genes corresponded to target RNAs with calculated

TPS scores in the [4, 11] interval in TARGETFINDER analyses

including amiR-BdBri1, amiR-BdCad1, amiR-BdCao and

amiR-BdSpl11, respectively (Figure 7). In all cases, the

number of differentially underexpressed genes corre-

sponding to predicted targets with a TPS in the [4, 11]

interval was low (Figure 7, upper panels). Moreover, in

each of the four cases the proportion of differentially un-

derexpressed genes among TARGETFINDER-predicted targets

was also low in the [4, 11] TPS interval (Figure 7, bottom

panels). Indeed, in this same interval, 0.84, 1.31 and 0.78%

of the genes were differentially underexpressed in amiR-

BdBri1-, amiR-BdCao-, and amiR-BdSpl11-expressing lines,

respectively. In each case, this percentage was lower than

the percentage of differentially underexpressed genes from

transcripts with a TPS not included in the [4, 11] interval in

Figure 7. Differential expression analysis of TARGETFINDER-predicted off-targets for each amiRNA versus control comparison. Histograms show the total number

of genes (top panels) or the proportion of differentially underexpressed genes (bottom panels) in each target prediction score bin. Green, red and grey bars rep-

resent differentially underexpressed, differentially overexpressed or non-differentially expressed genes, respectively. In bottom panels, the name of the expected

target gene is indicated when the target gene is the only gene differentially underexpressed in the corresponding bin.
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the same samples (1.12, 3.74 and 1.55% respectively). In

amiR-BdCad-expressing lines, although the percentage of

genes differentially expressed in the [4, 11] interval (0.07%)

was higher compared to the percentage of genes differen-

tially underexpressed in the [4, 11] interval (0.04%), this dif-

ference was not statistically significant (P = 0.45, Fisher

exact test). Together, these results indicate that globally

TARGETFINDER-predicted targets were not preferentially

downregulated in the amiRNA-expressing lines.

Next, we used 50-RLM-RACE to test for amiRNA-directed

off-target cleavage of under-represented transcripts. This

analysis detects 30 cleavage products expected from small

RNA-guided cleavage events. Only TARGETFINDER-predicted

targets with a TPS ≤ 7 were included in the analysis, as tar-

gets with higher score are not considered likely to be

cleaved, according to previous studies (Addo-Quaye et al.,

2008). For all specific targets, 30 cleavage products of the

expected size were detected in samples expressing the cor-

responding amiRNA, but not in control samples expressing

35S:GUS (Figure 8). Sequencing analysis confirmed that

the majority of sequences comprising these products, in

each case, contained a canonical 50 end position predicted

for small RNA-guided cleavage (Figure 8). In contrast, for all

potential off-target transcripts, no obvious amiRNA-guided

cleavage products were detected in either amiRNA-express-

ing or 35S:GUS lines (Figure 8). Additionally, sequencing

analysis failed to detect even low-level amiRNA-guided

cleavage products among potential off-targets (Figure 8).

High amiRNA specificity was previously indicated for At-

MIR319a-derived amiRNAs in Arabidopsis based on gen-

ome-wide expression profiling (Schwab et al., 2006).

However, a recent and systematic processing analysis of

AtMIR319a-based amiRNA precursors in petunia (Guo

et al., 2014) showed that multiple small RNA variants are

generated from different regions of the precursor, and that

many of these small RNAs meet the required criteria for

amiRNA design (Schwab et al., 2006). Here, the fact that

chimeric OsMIR390-AtL precursors produce high levels of

accurately processed amiRNAs not only in Brachypodium

(Figures 2, 4 and 5) but also in a eudicot species such as

N. benthamiana (Figure S8), strongly suggests that these

precursors will be functional in a wide range of species.

CONCLUSIONS

We have developed and validated a series of expression

vectors based on the OsMIR390 precursor for high-

throughput cloning and high expression of amiRNAs in

monocots. OsMIR390-B/c-based vectors allow the direct

cloning of amiRNAs in a zero-background strategy that

does not require oligonucleotide modifications, PCRs,

restriction digestions, or isolation of DNA fragments. Thus,

OsMIR390-B/c-based vectors are particularly attractive for

generating large-scale amiRNA construct libraries for

silencing genes in monocots.

‘P-SAMS amiRNA Designer’ tool was used to design

four different amiRNAs, each of which was aimed to target

specifically one Brachypodium gene transcript. We show

that chimeric OsMIR390-AtL precursors including Os-

MIR390 basal stem and AtMIR390a distal stem–loop were

processed more accurately, and the resulting amiRNAs

generally accumulated to higher levels than amiRNAs

derived from authentic OsMIR390 precursors in Brachypo-

dium transgenic plants. Each P-SAMS-designed amiRNA

induced the expected phenotypes, and specifically

decreased expression of the expected target gene. Chime-

ric OsMIR390-AtL precursors designed using P-SAMS,

therefore, are likely to be highly effective and specific in

silencing genes in monocot species.

EXPERIMENTAL PROCEDURES

Plant materials and growth conditions

Arabidopsis thaliana Col-0 and N. benthamiana plants were
grown as described (Carbonell et al., 2014). Brachypodium dis-
tachyon 21-3 plants were grown in a chamber under long day con-
ditions (16/8 h photoperiod at 200 lmol m�2 s�1) and 24°C/18°C
temperature cycle.

Arabidopsis thaliana plants were transformed and grown as
described (Carbonell et al., 2014). Embryogenic calli from B. dis-
tachyon 21-3 plants were transformed as described (Vogel and
Hill, 2008). Photographs of plants were taken as described (Carbo-
nell et al., 2014).

DNA constructs

pENTR-OsMIR390-BsaI construct was generated by ligating into
pENTR (Life Technologies; http://www.lifetechnologies.com) the
DNA insert resulting from the annealing of oligonucleotides
BsaI-OsMIR390-F and BsaI-OsMIR390-R. Rice ubiquitin 2 promoter
and maize ubiquitin promoter-hygromycin cassettes were trans-
ferred into the GATEWAY binary destination vector pH7WG2 (Kar-
imi et al. 2002) to generate pH7WG2-OsUbi. pH7WG2-OsMIR390-
BsaI, pMDC123SB-OsMIR390-BsaI and pMDC32-OsMIR390-BsaI
were obtained by LR recombination between pENTR-OsMIR390-
BsaI and pH7WG2-OsUbi, pMDC32B (Carbonell et al., 2014) and
pMDC123SB (Carbonell et al., 2014), respectively. A modified ccdB

Figure 8. 50 RLM-RACE mapping of target and potential off-target cleavage guided by amiRNAs in plants expressing (a) amiR-BdBri1, (b) amiR-BdCad1, (c)

amiR-BdCao and (d) amiR-BdSpl11.

At the top of each panel, ethidium bromide-stained gels show 50-RLM-RACE products corresponding to the 30 cleavage product from amiRNA-guided cleavage

(top gel), and RT-PCR products corresponding to the gene of interest (middle gel) or control BdUBI4 gene (bottom gel). The position and size of the expected

amiRNA-based 50-RLM-RACE products are indicated. At the bottom of each panel, the predicted base-pairing between amiRNAs and prospective target RNAs is

shown. The sequence and the name of authentic target mRNAs are in blue. For each authentic or predicted target mRNA, the expected amiRNA-based cleavage

site is indicated by an orange arrow. Other sites are indicated with a black arrow. The proportion of cloned 50-RLM-RACE products at the different cleavage sites

is shown for amiRNA-expressing lines, with that of control plants expressing 35S:GUS shown in brackets. TPS refers to ‘Target Prediction Score’.
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cassette (Carbonell et al., 2014) was inserted between the BsaI
sites of pENTR-OsMIR390-BsaI, pMDC123SB-OsMIR390-BsaI,
pMDC32B-OsMIR390-BsaI and pH7WG2-OsMIR390-BsaI to pro-
duce pENTR-OsMIR390-B/c, pMDC123SB-OsMIR390-B/c,
pMDC32B-OsMIR390-B/c and pH7WG2-OsMIR390-B/c, respec-
tively. Finally, an undesired BsaI site was disrupted in pH7WG2-
OsMIR390-B/c to generate pH7WG2B-OsMIR390-B/c. The
sequences of the OsMIR390-B/c-based amiRNA vectors are in
Appendix S2. The following amiRNA vectors for monocots are
available from Addgene (http://www.addgene.org/): pENTR-Os-
MIR390-B/c (Addgene plasmid 61468), pMDC32B-OsMIR390-B/c
(Addgene plasmid 61467) pMDC123SB-OsMIR390-B/c (Addgene
plasmid 61466) and pH7WG2B-OsMIR390-B/c (Addgene plasmid
61465). pMDC32B-AtMIR390a-B/c (Addgene plasmid 51776) was
described before (Carbonell et al., 2014).

AmiRNA constructs including pMDC32B-AtMIR390a-OsL-173-21,
pMDC32B-AtMIR390a-OsL-472-21, pMDC32B-AtMIR390a-OsL-828-21,
pMDC32B-AtMIR390a-OsL-Ch42, pMDC32B-AtMIR390a-OsL-Ft, pMD
C32B-AtMIR390a-OsL-Trich, pMDC32B-OsMIR390, pMDC32B-Os-
MIR390-AtL, pMDC32B-OsMIR390-173-21, pMDC32B-OsMIR390-173-
21-AtL, pMDC32B-OsMIR390-472-21, pMDC32B-OsMIR390-AtL-472-
21, pMDC32B-OsMIR390-828-21, pMDC32B-OsMIR390-AtL-828-21,
pMDC32B-OsMIR390-Bri1, pMDC32B-OsMIR390-AtL-Bri1, pMDC32B-
OsMIR390-Cao, pMDC32B-OsMIR390-AtL-Cao, pMDC32B-OsMIR390-
Cad1, pMDC32B-OsMIR390-AtL-Cad1, pMDC32B-OsMIR390-Spl11,
pMDC32B-OsMIR390-AtL-Spl11, pH7WG2B-OsMIR390-Bri1-AtL, pH7
WG2B-OsMIR390-Cao-AtL, and pH7WG2B-OsMIR390-Spl11-AtL were
generated as detailed in the following section. Control construct
pH7WG2-GUS was generated by LR recombination between pENTR-
GUS (Life technologies) and pH7GW2-OsUbi. pMDC32-GUS construct
was used before (Montgomery et al., 2008). The sequence of all ami-
RNA precursors used here are in Appendix S3. The sequence of all
oligonucleotides used are in Table S7.

amiRNA oligonucleotide design and cloning

Sequences of the amiRNAs expressed in A. thaliana have been
described previously (Schwab et al., 2006; Felippes and Weigel,
2009; Liang et al., 2012; Carbonell et al., 2014). Sequences of both
the amiRNAs expressed in Brachypodium and the oligonucleo-
tides used for cloning in OsMIR390-B/c vectors, were designed
with the ‘P-SAMS amiRNA Designer’ tool (http://p-sams.carring-
tonlab.org). The predicted targets for all the amiRNAs used in this
study are shown in Table S8.

The generation of constructs to express amiRNAs from authen-
tic AtMIR390a precursors was described before (Carbonell et al.,
2014). Detailed oligonucleotide design for amiRNA cloning in
OsMIR390, OsMIR390-AtL and AtMIR390a-OsL precursors is given
in Figures S2, S3 and S4, respectively. The amiRNA cloning
procedure is described in Appendix S4. The name and sequence
of the oligonucleotides used for cloning amiRNA sequences are in
Table S7.

Transient expression assays

N. benthamiana leaves were agroinfiltrated with A. tumefaciens
GV3101 strain as described (Carbonell et al., 2014).

RNA blot assays

Total RNA extraction from Arabidopsis, Brachypodium or
N. benthamiana and subsequent RNA blot assays were done as
described (Cuperus et al., 2010). Table S7 includes the name and
sequences of the oligonucleotides used as probes in small RNA
blots.

Quantitative real-time RT-qPCR

RT-qPCR reactions and analyses were done as described (Carbo-
nell et al., 2014). The oligonucleotides used for RT-qPCR are listed
in Table S7 (and are named with the prefix ‘q’). The expression
levels of target transcripts were calculated relative to four A. thali-
ana (AtACT2, AtCPB20, AtSAND and AtUBQ10) or B. distachyon
(BdSAMDC, BdUBC18, BdUBI4 and BdUBI10) reference genes as
described (Carbonell et al., 2014).

50-RLM-RACE

50 RNA ligase-mediated rapid amplification of cDNA ends (50-
RLM-RACE) was done using the GeneRacerTM kit (Life Technolo-
gies) but omitting the dephosphorylation and decapping steps.
Total RNA (2 lg) was ligated to the GeneRacer RNA Oligo Adap-
ter. The GeneRacer Oligo dT primer was then used to prime first
strand cDNA synthesis in reverse transcription reaction. An initial
PCR was done by using the GeneRacer 50 and 30 primers. The 50

end of cDNA specific to each mRNA was amplified with the Gen-
eRacer 50 Nested primer and a gene specific reverse primer. For
each gene, control PCR reactions were done using gene specific
forward and reverse primers. Oligonucleotides used are listed in
Table S7. 50-RLM-RACE products were treated as described (Cu-
perus et al., 2010).

Chlorophyll and carotenoid extraction and analysis

Pigments from Brachypodium leaf tissue (40 mg of fresh weight)
were extracted with 5 ml 80% (v/v) acetone in the dark at room tem-
perature for 24 h, and centrifuged at 1000 g for 2 min. One hundred
microlitres of supernatant was diluted 1:2 with 80% (v/v) acetone
and loaded to flat bottom 96-well plates. Absorbance was mea-
sured from 400 to 750 nm wavelengths in a SpectrMax M2 micro-
plate reader (Molecular Devices, Sunnyvale, CA, USA) using the
software SOFTMAX PRO 5 (Molecular Devices). Content in chlorophyll
a, chlorophyll b, and carotenoids was calculated with the
following formulas: chlorophyll a (mg/L in extract) = 12.21 *
Absorbance663 nm � 2.81 * Absorbance647 nm; chlorophyll b (mg/L
in extract) = 20.13 * Absorbance647 nm � 5.03 * Absorbance663 nm;
carotenoid (mg/L in extract) = [1000 * Absorbance470 nm � 3.27 *
chlorophyll a (mg/L) � 104 * Chlorophyll b (mg/L)]/227.

Preparation of small RNA libraries

Approximately 50–100 lg of Arabidopsis, Brachypodium or Nicoti-
ana total RNA were treated essentially as before (Carbonell et al.,
2012; Gilbert et al., 2014), with the difference that small RNA
libraries were barcoded at the amplicon PCR reaction step with
the standard 50PCR oligonucleotide (P5) and an indexed 30 PCR oli-
gonucleotide (i1-i8, i10 or i11) (Table S7). Library multiplexing was
followed by sequencing analysis using a HiSeq 2000 sequencer
(Illumina, http://www.illumina.com/).

Small RNA sequencing data analysis

Small RNA sequencing data analysis was done as described (Car-
bonell et al., 2014). Custom scripts to process small RNA data sets
are available at https://github.com/carringtonlab/srtools. Small
RNA sequencing libraries from transgenic Arabidopsis inflores-
cences and Brachypodium calli or leaves, and from N. benthami-
ana agroinfiltrated leaves, are described in Table S9. O. sativa
small RNA data sets used in the processing analysis of authentic
OsMIR390 presented in Figure 1(b) were described previously (Cu-
perus et al., 2010).
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Preparation of strand-specific transcript libraries

Ten microgram of total RNA extracted from four independent
lines per construct were treated with TURBO DNase I (Life Tech-
nologies). Ribosomal RNAs were depleted from samples by Ribo-
Zero Magnetic Kit ‘Plant Leaf’ (Epicentre, http://www.epibio.com/)
treatment. cDNA synthesis followed by strand-specific transcript
library preparation were made as described with minor modifica-
tions (Wang et al., 2011; Carbonell et al., 2012). These included
the fragmentation with metal ions during 4 min at 95°C of Ribo-
Zero treated RNAs, and the use of 14 cycles in the linear PCR reac-
tion. Y-shape adaptors were generated by annealing DNA adap-
tors 1 and 2, and PE-F oligonucleotide was combined with one
indexed oligonucleotide (PE-R-N701 to PE-R-N710) in the linear
PCR (Table S7). DNA amplicon analysis, quantification and
sequencing were done as described (Carbonell et al., 2014).

Transcriptome analysis

FASTQ files were de-multiplexed with the parseFastq.pl perl script
(https://github.com/carringtonlab/srtools). Sequencing reads from
each de-multiplexed transcript library were mapped to B. distach-
yon transcriptome (v2.1; Phytozome 10, http://phytozome.jgi.doe.
gov/pz/portal.html) using Butter (Axtell, 2014) and allowing one
mismatch. Differential gene expression analysis was done using
DESeq2 (Love et al., 2014) with a false discovery rate of 1%. For
each 35S:GUS versus 35S:OsMIR390-AtL pairwise comparison,
genes having no expression (0 gene counts) in at least five of the
eight samples were removed from the analysis. Differential gene
expression analysis results are shown in Data S1.

TARGETFINDER v1.7 (https://github.com/carringtonlab/TargetFind-
er) (Fahlgren and Carrington, 2010) was used to obtain a
ranked list of potential off-targets for each amiRNA. RNA-Seq
libraries from transgenic Brachypodium leaves are described in
Table S10.
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ACCESSION NUMBERS

A. thaliana genes and corresponding locus identifiers

are: AtACT2 (AT3G18780), AtCBP20 (AT5G44200), AtCH42

(AT4G18480), AtCPC (AT2G46410), AtETC2 (AT2G30420),

AtFT (AT1G65480), AtSAND (AT2G28390), AtTRY

(AT5G53200) and AtUBQ10 (AT4G05320). B. distachyon

genes and corresponding locus identifiers are: BdBRI1

(Bradi2g48280), BdCAD1 (Bradi3g06480), BdCAO (Brad-

i2g61500), BdSAMDC (Bradi5g14640), BdSPL11 (Brad-

i4g04270), BdUBC18 (Bradi4g00660), BdUBI4 (Bradi3g04730)

and BdUBI10 (Bradi1g32860). The miRBase (http://mir-

base.org) (Kozomara and Griffiths-Jones, 2014) locus identi-

fiers of the conserved rice MIRNA precursors and plant

MIR390 precursors (Figure 1b) are detailed in Tables S1 and

S2, respectively. High-throughput sequencing data were

deposited in the Sequence Read Archive (http://

www.ncbi.nlm.nih.gov/sra) under accession number

SRP052754.
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sion of this article.
Figure S1. OsMIR390-B/c vectors for direct cloning of amiRNAs.

Figure S2. Generation of constructs to express amiRNAs from
authentic OsMIR390 precursors.

Figure S3. Generation of constructs to express amiRNAs from chi-
meric OsMIR390-AtL precursors.

Figure S4. Generation of constructs to express amiRNAs from chi-
meric AtMIR390a-OsL precursors.

Figure S5. Base-pairing of amiRNAs and Brachypodium target
mRNAs.

Figure S6. Plant height and seed length analyses in Brachypodium
T0 transgenic plants expressing amiR-BdBri1 from authentic Os-
MIR390 or chimeric OsMIR390-AtL precursors.

Figure S7. Quantification of amiR-BdCao-induced phenotype in
Brachypodium 35S:OsMIR390-AtL-Cao, 35S:OsMIR390-Cao and
35S:GUS T0 transgenic lines.

Figure S8. Comparative analyses of the accumulation and process-
ing of several amiRNAs derived from AtMIR390a, AtMIR390a-OsL,
OsMIR390 and OsMIR390-AtL precursors in Nicotiana benthami-
ana leaves.

Figure S9. Base-pairing of amiRNAs and Arabidopsis target tran-
scripts.
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amiRNAs derived from AtMIR390a-based chimeric precursors con-
taining Oryza sativa distal stem-loop sequences (AtMIR390a-OsL).

Figure S11. AmiRNA-induced phenotype quantification in Arabid-
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AtCh42 (right) from AtMIR390a or chimeric AtMIR390a-OsL precur-
sors.
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in transgenic Brachypodium plants including 35S:OsMIR390-AtL-
based or 35S:GUS constructs.
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Table S2. MiRbase locus identifiers of plant MIR390 precursors.
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transgenic plants.
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lyzed.

Table S9. High-throughput small RNA libraries from Arabidopsis,
Brachypodium or Nicotiana benthamiana plants.

Table S10. High-throughput strand-specific transcript RNA
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Data S1A. Differential gene expression analysis between 35S:GUS
and 35S:OsMIR390-AtL-Bri1 Brachypodium samples.
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and 35S:OsMIR390-AtL-Spl11 Brachypodium samples.

Data S2. Gene counts in RNA-Seq libraries from 35S:GUS,
35S:0sMIR390-AtL-Bri1, 35S:OsMIR390-AtL-Cad1, 35S:0sMIR390-
AtL-Cao and 35S:OsMIR390-AtL-Spl11 transgenic Brachypodium
lines.

Data S3A. amiR-BdBri1 predicted off-targets differentially underex-
pressed in 35S:OsMIR390-AtL-Bri1 transgenic Brachypodium
plants.
Data S3B. amiR-BdCad1 predicted off-targets differentially under-
expressed in 35S:OsMIR390-AtL-Cad1 transgenic Brachypodium
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Data S3C. amiR-BdCao predicted off-targets differentially underex-
pressed in 35S:OsMIR390-AtL-Cao transgenic Brachypodium
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Data S3D. amiR-BdSpl11 predicted off-targets differentially under-
expressed in 35S:OsMIR390-AtL-Spl11 transgenic Brachypodium
plants.

Appendix S1. Characterization of AtMIR390a-OsL-based amiRNAs
in eudicots.

Appendix S2. DNA sequence of B/c vectors used for direct cloning
of amiRNAs in zero-background vectors containing the OsMIR390
sequence.

Appendix S3. FASTA sequences of all amiRNA-producing MIRNA
precursors analyzed.

Appendix S4. Protocol to clone amiRNAs in BsaI/ccdB-based (‘B/
c’) vectors including the OsMIR390 precursor.
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