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Abstract

Background—Most epidemiologic studies of methylmercury (MeHg) health effects rely on a 

single measurement of a MeHg biomarker to assess long-term exposures. Long-term 

reproducibility data are, therefore, needed to assess the reliability of a single measure to reflect 

long-term exposures. In this study we assessed within-person reproducibility of red blood cell 

(RBC) mercury (Hg), a marker of methyl-mercury, over 10–15-years in a sample of 57 women.

Methods—Fifty-seven women from the Nurses’ Health Study II provided two blood samples 

10–15-years apart (median:12 years), which were analyzed for mercury levels in the red blood 

cells (B-Hg*). To characterize within-person reproducibility we estimated correlation and 

intraclass correlation coefficients (r and ICC) across the two samples. Further, we compared 

different prediction models, including variables on fish and seafood consumption, for B-Hg* at the 

first sample using leave-one-out cross-validation to assess predictive ability.

Results—Overall, we observed strong correlations over 10–15 years (r=0.69), as well as a high 

ICC (0.67; 95%CI: 0.49, 0.79). Fish and seafood consumption reported concurrently with the first 

B-Hg* sample accounted for 26.8% of the variability in that B-Hg*, giving a correlation of r=0.52.

Conclusions—Despite decreasing B-Hg* levels over time, we observed strong correlations and 

high ICC estimates across B-Hg* measured 10–15 years apart, suggesting good relative within-

person stability over time. Our results indicate that a single measurement of B-Hg* likely is 

adequate to represent long-term exposures.
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Introduction

Methylmercury (MeHg) is a neurotoxicant able to cross the blood-brain barrier1 as well as 

the placental barrier and has therefore been linked to adverse effects on the central nervous 

system and neurodevelopment, especially in fetuses and newborns.2 Moreover, exposures to 

MeHg have also been linked to cancer,3,4 and myocardial infarction,5,6 although higher 

consumption of polyunsaturated fatty acids from fish –the principal route of exposure to 

MeHg–7,8,9 has also been shown to decrease the risk of certain cardiovascular diseases.6 

MeHg has a reported half-life of approximately 50 days,10 and MeHg exposure reflects 

increased fish and seafood consumption.7,8,9

Given the known toxicity of MeHg, the availability of a good biomarker for MeHg, rather 

than the less toxic total mercury (Hg), exposure is crucial, especially in large epidemiologic 

settings when often only a single biosample is available. Both inorganic Hg and MeHg can 

be measured in blood serum, whereas in red blood cells (RBC) 90% of Hg is in the form of 

MeHg.11,12 Thus, RBC would be useful medium for analyzing total mercury concentrations 

as a MeHg exposure biomarker. Due to differences in the hematocrit of whole blood, 

moreover, the mercury concentration of the red blood cells is likely to be a more precise 

exposure biomarker.12

Many epidemiologic studies investigating the association between MeHg exposure and 

adverse health outcomes lack the resources to collect multiple blood samples for each 

subject. In addition, it is likely that study participants might have joined after a biologically 

meaningful exposure window, for instance mothers joining a study several years after 

having given birth. Most studies, thus, have to rely on single measurement of Hg or a 

measure in a surrogate time window. The degree to which a single measurement reflects 

long-term Hg levels, however, depends on the within-person variability of the biomarker 

over time. Larger within-person variability over time is likely to introduce measurement 

error, when using a single Hg measurement as an indicator of long-term exposure, and, 

hence, attenuate subsequent health effect estimates.13,14

In the present study, we assessed the reproducibility of RBC Hg levels in the Nurses’ Health 

Study II (NHSII) over a 10- to15-year period. Furthermore, because retrospective dietary 

assessment of fish consumption could be another approach to assessing past MeHg 

exposure, we also assessed the correlation between fish and seafood consumption and RBC 

Hg. For this, we used concurrent dietary assessment, as this would represent a best case 

scenario, since reporting on past diet history would be expected to introduce more error.
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Methods

Data Collection

Study Population—The NHSII began in 1989, when 116,430 female registered nurses 

25–42 years old responded to a questionnaire about their health and lifestyle.

Between 1996 and 1999, 29,611 NHSII participants provided a blood sample. Each willing 

participant was sent a collection kit to have blood samples drawn by either a local lab or a 

colleague. The samples were returned to the laboratory via overnight courier, including an 

ice-pack or a frozen water bottle to keep the samples cool. The blood was then separated 

into plasma, RBC and white blood cell (WBC) components. and aliquoted into labeled 

cryotubes. From 2008–2011, 16,510 of the women from the initial blood cohort of NHSII 

returned a second blood sample using a similar protocol to the first collection.

To assess the blood Hg reproducibility and the ability to predict Hg levels 10–15 years apart 

we analyzed blood samples from 57 women who provided 2 samples (median time between 

blood samples = 12 years). Return of questionnaires with the blood samples constituted 

implied consent for the first sample. For the second sample, women had to provide written 

informed consent, reflecting the standards at the time of each collection. The Institutional 

Review Board of BWH approved this study.

Laboratory Methods—Aliquots of RBC were prepared for each blood sample and sent 

frozen on dry ice to the University of Southern Denmark. Total Hg concentration was 

determined on a Direct Mercury Analyzer: DMA-80 (Milestone Inc, Sorisole, Italy). The 

RBC samples were first thawed and the cell suspension was homogenized by mixing on a 

Vortex mixer and diluted with Milli-Q treated water (dilution ratio = 2:3 to approach a 

normal hematocrit and to facilitate analysis). The detection limit for the dissolved sample 

was estimated to be 0.05 μg/L, i.e., three times the standard deviation of the blanks. The 

total analytical imprecision was estimated to be 2.5, 2.5 and 1.9% at Hg concentrations of 

1.97, 15.20 and 31.40 μg/L respectively. The samples were also analyzed for hemoglobin by 

spectrometry, and the Hg:hemoglobin ratio was calculated to adjust for differences in RBC 

preparation and specimen dilution. We then standardized the Hg concentration to the 

expected average hemoglobin concentration of 13.6 g/dL, as this number would approach 

the likely in vivo whole-blood concentration; we refer to this quantity as B-Hg*. Hg 

concentrations in μg/L can be converted to nmol/L by multiplying by 5.0.

Dietary Items—MeHg exposure mostly occurs through consumption of seafood and 

fish7,8,9 and such dietary items have been used in the past to predict MeHg exposures.15,16 

We, therefore, also examined the association between seafood and fish consumption and B-

Hg*.

We used nutrient-validated, semi-quantitative food frequency questionnaires (FFQ) that are 

administered to all NHSII participants every 4 years.17 We included information on 4 

seafood items: 1) dark fish meat, such as mackerel, salmon, sardines, bluefish or swordfish, 

2) canned tuna, 3) other fish and 4) shrimp, lobster or scallops (as a main dish). Analyses 

used consumption of these food items as continuous variables, measured in times per month. 
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Participants were assigned values from either the 1995 or 1999 FFQ, whichever was closest 

to the date of their first blood sample.

Data Analysis

We log-transformed all B-Hg* values, to account for deviations from normality. Differences 

between paired samples were expressed as median (95% CI), and the average coefficient of 

variation (df = 1) was also computed. We used the Pearson and Spearman rank correlation 

coefficients and the intraclass correlation coefficient (ICC) to assess within-person 

reproducibility of B-Hg* levels across time, with ICC defined as the ratio of the between-

person over the sum of the within- and between-person variability. High ICC values indicate 

higher between-person contributions to the total variability, and, thus, lower within-person 

variability and better within-person reproducibility. ICC values ≥ 0.75 indicate excellent, 0.4 

≤ ICC < 0.75 fair to good and <0.4 poor reproducibility.18 We reported 95% confidence 

intervals (CIs) for the ICC using the exact method. We calculated weighted kappa statistics 

and 95% CIs to quantify the agreement between quintiles of B-Hg* levels across the two 

time points, i.e. quantify the likelihood that the B-Hg* levels of the two blood draws of each 

subject would fall into the same quintile.

We examined the association between fish and seafood consumption and B-Hg*, to assess 

whether information on such dietary habits concurrent with the first B-Hg* measurement or 

a later B-Hg* measurement would be a better predictor for an earlier B-Hg* levels, for 

studies in which these data are not available. To this end, we ran two different linear 

regression models, both with the log(B-Hg*) at the first measurement as the dependent 

variable. In the first model we included the following variables as predictors: age, BMI, 

smoking status and caloric intake at the time of the first blood draw, as well as seafood and 

fish consumption from the FFQ collected closest to the first blood draw. In the second 

model we included only the log(B-Hg*) at the second blood draw as the predictor.

To assess whether the second B-Hg* measurement or seafood/fish consumption at the time 

of the first blood collection better predicted the first B-Hg* measurement, we employed a 

leave-one-out cross-validation process.19 Models included data from the FFQ collected 

closest to the first blood draw (either in 1995 or 1999) or the second B-Hg* in a linear 

regression model with the first measurement of the log-transformed B-Hg* as the outcome. 

Omitting one observation at a time, we re-fit each model and then predicted the Hg value for 

the omitted observation. The predictive ability of the models was quantified by the 

calculated R2 between the predicted and observed first B-Hg* levels. We also assessed 

whether the slope between predicted and observed values was significantly different than 1, 

to assess potential under- or over-estimation.

All statistical analyses were conducted using the R Statistical Software, version 2.14.1 

(Foundation for Statistical Computing, Vienna, Austria).

Results

The study participants were on average 42 years old (sd = 4.8 years) at the first blood 

collection. The characteristics of the study participants are presented in Table 1. Table 2 
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presents summary statistics for the Hg and B-Hg* at each blood collection. Overall, we 

observed slightly higher B-Hg* concentrations during the first blood collection, with a 

median difference in B-Hg* levels of −0.14 μg/L (95% CI: −1.78, 2.86) between the first 

and second collections. Even though the median B-Hg* concentrations decreased over time 

in our study sample, the variability in B-Hg* concentrations was higher in the second 

collection (Table 2). The average estimated within-person CV over time was 37.4% (sd = 

24.2%).

We observed a strong correlation between the two B-Hg* samples (correlation coefficient 

r=0.69, Spearman rs=0.70) and low within-person variability, relative to total variability, as 

shown by a high ICC = 0.67 (95%CI: 0.49, 0.79). In addition, we observed good agreement 

between quintile categories defined by the distribution of B-Hg* levels at each time point, 

with a weighted kappa statistic of 0.66 (95%CI: 0.53, 0.79). These results did not change 

after removing a potential outlier.

Summary statistics on fish/seafood consumption are presented in Table 3. We assessed 

whether fish and seafood consumption at the time of the first blood collection or the B-Hg* 

of the second blood collection better predicted the B-Hg* levels at the first blood collection 

(Table 4). We included age, BMI, caloric intake and smoking status at the time of the FFQ 

in the model of fish consumption as these improved the model fit. All variables included in 

the model accounted for 40.7% of the variability in the log(B-Hg*) levels and fish and 

seafood consumption alone accounted for 26.8%, corresponding to an r=0.52 between B-

Hg* and fish and seafood consumption. The predictive ability of this model, however, was 

not strong: the cross validation R2 between predicted and observed values was 0.29, and the 

predicted values were marginally under-predicted, as shown by the slope between predicted 

and observed values (β=0.75; 95%CI: 0.45, 1.05).

In comparison, B-Hg* from the second blood collection explained 46.8% of the variability 

in the first B-Hg* sample. The cross validation R2 was 0.43. No significant over- or under-

prediction was observed (β=0.96; 95%CI: 0.68, 1.24). Finally, a model including both fish 

and seafood consumption and the second B-Hg* measurement did not perform better than 

the model only including the second B-Hg* measurement.

Discussion

Overall, we observed a very good within-person stability of B-Hg* over 10–15 years, as 

shown by high values of the correlation coefficients, the ICC and the weighted kappa 

statistic between the two samples. Conversely, the observed average CV between repeat 

samples was higher than the laboratory CV. Potential changes in residence and dietary 

habits could contribute to the high value of the CV. Given the observed decrease in B-Hg* 

levels in our sample, a high CV value is not surprising; even if all participants’ B-Hg* 

concentrations decreased by the same amount, which would preserve the exposure rankings 

and result in the correlation coefficients being approximately equal to 1, the CV would still 

be high and would increase as the average B-Hg* decreased.
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For our analyses we used B-Hg* as a biomarker of MeHg exposure, a blood fraction usually 

discarded after analyses for other blood biomarkers in epidemiological studies. B-Hg* is 

~90% MeHg, with demethylated MeHg comprising a large part of the remaining 10%, while 

total blood Hg has higher inorganic Hg contributions,11,12,20 compared to B-Hg*. Hair Hg 

has also been considered a good biomarker for MeHg exposure.11,21 In populations, 

however, that have been exposed to vapor Hg, use of hair Hg as a biomarker for MeHg 

exposure might be problematic, as vapor Hg may bind to the hair directly,22 and hair 

treatments may also affect Hg concentrations in the hair.23,24

The B-Hg* levels of our participants were comparable to those previously reported. The 

geometric mean of total blood Hg levels among women 16–49 years old from the 1999–

2000 National Health and Nutrition Examination Survey (NHANES) has been reported to be 

1.02 μg/L.9,25 For years 1999–2006 these levels were 0.93 μg/L,26 and in 2009–2010 they 

were 0.86 μg/L.27 Given these, the blood Hg levels seem to be decreasing over time.27 The 

geometric mean of the first sample of our participants, which was collected between 1996–

1999, was slightly higher than the reported 1999–2000 mean (1.06 vs. 1.02 μg/L), in 

agreement with a decreasing trend over time. This difference, however, was not statistically 

significant, as apparent by the widely overlapping CIs of the two means. The second 

measurement, collected in 2010, although lower than the first (geometric mean = 0.98 μg/L), 

was higher than the reported 2009–2010 levels by the U.S. Environmental Protection 

Agency (EPA);27 EPA, however, only included women of childbearing age in their report 

(16–49 years), while our participants were older at the time of their second sample (mean 

age = 53 years) and, therefore, likely did not adjust their fish consumption habits to EPA and 

U.S. Food and Drug Administration (FDA) recommendations for pregnant or nursing 

women, published in 200128 and updated in 2004.29

Our results are in agreement with previously published work assessing the reproducibility of 

biomarkers of MeHg exposure over time. Hinners et al.,30 for example, found a Pearson 

correlation coefficient of 0.75 between toenail samples provided 14 months apart in a 

sample of 43 Japanese women, as part of the Arsenic Mercury Intake Biometric Study. 

Similarly, Garland et al.,31 also using toenail Hg as a MeHg biomarker, found a Spearman 

correlation coefficient of 0.56 between samples provided by 127 NHS participants over a 6-

year period. To our knowledge, ours is the first study to assess reproducibility of MeHg 

exposure levels, using B-Hg* over a period of more than 10 years. Together, these results 

indicate that MeHg exposure levels are relatively stable across time and one sample is 

adequate to represent long-term exposures.

Though we observed high ICC values, they were still lower than 1, suggesting that relying 

on a single measurement of B-Hg* could still introduce measurement error in the subsequent 

health effects model and, hence, attenuate health effect estimates.13 If a single B-Hg* 

measurement is used to reflect exposures longer than 10 years, the true effect (log(OR)) 

could be as high as 1.5 times the biased effect estimate (= 1/0.67), assuming no other 

misclassified variable or that B-Hg* is not strongly correlated with the other covariates in 

the model.13 For example, if the true OR = 2.00, under the above assumptions, use of a 

single blood sample would yield OR* = 1.59 (= exp [log(OR) × ICC]), with narrower 

confidence intervals. When the above assumptions are not met, information on all variables 
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correlated with B-Hg* and/or on those measured with error should be included in the 

estimation of the ICC, to obtain corrected ORs and inferences.13,32 Furthermore, Grandjean 

and Budtz-Jørgensen showed that failure to account for the total imprecision associated with 

use of a single MeHg biomarker in health analyses could also lead to biased health effect 

estimates.33

We assessed whether contemporaneous fish and seafood consumption, a widely recognized 

MeHg exposure pathway, 8,9,16 better predicts B-Hg* levels, as compared to B-Hg* samples 

obtained 12 years later. Given our small sample size, we were not able to build a better 

prediction model when using dietary items as predictors, as compared to other studies.8,9,16 

Still, we were able to explain a higher proportion of the variability in the B-Hg* levels by 

fish and seafood consumption than the one reported in a recent study by Golding et al. 

(26.8% in our study vs. 8.8%).34 In their study, they assessed total blood Hg exposures, 

which is a less precise biomarker for MeHg exposure than B-Hg*, as it can also be 

influenced by inorganic Hg.11 Further, they sampled women during pregnancy; pregnant 

women, however, have been found to have significantly lower Hg levels,26 which might 

have reduced the ability to detect stronger associations.

In our analyses, a model including only the second B-Hg* measurement as a predictor 

performed much better than the contemporaneously collected fish consumption. Fish 

consumption data collected retrospectively would be expected to perform even worse. Thus, 

in a study setting where the aim is to assess past Hg exposure, measuring current B-Hg* 

should be better than retrospectively assessing earlier fish consumption. It should be noted, 

however, that for the dietary assessment in the NHS, fish were grouped according to their 

nutrient content (e.g. fish oil) and not mercury content. The dark fish group, therefore, 

includes both salmon (low MeHg content) and swordfish (high MeHg content). Imprecise 

estimates of specific fish consumption might have also affected our ability to build a strong 

and stable prediction model. In addition, these results might not be generalizable to other 

populations with potentially different dietary variability over time. Overall, we observed the 

highest predictive ability with the second measurement of B-Hg*, indicating that although 

the two blood samples were collected 10–15 years apart, their correlation is stronger than the 

one between B-Hg* levels and fish consumption.

Our results should be interpreted in light of the limitations of our study. First, any variability 

due to laboratory analysis will also be reflected in the ICC. Given the well-established 

analytic techniques employed and the low reported CV (4.4%), however, we would expect 

any such influence to be small. Furthermore, our sample consisted of 57 participants. The 

small sample size of our study is reflected in the wide confidence intervals of the ICC 

estimate and the weighted kappa statistic and likely affected our ability to build a better 

prediction model and use information on fish and seafood consumption to predict B-Hg*. In 

addition, our measurements were collected 10–15 years apart; our results, therefore, 

represent the reproducibility of Hg levels over a very long period of time. If shorter 

exposure durations are of interest, it is likely that the B-Hg* levels would be more stable. 

Finally, our subjects were predominantly white US women with an average age of 42 years. 

Our results, thus, might not be generalizable to other populations, especially younger 
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pregnant women, which is usually the population of interest in studies of post-natal 

developmental disorders.

In conclusion, we observed good reproducibility of B-Hg* levels over 10–15-years, 

suggesting stable long-term exposures to MeHg. To our knowledge, the present study is the 

first to assess reproducibility of B-Hg* levels, one of the more precise biomarkers for MeHg 

exposure.11,12 The usefulness of B-Hg* as a proxy for MeHg is further supported by our 

higher correlations between samples 10–15-years apart than correlations previously 

reported, using toenail Hg as a MeHg biomarker, between samples over 6 years from a very 

similar population.31 We would, therefore, recommend the use of B-Hg* to assess long-term 

MeHg exposures.
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Table 1

General characteristics of population at 1st and 2nd blood samples (n = 57)

Mean S.D.

Age (1st draw) 41.84 4.81

BMI (kg/m2)

1st draw 24.90 5.55

2nd draw 25.87 5.12

Smoking Status [n (%)]

1st draw

    Past 13 (22.4)

    Current 5 (8.6)

2nd draw

    Past 17 (29.3)

    Current 2 (7.1)
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Table 2

Hg (μg/L), hemoglobin (g/dL) and standardized B-Hg* (μg/L) levels.

Median 2.5th – 97.5th

percentile
Geometric

Mean
2.5th – 97.5th

percentile

1st draw

Hg 1.19 (0.30, 4.59) 1.26 (0.31, 5.18)

Hemoglobin† 16.21 (14.06, 18.00) 16.16 (14.04, 18.59)

B-Hg*‡ 0.99 (0.25, 3.94) 1.06 (0.26, 4.40)

2nd draw

Hg 1.11 (0.24, 7.44) 1.19 (0.19, 7.51)

Hemoglobin† 16.61 (14.33, 17.75) 16.47 (14.64, 18.53)

B-Hg*‡ 0.91 (0.20, 6.06) 0.98 (0.16, 6.14)

†
In RBC fraction

‡
Standardized to a standard hemoglobin level of 13.6 g/dL
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Table 3

Summary statistics on fish and seafood consumption (times/mo) at the first blood sample.

Fish/Seafood Median 2.5th – 97.5th

percentile

Canned Tuna 2.00 0.50 – 4.35

Dark Fish 0.50 0.50 – 2.00

Other Fish 0.50 0.50 – 2.00

Shrimp, etc 0.50 0.50 – 2.00
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Table 4

Results of multivariate regression to predict B-Hg* levels at the first blood collection using fish and seafood 

intake as predictors.

Variable Coefficient 95% CI Partial R2 (%)*

Age 0.034 (−0.006, 0.075) 5.6

BMI −0.035 (−0.0065, −0.005) 12.6

Calories (per 10 kcal/d) −0.002 (−0.005, 0.000) 5.7

Smoking, never Ref. –

Smoking, past −0.233 (−0.636, 0.170) 8.9†

Smoking, current −0.544 (−1.101, 0.013)

Canned tuna −0.053 (0.012, 0.093) 12.2

Dark fish 0.126 (0.034, 0.218) 13.3

Other fish 0.070 (0.006, 0.135) 8.9

*
Total R2 = 40.7%

†
Partial R2 for the variable smoking (all levels)
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