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Abstract

The last decade of decreasing DNA sequencing costs and proliferating sequencing services in core
labs and companies has brought the de-novo genome sequencing and assembly of insect species
within reach for many entomologists. However, sequence production alone is not enough to
generate a high quality reference genome, and in many cases, poor planning can lead to extremely
fragmented genome assemblies preventing high quality gene annotation and other desired
analyses. Insect genomes can be problematic to assemble, due to combinations of high
polymorphism, inability to breed for genome homozygocity, and small physical sizes limiting the
quantity of DNA able to be isolated from a single individual. Recent advances in sequencing
technology and assembly strategies are enabling a revolution for insect genome reference
sequencing and assembly. Here we review historical and new genome sequencing and assembly
strategies, with a particular focus on their application to arthropod genomes. We highlight both the
need to design sequencing strategies for the requirements of the assembly software, and new long-
read technologies that are enabling a return to traditional assembly approaches. Finally, we
compare and contrast very cost effective short read draft genome strategies with the long read
approaches that although entailing additional cost, bring a higher likelihood of success and the
possibility of archival assembly qualities approaching that of finished genomes.

Sanger Beginnings: The First Insect Genome

The sequencing of the first arthropod genome — Drosophila melanogaster [1] — was planned
to generate the ideal dataset for whole genome assembly [2] and the principals employed
then are still valid today. An isogenic strain avoided DNA polymorphism assembly issues;
milligrams of high quality DNA were isolated from embryonic nuclei avoiding gut and
mitochondrial contamination; polytene, genetic and BAC based maps provided long range
information for assembly validation; high genome coverage sequence information of
different scales (2kb and 10kb inserts, and BAC end sequences) was generated enabling
assembly of contigs, and determination of their order and orientation to produce scaffolds.
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The Celera Assembler [2] was designed with exactly this dataset in mind, and has been
improved over the years continuing to be a high quality assembly tool today.

Variations on this approach have been applied to many other species, but in many cases the
required inputs - especially isogenic DNA and high long read sequence coverage - could not
be provided. Drosophila simulans [3] provided an early warning of polymorphism problems.
The initial sequencing plan attempted to collect polymorphism data in addition to a draft
reference, generating 1X sequence coverage from multiple strains of D. simulans-a
seductive goal. Unfortunately the dataset could not be assembled to high quality, and
additional sequence had to be generated from a single inbred strain to rescue the assembly.
This same dynamic has played out through successive sequence technologies and insect
species, providing a cautionary tale for the designers of de novo reference genome-
sequencing projects.

Shorter and shorter (but cheaper and cheaper) sequence reads

New technologies have given us cheaper, but shorter reads, enabling genome sequencing of
many more species. De novo sequencing costs for genome assembly fell by a factor of 10
with the introduction of 454 sequencing [4] and another factor of 10 with Illumina short read
assembly enabling sequence coverage decisions to be based on assembly strategy rather than
cost. The downside has been the increased assembly difficulty leading to lower contig N50
lengths (more assembly false negatives) as short reads cannot straddle as many repeats or
polymorphic regions. 454 assembly tools include Newbler ([5] but see [6]) and the CABOG
variant of the Celera assembler [7] and have proven adept at assembling reasonable
coverage (20X fragment, 30X clone coverage in 3kb and 8kb insert paired end) of inbred
insects, but do not address sequence polymorphism. Results can be impressive for inbred
Drosophila ([8] Table S1 shows N50’s of 100-400kb except for D. rhopal oa which could
not be inbred resulting in a contig N50 of 19kb). More typical results using outbred species
include the centipede ([9] 24.7kb contig n50) and the somewhat inbred Heliconious butterfly
([10] 51kb contig N50) that required manual partitioning of haplotypes and re-assembly to
improve genome contiguity.

Illumina 100bp reads required higher coverage (as a high proportion of read information is
used for overlap determination instead of contig extension) and new de Bruijn kmer graph
based assembly tools to efficiently deal with the large numbers of sequence reads [11-14].
Note that storing kmer graph structures in memory for assembly requires large amounts of
RAM - often 1Terabyte RAM, 32 core servers are used. Table 1. shows a typical
ALLPATHS-LG [12] sequencing strategy of ~150X genome coverage, 100bp paired end
(pe) llumina reads. Short read assembly of arthropod genomes works well (20-50kb contig
N50s, 1Mb Scaffold N50) for inbred material (or haploid male hymenoptera), generally
requiring ~20ug DNA (1ug of DNA for the 180bp and 500bp libraries, 5ug for the 3kb insert
library, and 10ug for the 8kb). However, this and other assemblers are not tuned for
polymorphic material, and even mediocre quality assembly for publication (say > 10kb
contig N50 enabling annotation of gene models without excessive fragmentation) is not
guaranteed. Additionally, despite routine success assembling 3Gb mammalian genomes, it is
extremely difficult to assemble polymorphic genomes larger than 2Gb.
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The Problem With Insects (And Many Other Species)

The major goal of high quality genome references is high quality gene model annotation. As
average gene loci range in size from 12kb in Drosophila to 25kb and more in larger insect
and mammalian genomes, contig N50s of at least 10kb, and scaffold N50s > 300kb are the
minimum for high quality gene annotation.

Unfortunately, insects and other invertebrates have a particularly bad list of attributes for
genome assembly that compromise contig N50 sizes:

1. Often they cannot be reared in the lab — which precludes any breeding for genome
homozygocity - and instead must be collected on field trips necessitating the use of
some material for species identification. Even if research colonies are available,
annual and longer lifecycles can make inbreeding unrealistic.

2. Insects are often physically small, such that very little DNA (nanograms) can be
obtained from a single individual, necessitating pooled polymorphic individuals to
make libraries. In cases with intermediate sized individuals, we prioritize a single
individual for the majority of sequence, and pooled individuals for larger insert
libraries, where significant material is lost in agarose gel size selection.

3. Due to the large species diversity within the arthropods, there are generally no high
quality genome assemblies of phylogentically close species to aid in assembly
(with the possible exception of the Lepidoptera [15])

4. DNA preps often have to be optimized for a new insect species, as entomologists
are not trained in molecular methods and standard protocols have not been
determined. From our experience, Qiagen spin columns do not produce DNA of
appropriate quality, but Qiagen midi sized drip column kits often give good results.

5. Although holometabola often have small (~500Mb) genomes, outside the
holometabola, arthropods can have large genomes (1.5Gb spiders, 3Gb
cockroaches, 5Gb mantis, and bristletails, 7Gb grasshoppers [16]), thus costs are
variable (compared to the relative stability of the 3Gb mammals) and larger than
the 175Mb Drosophila experience would indicate.

New Technologies are Revolutionizing Genome Assembly

The above describes the reality that high quality insect genome assembly is not guaranteed.
Optimization of assembly parameters by empirical testing is critical, and can perhaps
improve a current genome assembly 2X or more for a specific dataset and software
combination, but the limitations of current data and techniques remain. New sequencing
technologies and assembly strategies are overcoming the traditional assembly problems of
data polymorphism and repetitiveness with the goal of creating near ‘finished” archival
quality genome assemblies.

New assembly software

New assembly software attempts to account for polymorphism and take advantage of longer
250bp Ilumina reads. DISCOVAR [17] from David Jaffe’s group who wrote the excellent
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ALLPATHS-LG is designed around 250bp paired end reads from a single PCR free library -
an extremely low cost strategy. However, as it was designed with relatively low human
polymorphism in mind, additional testing will be required to assess the extent of
polymorphism it can handle, despite excellent results in mammalian assemblies. Platanus
[18] has been used extensively for assemblies by the BGI, and is designed with multiple
approaches to dealing with polymorphism. Its use of multiple kmer lengths in the de Bruijn
graph, enables effective use of lllumina reads from 100bp to 250bp.

Long reads and their assembly

Long reads offer inherent advantages for genome assembly: they span polymorphic regions,
repeats and transposable elements, and provide long-range information for contig
scaffolding intrinsically avoiding many assembly problems. Additionally, fewer reads for
the same coverage reduces computational demands. Read lengths are often longer than
contigs from mediocre short read assemblies.

The TruSeq synthetic long read technology from Illumina [19] is a library construction kit
and cloud software solution producing high-quality sub assemblies of barcoded 10kb
fragments (synthetic long reads) from shorter Illumina reads. Resulting synthetic long reads
are then easily assembled into the full genome using the Celera Assembler or other overlap
layout consensus assembler. This strategy was designed and successfully used for a highly
polymorphic colonial tunicate genome [20]. There can be some issues from un-even genome
representation [19], so a combination of this technique and a less biased short read assembly
might be ideal. Synthetic long reads are especially exciting due to the continued potential for
cost reduction from this ever more massively parallel sequencing technology.

Pacific Biosciences (PacBio) RSII reads have matured, and now routinely generate read
lengths >20kb with averages in the 10kb range. Unfortunately, techniques for Illumina error
correction of PacBio reads such as the pacbioToCA utility [21] within the Celera Assembler,
and PBcR [21] have proved computationally inefficient in our hands due to the difficulties
of aligning high coverage 100bp Illumina data to high coverage 15% error rate long reads
(although a promising new algorithmic approach was recently released [22]). A different
approach, PBJelly [23] enables gap filling in draft assemblies by alignment to an existing
draft genome, avoiding the error correction step except when generating consensus sequence
in gap regions. However, pure PacBio error correction strategies appear to give the best
results. HGAP/HBAR/Falcon (Here called HGAP) [24-26] assembly trades high sequence
coverage (50-70X) to overcome the 15% error rate, by using shorter reads to correct the
longest 15-20X of reads enabling traditional assembly using the Celera assembler. This has
produced effectively finished “archival” quality genome assemblies with contig N50s 5Mb
and above for isogenic melanogaster and Arabidopsis [27,28] genomes, although haploid
human assembly, whilst equally successful, was computationally demanding for the error
correction step [29]. The effectiveness of HGAP on polymorphic genomes has yet to be
tested, but the length of the error corrected reads suggests a significant improvement over
current methods. The megabase sized contigs of these assemblies simplifies and almost
obviates finishing, and prevents future re-visiting of sequencing to make these assemblies
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truly archival — of high enough quality to be placed in a database and used for many decades
to come.

Pacific Biosciences Circular Consensus Sequencing (CCS) [30] is an alternate, often
neglected method of error correcting PacBio sequence reads. Circularized shorter templates
are sequenced multiple times by a single long read enabling error correction on a single
molecule. This avoids the possibility of independent, but similar, genomic loci erroneously
error correcting each other. The advantage is computationally trivial error correction, as no
all-against-all read comparison is required, but the disadvantage of shorter error corrected
read lengths (current read lengths enable ~3kb CCS reads with at least 3 sequence passes of
the molecule), and slightly less efficient production of error corrected data. This can be an
effective approach for genomes with significant highly repetitive content and larger
genomes to avoid the computational difficulties of all against all alignment for error
correction.

Finally, Oxford Nanopore’s infamous single molecule sequencing is in beta testing at the
time of writing. Anecdotal information suggests the technology enables extremely long
reads up to 100kb in length, but quality issues remain significant. Despite these high error
rates, an initial assembly of a eukaryote has been reported [31]. Given the revolutionary
assembly potential of such read lengths, we are watching this technology with interest.

New assembly validation and scaffolding technologies

Genome assembly validation has fallen out of favor, as the costs associated are often greater
than that of the Illumina assembly itself. Genetic maps, physical maps and other long-range
independent data are expensive to generate, and taxonomically close insect species with high
quality genome sequences are rare. Minimally, BUSCO analysis should be performed (see
Waterhouse’s review in this issue [32]), indicating the completeness of the assembled gene
set —an item of critical importance for most users. For comprehensive analysis of assembly
quality, additional data is required. Two new technologies are described here, but it should
be noted that long-range sequence information requires long pieces of DNA, either from
intact nuclei or extremely long DNA molecules, which may require additional material.

Optical mapping (commercially available from OpGen) developed in 1990s [33] directly
images restriction digests of confined long linear DNA molecules, generating large scale
restriction maps. A similar, but more scalable technology from BioNano Genomics [34] uses
semiconductor fabricated nanogrooves, and sequence motif fluorescent labeling to enable
high throughput data collection of similar motif maps. The high throughput data collection
method has reduced costs to enable routine validation of genome assemblies, and has been
used for assembly super scaffolding to increase scaffold N50 lengths.

An orthogonal data source for genome assembly validation is chromatin interaction
sequencing (Hi-C) [35]. This sequencing protocol captures pairs of DNA fragments
physically close to each other in three dimensional chromatin structures. The proximity of
the paired sequences is inversely related to the distance between them, and this fact is used
to produce ‘ultra-long-range’ genome assembly scaffolding for entire chromosome arms
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[35]. To date, this has been used on high quality genomes including Drosophila, but the
technique is rapidly gaining acceptance.

Low input DNA and large genome sizes are still problematic

As described above, in many cases input DNA quantity from a single individual can be very
small, and pooled individuals increase the polymorphism and chances of a poor assembly
product. But some of the above strategies require relatively small amounts of DNA
(although the DNA must still not be degraded). Illumina Synthetic reads require only 500ng
of DNA, depending on the amount of synthetic long-read sequence desired. The
DISCOVAR or Platanus assembly of a 250bp read length Illumina data can be made from as
little as 10ng of DNA using low input DNA library protocols. Unfortunately this is not a
PCR free library technique, but ignoring this requirement may be a lessor of evils. In our
hands Platanus assembly of an outbred 400Mb diplura genome from 250bp paired reads
with a 400bp insert generated 11kb contig N50 from approximately 50ng of DNA, although
the scaffolds are small due to an absence of long-range sequence information.

Very large genomes are also problematic, with the definition of very large decreasing with
increased polymorphism in the dataset. With ALLPATHS-LG, many groups have routinely
assembled 3Gb mammalian genomes to high quality, but more polymorphic insect genome
assemblies often fail with genomes greater than 2Gb. The ALLPATHS-LG software is not
designed for genomes larger than 4Gb, and run times grow into multiple months. MaSuRCA
[36] is the only assembler designed for very large genomes having been successfully applied
to the 22Gb loblolly pine genome [37], however, we have had difficulty applying this
software to polymorphic insect genomes from 2.5 to 5Gb. Additional research is required to
address this problem.

New long read based assembly strategies, such as Pacific Biosciences and Illumina synthetic
long-reads, are highly recommended due to a higher probability of assembly completion,
longer contiguous sequences and potentially archival “finished” quality assembly products.
Cost effective draft assembly of longer 250bp Illumina reads is also improved due to new
software, although the success rate in significantly polymorphic datasets is unknown and
expectations of archival quality genome references for little investment are unrealistic. New
validation technologies enable quality assurance and improved super-scaffolding of genome
assemblies. Genome assembly from low DNA quantity and of large and polymorphic
genomes is still a significant challenge.
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