
EBioMedicine 2 (2015) 396–405

Contents lists available at ScienceDirect

EBioMedicine

j ourna l homepage: www.eb iomed ic ine.com
Original Article
Inhibition of ERBB2-overexpressing Tumors by Recombinant Human
Prolidase and Its Enzymatically Inactive Mutant
Lu Yang a, Yun Li a,b, Arup Bhattacharya a, Yuesheng Zhang a,⁎
a Department of Chemoprevention, Roswell Park Cancer Institute, Buffalo, NY 14263, United States
b Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, Unites States
⁎ Corresponding author at: Department of Chemopr
Institute, Elm and Carlton Streets, Buffalo, NY 14263, Unit

E-mail address: yuesheng.zhang@roswellpark.org (Y.

http://dx.doi.org/10.1016/j.ebiom.2015.03.016
2352-3964/© 2015 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 31 December 2014
Received in revised form 14 March 2015
Accepted 21 March 2015
Available online 24 March 2015

Keywords:
ERBB2
ERBB2 ligand
Prolidase
PEPD
Anti-ERBB2 agent
ERBB2 is an oncogenic receptor tyrosine kinase overexpressed in a subset of human breast cancer and other
cancers. We recently found that human prolidase (PEPD), a dipeptidase, is a high affinity ERBB2 ligand and
cross-links two ERBB2 monomers. Here, we show that recombinant human PEPD (rhPEPD) strongly inhibits
ERBB2-overexpressing tumors inmice,whereas it does not impact tumorswithout ERBB2 overexpression. rhPEPD
causes ERBB2 depletion, disrupts oncogenic signaling orchestrated by ERBB2 homodimers and heterodimers, and
induces apoptosis. The impact of enzymatically-inactive mutant rhPEPDG278D on ERBB2 is indistinguishable from
that of rhPEPD, but rhPEPDG278D is superior to rhPEPD for tumor inhibition. The enzymatic function of rhPEPD
stimulates HIF-1α and other pro-survival factors in tumors, which likely attenuates its antitumor activity. rhPEPD-
G278D is also attractive in that it may not interfere with the physiologic function of endogenous PEPD in normal
cells. Collectively, we have identified a human protein as an inhibitory ERBB2 ligand that inhibits ERBB2-
overexpressing tumors in vivo. Several anti-ERBB2 agents are on the market but are hampered by drug resistance
and high drug cost. rhPEPDG278D may synergize with these agents and may also be highly cost-effective, since it
targets ERBB2 with a different mechanism and can be produced in bacteria.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

ERBB2, also known as HER2 or v-erb-B2 erythroblastic leukemia
viral oncogene homolog 2 among other names, is an oncogenic cell
surface receptor tyrosine kinase and an important cancer therapeutic
target. ERBB2 amplification or overexpression occurs in 20–30% of breast
cancer and is a strong predictor of poor disease prognosis (Ross et al.,
2009; Slamon et al., 1987). ERBB2 overexpression also occurs in several
other types of cancer (Junttila et al., 2003; Lassus et al., 2004; Saffari
et al., 1995; Tanner et al., 2005). A number of ERBB2-targeting agents
have been developed, including monoclonal antibodies, small molecule
tyrosine kinase inhibitors, and antibody-cytotoxic agent conjugates
(Incorvati et al., 2013), but they are limited by drug resistance and high
drug cost. For example, trastuzumab, a humanizedmonoclonal antibody,
has been the leading agent for treatment of ERBB2-positive breast
cancer, but about half of patients do not respond to trastuzumab-based
therapy (Pohlmann et al., 2009; Romond et al., 2005; Vogel et al.,
2002). Moreover, trastuzumab, which is produced in mammalian cells,
costs over $50,000 for a full course of treatment. On the other hand, it
evention, Roswell Park Cancer
es States.
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is now widely recognized that combination of agents with different
targeting mechanisms improves treatment outcome.

Prolidase (PEPD) is a cytosolic enzyme that splits dipeptides with
proline or hydroxyproline at the carboxy terminus and is believed to
be important for collagen homeostasis, as high levels of the imino
acids are present in collagen (Kitchener and Grunden, 2012). Interest-
ingly, we recently found that recombinant human PEPD (rhPEPD)
binds as a homodimer, with high affinity (Kd = 7.3 nM, based on
ELISA), to subdomain 3 in the extracellular domain (ECD) of ERBB2,
with each PEPD subunit (molecular mass of 54 kD) binding to an ECD,
thereby cross-linking two ERBB2 monomers (Yang et al., 2014). This
was unexpected, as it had long been believed that ERBB2 exists in a
closed conformation and cannot be liganded. Indeed, no ERBB2 ligand
had been previously identified. The ability of rhPEPD to cross-link two
ERBB2 monomers represents a new ERBB2-binding mechanism, as nei-
ther trastuzumab nor pertuzumab (another therapeutic anti-ERBB2
monoclonal antibody) cross-links ERBB2 monomers (Cho et al., 2003;
Franklin et al., 2004). Also, no ligands of ERBB2 family members cross-
link their respective receptors (Hynes and Lane, 2005; Leahy, 2004). In
cells overexpressing ERBB2, rhPEPD binds to preformed ERBB2 dimers
and blocks ERBB2-SRC signaling by causing SRC disassociation from
ERBB2, apparently resulting from alteration of ERBB2 conformation
(Yang et al., 2014). SRC plays a key role in ERBB2 oncogenesis
(Muthuswamy et al., 1994; Sheffield, 1998; Zhang et al., 2011). rhPEPD
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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also binds to ERBB2monomers, causing ERBB2 dimerization and activa-
tion (Yang et al., 2014). However, such ERBB2 activation is transient and
may be functionally insignificant, as rhPEPD-bound ERBB2 is efficiently
internalized and degraded, causing ERBB2 depletion, and rhPEPD
strongly inhibits the malignant phenotype of cells overexpressing
ERBB2, while showing little effect on cells without ERBB2 overexpres-
sion (Yang et al., 2014). These results not only reveal a new function
of human PEPD, but also show that the protein is primarily an inhibitory
ligand of ERBB2 and suggest that rhPEPD may be a potential antitumor
agent. Among the ERBB2 family members, rhPEPD does not bind to
ERBB3 and ERBB4 (Yang et al., 2014), but also binds to ERBB1 ECD
(Yang et al., 2013). Interestingly, despite relatively low binding affinity
of rhPEPD (Kd = 5.3 μM, based on ELISA) towards ERBB1, it modulates
the receptor at low nM concentrations, causing transient activation and
then depletion of the latter (Yang et al., 2013). Notably, intracellular
human PEPD does not modulate ERBB1 and ERBB2, and the dipeptidase
activity of rhPEPD is not required for modulation of the receptors
(Yang et al., 2013, 2014).

In this study, we investigate the ability of rhPEPD to inhibit tumor
growth in vivo, whether ERBB2 overexpression is a critical indicator of
rhPEPD efficacy, and whether rhPEPD is able to silence ERBB2 signaling
in the tumor tissues. Notably, trastuzumab, which binds to subdomain 4
in the ERBB2 ECD (Cho et al., 2003), shows similar effect on ERBB2
to rhPEPD in cultured cells (Cuello et al., 2001; Nagata et al., 2004).
However, the ability of trastuzumab to downregulate ERBB2 expression
or to inhibit ERBB2 tyrosine phosphorylation in tumor tissues
in vivo seems to be limited (Gennari et al., 2004; Gijsen et al., 2010),
and its Fc domain may play a significant role in tumor inhibition by en-
gaging Fc receptors on immune effector cells and eliciting antibody-
dependent cell-mediated cytotoxicity (ADCC) (Barok et al., 2007;
Clynes et al., 2000; Spiridon et al., 2004). In contrast, rhPEPD does not
have an Fc domain. We also compare the antitumor efficacy of rhPEPD
with that of rhPEPDG278D, amutantwhich lacks the dipeptidase activity,
in order to assess the relevance of the dipeptidase function for rhPEPD
to target ERBB2 and to inhibit tumor growth in vivo.

2. Materials and Methods

2.1. Biochemicals, Cell Lines and Reagents

rhPEPD and rhPEPDG278D with 6xhistidine tagged to their carboxy
terminus were generated as previously described (Yang et al., 2013).
Briefly, full-length human PEPD cDNA and its variant coding PEPDG278D

were cloned to the bacterial pBAD/TOPO expression vector, and the
His-tagged recombinant proteins were generated in Escherichia coli
and purified by Ni-NTA agarose chromatography. We obtained
enoxaparin (EP) from Sanofi-Aventis via Roswell Park Cancer Institute
(RPCI) Pharmacy. Recombinant human epidermal growth factor (EGF)
and human neuregulin 1 (NRG-1) were obtained from R&D Systems
and Cell Signaling, respectively. All cell lines and their culture conditions
were described previously (Yang et al., 2013, 2014). The following
antibodieswere used: anti-PEPD (Abcam, ab86507), anti-ERBB1 (Cell Sig-
naling, 2232), anti-p-ERBB1 (Y1173) (Cell Signaling, 4407), anti-ERBB2
(Cell Signaling, 2165), anti-p-ERBB2 (Y1221/1222) (Cell Signaling,
2243), anti-ERBB3 (Santa Cruz, sc-285), anti-p-ERBB3 (Y1328) (Santa
Cruz, sc-135654), anti-AKT (Cell Signaling, 4691), anti-p-AKT (Cell
Signaling, 4060), anti-ERK (Cell Signaling, 9102), anti-p-ERK (Cell Signal-
ing, 9101), anti-PI3K p85 (Cell Signaling, 4257), anti-SRC (Cell Signaling,
2123), anti-p-SRC (Cell Signaling, 6943), anti-STAT3 (Cell Signaling,
4904), anti-p-STAT3 (Cell Signaling, 9145), anti-caspase-3 (Cell Signaling,
9662), anti-cleaved caspase-8 (Cell Signaling, 9496), anti-cleaved
caspase-9 (Cell Signaling, 9501), anti-BCL-2 (Cell Signaling, 2870), anti-
BAX (Cell Signaling, 2772), anti-VEGF (Santa Cruz, sc-152), anti-GLUT-1
(Santa Cruz, sc-7903), anti-HIF-1α (Santa Cruz, sc-53546), anti-
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Millipore,
MAB374), and biotin-conjugated anti-His (Bethyl, A190-113B). HRP-
conjugated Streptavidin (N100) was purchased from Thermo Scientific.
Matrigel was purchased from BD Biosciences. A goat anti-rabbit
IgG-HRP was purchased from Jackson ImmunoResearch (111-035-003).
2.2. Tumor Xenograft Study in Mice

Athymic nude mice (female, 6–7 weeks of age) from Harlan were
used. The experiments were performed in accordance with protocols
approved by the Institutional Animal Care and Use Committee at RPCI.
rhPEPD and rhPEPDG278D were evaluated in combination with EP
which serves as a dose reducer for the PEPDs. We established subcuta-
neous tumors by inoculating CHO-K1/ERBB2 cells or CHO-K1 cells
to the flanks of the mice at 1 × 106 cells per site in 100 μl of PBS-
Matrigel mixture (1:1 ratio). Four days after cell inoculation, EP
(2.5 mg/kg) or vehicle was administered to themice via intraperitoneal
injection (i.p.) daily. Three days later, tumor size reached about 40mm3

(CHO-K1/ERBB2 tumors) or 30 mm3 (CHO-K1 tumors), and the
EP-treated mice also began treatment with rhPEPD (0.02 or
0.2 mg/kg) or vehicle i.p. thrice weekly (Monday, Wednesday, Friday).
Blood samples were collected from the mice when they were killed
24 h after the final treatment for measurement of plasma levels of
PEPD and sERBB2.

To establish orthotopic mammary tumors, we implanted the mice
with 1.7 mg 60-day release 17β-estradiol pellets (Innovative Research
of America) subcutaneously and 2 days later inoculated BT-474 cells
to the mammary fat pads at 2 × 106 per site in 100 μl of PBS-Matrigel
mixture (1:1). The mice were used in two experiments as described
below. In experiment 1, the mice were either untreated (control) or
treated with EP (0.5mg/kg) i.p. daily, starting 23 days after cell inocula-
tion. Four days later, tumor size reached about 60 mm3, and the EP-
treatedmice also began treatmentwith vehicle, rhPEPD or rhPEPDG278D

(each at 2 mg/kg) i.p. thrice weekly (Monday, Wednesday, Friday),
while daily EP treatment continued. All treatments were stopped
30 days later, and the mice were kept under observation. One day
after treatment stop, blood samples were collected from the mice via
retro-orbital bleeding. Blood samples were also collected from the un-
treated mice at the same time, but these mice were killed following
blood draw. Each mouse kept under observation was given another
17β-estradiol pellet 2 days later (day 61 after cell inoculation). Approx-
imately 4 weeks post treatment, the mice that were initially treated
with EP alone were retreated with EP or EP plus rhPEPDG278D, and the
mice that were previously treated with EP plus rhPEPD or EP plus
rhPEPDG278D but showed tumor relapse were retreated with EP plus
rhPEPDG278D. Again, EP (0.5mg/kg)was given i.p. daily, and rhPEPDG278D

treatment (2 mg/kg) began 4 days later, which was given i.p. every
2–3 days (a total of 4–5 doses). The mice were killed 48 h after the
final treatment. In experiment 2, tumors were allowed to reach
approximately 220 mm3. The mice were then treated with vehicle, EP,
EP plus rhPEPD, and EP plus rhPEPDG278D. We gave EP (0.5 mg/kg)
i.p. once daily for 7 days, and on the fifth and seventh days of EP
treatment, we also gave rhPEPD or rhPEPDG278D i.p. at 2 mg/kg. The
mice were killed 24 h after the final treatment.

In all experiments, on the days when both EP and rhPEPD or
rhPEPDG278D were given, EP was always given 1 h earlier than the other
agent. EP, rhPEPD and rhPEPDG278D were given in PBS. We calculated
tumor size using length × width2 / 2. Tumor images were captured
using a Canon EOS Digital Rebel Xsi camera.
2.3. Measurement of Plasma PEPD and Plasma sERBB2

Plasma PEPD concentrationswere determined by ELISA as previously
described (Yang et al., 2013). Plasma sERBB2 concentrations were
measured using the Human Soluble Her2 ELISA Kit (Aviscera
Bioscience), following manufacturer's instruction.
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2.4. Measurement of SRC Activity and PI3K Activity

SRC and PI3K activities in cell and tissue samples were measured as
previously described (Yang et al., 2014).
2.5. Plasmids and Gene Transfection

To construct pCMV6-XL5-ERBB1which expresses human ERBB1, the
full length human ERBB1 coding sequence was amplified by PCR from
LNCaP cDNA using Kpn1-forward primer (5′-GGTACCCGGCCCCCTGAC
TCCGTCCAG-3′) and HindIII-reverse primer (5′-AAGCTTTCATGCTCCA
ATAAATTCACTGCTTTGTGGC-3′). The amplified PCR product was
digested by KpnI and HindIII (New England BioLabs), followed by
ligation into pCMV6-XL5 (Origene) which was pre-digested with the
same restriction enzymes. The construct was sequenced to ensure the
integrity of the entire coding sequence and correct orientation of the
gene. We obtained human ERBB3-expressing plasmid (pCMV6-XL4-
ERBB3) and human SRC-expressing plasmid (pCMV6-XL4-SRC) from
Origene. Transient gene transfection was carried out using cells grown
in 6-well plates and FuGENE HD (Promega).
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Fig. 1. rhPEPD inhibits tumor growth by targeting ERBB2. [A] Sizes of subcutaneous CHO-K1/ER
mice i.p. at 2.5 mg per kg body weight daily, starting 3 days before rhPEPD. rhPEPD was adm
(Monday, Wednesday and Friday), starting on day 7 post cell inoculation and lasted for 2.3 we
final dose of each treatment as indicated in A. [C] Sizes of subcutaneous CHO-K1 tumors upon tre
lasted for 2weeks andwas evaluated only at 0.2 mg/kg. [D] Plasma levels of PEPD (endogenous PE
noblots comparingmajor cell signaling changes in tumor specimens obtained 24h after the last do
Each sample represents one tumor. [F] Plasma levels of sERBB2 at 24 h after thefinal dose of each tr
final dose of each treatment as indicated in A and C. Error bars for the tumor sizes are SEM (n =
2.6. Immunoprecipitation and Immunoblotting

Sample preparation, immuoprecipitation and immunoblotting aswell
as cross-linking reactions using bis(sulfosuccinimidyl) suberate (BS3,
Pierce) were performed as previously described (Yang et al., 2013, 2014).

2.7. Statistical Analysis

Analysis of variance and t-test were used for comparison of multiple
groups and two groups, respectively. A mixed model (fixed effects
plus random effects including time effect) was used for two-group
comparison of longitudinal tumor data, using SAS 9.3. We considered
a difference with P b 0.05 (two-sided) statistically significant.

3. Results

3.1. rhPEPD Inhibits Tumor Growth, but ERBB2Overexpression Is Critical for
rhPEPD Efficacy

Therapeutically relevant plasma concentrations of rhPEPD could be
achieved in mice by given rhPEPD at 10 mg/kg i.p. (Supplementary
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Fig. 1A). However, pretreatment with enoxaparin (EP) at 2.5 mg/kg i.p.
allowed rhPEPD dose to be reduced by at least 50 fold without decreas-
ing its plasma concentration (Supplementary Fig. 1B). EP is a clinically
used low molecular weight heparin (LMWH). EP and other LMWHs
were shown to significantly elevate plasma level of endogenous PEPD
in rats (Caliskan et al., 2014). EP also significantly increased plasma
level of endogenous PEPD in mice (Supplementary Fig. 1B). LMWHs
including EP are known to inhibit several blood coagulation proteases,
including factors Xa and IIa, via binding and activating antithrombin, a
serine protease inhibitor (Hirsh and Raschke, 2004). Our preliminary
observation suggests that EP inhibits PEPD proteolysis in the plasma,
but neither factor Xa nor factor IIa degrades PEPD. EP was used as a
dose reducer for rhPEPD and its mutant in animal studies described
below.

We first evaluated rhPEPD in tumors derived from Chinese hamster
ovary cells (CHO-K1), which express a low level of ERBB2 but no other
ERBBs, and CHO-K1 cells with stable overexpression of human ERBB2
(CHO-K1/ERBB2) (Yang et al., 2014). Subcutaneous CHO-K1/ERBB2
tumors grew rapidly; EP (2.5 mg/kg i.p. daily) had no impact on
tumor growth, but rhPEPD at 0.02 and 0.2 mg/kg i.p. (thrice weekly
for 2.3 weeks) in the presence of EP (2.5 mg/kg i.p. daily) inhibited
tumor growth by 26.7% (373.5/1401.2) and 65.1% (911.9/1401.2;
P b 0.0001) respectively (Fig. 1A). Although tumor inhibition by rhPEPD
at the low dose was not statistically significant, other effects of rhPEPD
at this dose level were highly significant, as shown below. Plasma
rhPEPD concentrations, measured at 24 h after the last dose (Fig. 1B),
correlated with rhPEPD dose levels and with tumor inhibition; rhPEPD
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at similar concentrations targets ERBB2-overexpressing cells in vitro
(Yang et al., 2014). Subcutaneous tumors of CHO-K1 cells grew slower,
comparedwith CHO-K1/ERBB2 tumors, reflecting the oncogenic activity
of ERBB2, but rhPEPD at 0.2mg/kg i.p. (thriceweekly for 2weeks) in the
presence of EP (2.5 mg/kg i.p. daily) had no effect on tumor growth
(Fig. 1C), even though plasma concentrations of rhPEPD were high
(Fig. 1D). The rhPEPD-treated mice showed no sign of toxicity and no
change in bodyweight gain (Supplementary Fig. 2A and B). As expected,
ERBB2 was overexpressed in CHO-K1/ERBB2 tumors along with tyro-
sine phosphorylation (auto-phosphorylation) as well as activation/
phosphorylation of all evaluated downstream signals, including SRC
(Bjorge et al., 2000), AKT (Gao et al., 2005), extracellular signal-
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(2092.0/3060.7; P=0.005, Fig. 1F), consistentwith ERBB2 depletion in-
duced by rhPEPD in the tumor tissues. Notably, rhPEPDdoes not directly
modulate ERBB2 ECD shedding (Yang et al., 2014). rhPEPD, but not EP,
also strongly and dose-dependently reduced SRC kinase activity in
CHO-K1/ERBB2 tumors, but such effect wasminimal in CHO-K1 tumors
(Fig. 1G). Collectively, these data show that rhPEPD potently targets
ERBB2 oncogenenesis in vivo.

3.2. A Dipeptidase-deficient rhPEPD Mutant Is Superior to Wild-type
rhPEPD for Tumor Inhibition

We next turned to orthotopic BT-474 tumors. Human breast cancer
BT-474 cells constitutively overexpress ERBB2 but also express a low
level of ERBB1 andERBB3 (Yang et al., 2014). rhPEPDdosewas escalated
to 2 mg/kg thrice weekly, in view of its performance in CHO-K1/ERBB2
tumors. EP dose was lowered to 0.5 mg/kg daily, which was adequate
for sustaining blood PEPD level (Supplementary Fig. 3). rhPEPDG278D,
an enzymatically inactive mutant (Ledoux et al., 1996), was also evalu-
ated. EP had no effect on BT-474 tumor, but tumor began to shrink after
thefirst dose of rhPEPD or rhPEPDG278D, and the remaining tumorswere
consistently smaller in the rhPEPDG278D-treated mice than in rhPEPD-
treated mice during the treatment period (P= 0.0003, Fig. 2A). Plasma
rhPEPDG278D concentration was 16.8% (25.9/154.5) lower than that of
rhPEPD at 24 h after the final treatment, albeit not statistically signifi-
cant (Fig. 2B). Plasma sERBB2 concentrations decreased greatly after
treatment with rhPEPD or rhPEPDG278D and were undetectable in 50%
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(3/6) rhPEPD-treated mice and 67% (4/6) rhPEPDG278D-treated mice
(Fig. 2C). Initial treatments lasted 30 days, with 27.3% (3/11) of
rhPEPD-treated tumors and 41.7% (5/12) of rhPEPDG278D-treated tu-
mors achieving complete remission (CR) (Fig. 2A; Supplementary
Fig. 4A and B). Nearly all of the tumors in partial remission relapsed
by approximately 25 days after treatment termination; however,
these tumors were still exquisitely sensitive to rhPEPDG278D (Fig. 2A),
indicating that tumor relapsed due to incomplete initial treatment but
not due to the presence of rhPEPD/rhPEPDG278D-resistant cells. More-
over, very large tumors (~500 mm3) also responded exquisitely to
rhPEPDG278D (Fig. 2A). The experiment was stopped due to heavy
tumor burden in the mice treated by EP alone. Molecular changes in
the tumor tissues could not be determined, because tumors in some
treatment groups were extremely small or no longer present. There
were no signs of adverse effects in the mice treated by rhPEPD or
rhPEPDG278D. Neither rhPEPD nor rhPEPDG278D impacted animal
body weight gain, the weights of major organs or heart histology
(Supplementary Fig. 4C–E). Notably, cardiotoxicity occurs in some
patients receiving anti-ERBB2 therapies (Sendur et al., 2013).

3.3. The Molecular Changes in the Tumor Tissues after Treatment with
rhPEPD or rhPEPDG278D

After treatment with only two doses of rhPEPD or rhPEPDG278D at
2 mg/kg, separated by 2 days, in the presence of EP (0.5 mg/kg daily),
BT-474 tumors shrank to 42.2% (136.6/323.8) or 37.3% (120.8/323.8)
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of the control respectively (Fig. 3A). EP impacted neither tumor growth
nor ERBB2 signaling in the tumor tissues, while tumor inhibition by
rhPEPD or rhPEPDG278D was associated with marked depletion and de-
phosphorylation of ERBB2, and dephosphorylation of key downstream
signals, including SRC, AKT, ERK and STAT3 (Fig. 3B). Low levels of
ERBB1 and ERBB3 were present in BT-474 tumors; both agents strongly
reduced ERBB1 expression and its tyrosine phosphorylation, and
strongly reduced ERBB3 tyrosine phosphorylation but not its expression
(Fig. 3B). While SRC is activated upon binding to activated ERBB1 or
ERBB2, phosphoinositide 3-kinase (PI3K) activation and signaling in
ERBB2-overexpressing breast cancer cells depend on its recruitment to
activated ERBB3 (Holbro et al., 2003). Accordingly, both agents strongly
inhibited SRC kinase activity and PI3K activity in the tumor tissues
(Fig. 3C and D). Each agent also downregulated B-cell lymphoma 2
(BCL-2), up regulated BCL-2-associated X protein (BAX), and activated
caspases-3/-8/-9 in the tumor tissues (Fig. 3B). However, rhPEPD, but
not rhPEPDG278D, stimulated hypoxia-inducible factor 1α (HIF-1α)
and its downstream targets, including vascular endothelial growth
factor (VEGF) and glucose transporter 1 (GLUT-1) in the tumor tissues
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(Fig. 3E). The effects of rhPEPD on HIF-1α, VEGF and GLUT-1 likely
stem from themetabolism of imidodipeptides by rhPEPD upon its inter-
nalization and the inhibition of HIF-1α degradation by the metabolites
(Surazynski et al., 2008). Both rhPEPD and rhPEPDG278D accumulated
in the tumor tissues (Fig. 3E) via ERBB2-mediated internalization
(Supplementary Fig. 5). Again, we detected no adverse effects in mice
treated by the test agents. Neither rhPEPD or rhPEPDG278D nor EP
impacted animal body weight gain, the weight and histology of heart,
kidney and liver (Supplementary Fig. 6).

3.4. The Effects of rhPEPD and rhPEPDG278D on ERBB1 and ERBB1-ERBB2
Heterodimer Interaction

rhPEPD and rhPEPDG278D downregulate both ERBB1 and ERBB2 in
BT-474 tumors (Fig. 3B). Downregulation of ERBB2 by the agents results
from its internalization and degradation and is independent of ERBB1
(Yang et al., 2014) (see also Fig. 1E).We investigatedwhether downreg-
ulation of ERBB1 by the agents may involve ERBB2, since ERBB2 is a
well-known preferred heterodimerization partner for other ERBBs. In
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cells overexpressing both ERBB1 and ERBB2 (CHO-K1/ERBB1+ERBB2),
with no expression of other ERBBs, rhPEPD (5 nM) caused rapid
tyrosine phosphorylation of both ERBB1 and ERBB2 but rapid tyrosine
dephosphorylation of SRC, followed by downregulation of both ERBB1
and ERBB2, with downregulation of ERBB2 occurring much faster than
that of ERBB1 (Fig. 4A). Similar results were shown previously in
other cell lines (Yang et al., 2013, 2014). In ERBB1-overexpressing
murine myeloid 32D cells (32D/ERBB1), with no expression of ERBB2
or other ERBBs (Fan et al., 2004), the ERBB1 changes induced by both
rhPEPD and rhPEPDG278D are almost identical to that in CHO-K1/
ERBB1 + ERBB2 cells (Fig. 4B). Clearly, ERBB1 phosphorylation and
subsequent downregulation induced by the agents are not related to
ERBB2. The relatively slow rate of ERBB1 downregulation in response
to the PEPDs, compared to that of ERBB2, is likely related to a difference
in their internalization and degradation (Yang et al., 2014). In 32D/
ERBB1 cells in which binding of rhPEPD and rhPEPDG278D to ERBB1
was cross-linked by BS3, we were able to show that both agents bind
to ERBB1 (monomer MW of 175 kD) as a homodimer (dimer MW of
108 kD), first forming heterotrimer (1 ERBB1 monomer linked to 1
dimer of rhPEPD or rhPEPDG278D) and then heterotetramer (1 ERBB1
dimer linked to 1 dimer of rhPEPD or rhPEPDG278D) (Fig. 4C). Increased
level of ERBB1 dimer free of the PEPDs was also detected (Fig. 4C), but
this likely results from incomplete cross-linking of the proteins by
BS3. ERBB1 closely resembles ERRB2 (Yang et al., 2014) in PEPD binding.
As mentioned before, SRC is activated upon binding to activated ERBB1
or ERBB2. Both rhPEPD and rhPEPDG278D caused rapid SRC dissociation
from ERBB2 and SRC dephosphorylation (Fig. 4D), consistent with pre-
vious finding (Yang et al., 2014). 32D/ERBB1 cells do not express SRC,
but after transient transfection of human SRC, rhPEPD and rhPEPDG278D

promote SRC association with ERBB1 and SRC phosphorylation in these
cells (Fig. 4E and F). Thus, both agents promote ERBB1 and SRC interac-
tion, in contrast to their inhibitory effect on ERBB2 and SRC interaction.

Even though rhPEPD and rhPEPDG278D bind to both ERBB1 and ERBB2,
both agents disrupt ERBB1-ERBB2 association in CHO-K1/ERBB1+ERBB2
cells, whether the heterodimer forms spontaneously or is stimulated by
EGF (an ERBB1 ligand) (Fig. 4G). Interestingly, even though EGF signifi-
cantly simulated ERBB2-ERBB1 association, it did not stimulate SRC asso-
ciationwith the heterodimer or SRC phosphorylation by the heterodimer
(Fig. 4G), indicating that SRC interacts only with ERBB2 in the heterodi-
mer and that such interaction is not modulated by EGF. Remarkably,
both agents caused EGF-bound ERBB1 to separate from ERBB2 (Fig. 4H).
It is possible that the agents bind to ERBB2 in the heterodimer to force
homodimerization at the expense of heterodimerization and/or disrupt
the heterodimer by causing ERBB2 depletion.

3.5. rhPEPD and rhPEPDG278D Disrupt ERBB2-ERBB3 Heterodimer
Interaction

In BT-474 tumors (Fig. 3B), neither rhPEPD nor rhPEPDG278D down-
regulated ERBB3, consistent with our recent finding that the agents do
not bind to ERBB3, but both agents caused ERBB3 to dephosphorylate
along with loss of PI3K activity. In cells overexpressing both ERBB2
and ERBB3 (CHO-K1/ERBB2 + ERBB3), with no expression of other
ERBBs, rhPEPD (5 nM) caused ERBB3 dephosphorylation without
protein downregulation, along with transient increase in ERBB2
phosphorylation, rapid ERBB2 protein downregulation and rapid SRC
dephosphorylation, whereas PI3K expression remained unchanged
(Fig. 5A). Asmentioned before, SRC is activated upon binding to activat-
ed ERBB2, whereas PI3K is activated by binding to activated ERBB3.
In CHO-K1/ERBB2 + ERBB3 cells, both rhPEPD and rhPEPDG278D

disassembled the ErbB2–ErbB3 signaling unit, causing dissociation of
ERBB3 from ERBB2 along with dissociation of SRC and PI3K from the
ERBBs (Fig. 5B and C),whether the signaling complex formed spontane-
ously or was stimulated by NRG-1 (an ERBB3 ligand). Moreover, both
agents caused NRG-1-bound ERBB3 to dissociate from ERBB2 (Fig. 5C).
It is possible that the agents may bind to ERBB2 in the heterodimer to
force ERBB2 homodimerization at the expense of heterodimerization
and/or disrupt the heterodimer by causing ERBB2 depletion.

4. Discussion

The tumors in the threemousemodels used herein either expressed
minimal ERBB2 (CHO-K1) or overexpressed it (CHO-K1/ERBB2 and BT-
474), and either grew subcutaneously (CHO-K1 and CHO-K1/ERBB2) or
orthotopically in themammary fat pad (BT-474).We show that rhPEPD
strongly inhibits the growth of ERBB2-overexpressing tumors, regard-
less of tumor location, type or size, but it does not inhibit tumors
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without ERBB2 overexpression. The response of the tumors to rhPEPD
in vivo mimics the response of the same cell lines to rhPEPD in vitro
(Yang et al., 2014). However, rhPEPDG278D is more attractive than
rhPEPD as a potential antitumor agent for several reasons. First, the an-
titumor efficacy of rhPEPDG278D is superior to that of rhPEPD, as judged
by both partial and complete tumor remission. Second, rhPEPD, rather
than rhPEPDG278D, stimulates HIF-1α and its downstream targets
(VEGF, GLUT-1) in the tumor tissues via its dipeptidase activity. PEPD
was also shown to stimulate TGFβ and its receptor via its dipeptidase
function (Surazynski et al., 2010). The stimulating effect of rhPEPD on
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the prosurvival factors mentioned above likely attenuates its antitumor
activity. Third, rhPEPDG278D may not interfere with the physiologic
function of endogenous PEPD in normal cells and tissues. In the present
study, rhPEPDG278D achieved durable CR in 41.7% (5/12) BT-474 tumors,
but it is possible that a higher CR rate may be achieved with dose
escalation. Other dipeptidase-defective mutants of human PEPD may
also possess strong antitumor activity. However, we previously
showed that deletion mutants of human PEPD, which are incapable of
forming homodimers, have no ability to bind and modulate ERBB2
(Yang et al., 2014).
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rhPEPD and rhPEPDG278D are indistinguishable in terms of modulat-
ing ERBB2 and its family members in tumor cells; both agents cause the
depletion of ERBB1 and ERBB2 via internalization and degradation, and
both disrupt ERBB2–ERBB1 and ERBB2–ERBB3 association and signaling
(Fig. 6). We speculate that they may also disrupt ERBB2–ERBB4
heterodimerization and signaling. Both agents also cause transient
phosphorylation/activation of ERBB1 and ERBB2 in cultured cells;
however, these changes were not detected in tumor tissues in vivo
and therefore may not significantly impede their antitumor activity.
The inhibitory impact of both rhPEPD and rhPEPDG278D on ERBB2 and
its family members is further shown by decrease in plasma sERBB2
level and dephosphorylation/inactivation of all analyzed downstream
signaling proteins (SRC, AKT, ERK and STAT3) in tumor tissues.
Moreover, stimulation of apoptosis in the tumor tissues by the agents,
including downregulation of antiapoptotic BCL-2, upregulation of
proapoptotic BAX, and stimulation of caspases-3/-8/-9, which is indica-
tive of activation of both mitochondria-dependent and -independent
apoptosis, is consistent with ERBB2 suppression (Kumar et al., 1996;
Martin-Perez et al., 2014; Petry et al., 2010). These findings together
with those shown recently in cultured cells (Yang et al., 2014) indicate
conclusively that human PEPD is an inhibitory ligand of ERBB2 and that
the dipeptidase activity of PEPD is not involved in suppressing ERBB2
oncogenesis.

Compared to trastuzumab and related agents, rhPEPDG278D is exciting
for several reasons. First, rhPEPDG278D is produced in bacteria, likely low-
ering manufacturing cost considerably, compared to trastuzumab and
other agents. Studies to demonstrate the relative activity of rhPEPDG278D

in comparison with trastuzumab and related agents will become impor-
tant, once the antitumor efficacy of rhPEPDG278D has been more
thoroughly assessed. Second, rhPEPDG278D directly attacks the ERBB2
signaling system in the tumor, whereas trastuzumab seems to rely
significantly onADCC for tumor inhibition in vivo. Therefore, studies to in-
vestigate whether PEPDG278D may synergize with trastuzumab and may
circumvent trastuzumab resistance are warranted. These studies may be
pursued, once the antitumor activity of rhPEPDG278D has beenmore thor-
oughly evaluated and better understood. Third, because PEPDG278D lacks
an Fc domain, a PEPDG278D-Fc hybridmay allow it to engage ADCC, there-
by enhancing its antitumor activity. Fourth, a conjugate of PEPDG278Dwith
a cancer chemotherapeutic agent, similar to ado-trastuzumab emtansine
(a conjugate of trastuzumab with a microtubule inhibitor) (Amiri-
Kordestani et al., 2014), may boost its antitumor activity. In this connec-
tion, we show that rhPEPDG278D as well as rhPEPD are internalized by
tumor cells in an ERBB2-dependent manner. Finally, unlike trastuzumab
which only disrupts ligand-independent ERBB2–ERBB3 signaling
(Junttila et al., 2009) and has no effect on ERBB1, rhPEPDG278D disrupts
both ligand-independent and ligand-stimulated ERBB2–ERBB3 and
ERBB1–ERBB2 interaction and signaling, and downregulates both ERBB1
and ERBB2. By targeting both ERBB1 and ERBB2, PEPDG278D may also
overcome resistance to ERBB1-directed therapies, resulting from activa-
tion of ERBB2 signaling and/or insensitivity to tyrosine kinase inhibitors
(Lin and Bivona, 2012; Yonesaka et al., 2011).

In summary, we have shown the in vivo evidence of human PEPD as
an inhibitory ligand of ERBB2, and have demonstrated that rhPEPDG278D

is a highly promising agent for combating ERBB2-driven cancer.
rhPEPDG278D may be a strong candidate for combination with
trastuzumab or other clinically used anti-ERBB2 agents. Given its ability
to attack ERBB2-overexpressing tumors with multiple mechanisms,
studies to investigate whether rhPEPDG278D circumvent drug resistance
to current anti-ERBB2 therapies are warranted. Studies to investigate
whether rhPEPDG278D may inhibit ERBB1-driven tumors and tumors
resistant to current ERBB1-directed therapies are also warranted. The
strong antitumor activity of rhPEPD also raises the question of whether
endogenous PEPD may impede the growth of ERBB2-overexpressing
tumors. Our present data show that PEPD at low nM plasma concentra-
tions can inhibit ERBB2-overexpressing tumors. PEPD is present in
normal blood, and blood PEPD level increases significantly in patients
of breast cancer (Kir et al., 2003). However, PEPD was measured via
its dipeptidase activity in human blood, and actual blood PEPD concen-
tration or the source of blood PEPD is not known. PEPD is expressed at
significantly higher level in human breast cancer tissues than in normal
breast tissues (Cechowska-Pasko et al., 2006), which may account for
the increase in blood PEPD level in patients.

Author Contributions

LY, YL, AB, and YZ designed experiments and analyzed data. LY, YL,
and AB carried out experiments. LY and YZ wrote the manuscript. All
authors edited and approved the final manuscript.

Conflict of Interest

The authors have no conflicting financial interests.

Acknowledgments

We thank Leslie Curtin in the Department of Laboratory Animal
Resources, RPCI for assistance for animal experiments. We also thank
Zhengyu Yang in the Department of Biostatistics & Bioinformatics,
RPCI for assistance with statistical analysis. This work was supported
in part by the US National Institutes of Health grants R01-CA164574
and P30-CA016056, and a Roswell Park Cancer Institute Support Fund.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2015.03.016.

References

Amiri-Kordestani, L., Blumenthal, G.M., Xu, Q.C., Zhang, L., Tang, S.W., Ha, L., Weinberg,
W.C., Chi, B., Candau-Chacon, R., Hughes, P., et al., 2014. FDA approval: ado-
trastuzumab emtansine for the treatment of patients with HER2-positive metastatic
breast cancer. Clin. Cancer Res. 20, 4436–4441.

Barok, M., Isola, J., Palyi-Krekk, Z., Nagy, P., Juhasz, I., Vereb, G., Kauraniemi, P., Kapanen, A.,
Tanner, M., Szollosi, J., 2007. Trastuzumab causes antibody-dependent cellular
cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer
xenografts despite intrinsic drug resistance. Mol. Cancer Ther. 6, 2065–2072.

Bjorge, J.D., Jakymiw, A., Fujita, D.J., 2000. Selected glimpses into the activation and
function of Src kinase. Oncogene 19, 5620–5635.

Caliskan, A., Yavuz, C., Karahan, O., Yazici, S., Guclu, O., Demirtas, S., Mavitas, B., 2014.
Factor-Xa inhibitors protect against systemic oxidant damage induced by
peripheral-ischemia reperfusion. J. Thromb. Thrombolysis 37, 464–468.

Cechowska-Pasko, M., Palka, J., Wojtukiewicz, M.Z., 2006. Enhanced prolidase activity and
decreased collagen content in breast cancer tissue. Int. J. Exp. Pathol. 87, 289–296.

Cho, H.S., Mason, K., Ramyar, K.X., Stanley, A.M., Gabelli, S.B., Denney Jr., D.W., Leahy, D.J.,
2003. Structure of the extracellular region of HER2 alone and in complex with the
Herceptin Fab. Nature 421, 756–760.

Clynes, R.A., Towers, T.L., Presta, L.G., Ravetch, J.V., 2000. Inhibitory Fc receptors modulate
in vivo cytotoxicity against tumor targets. Nat. Med. 6, 443–446.

Codony-Servat, J., Albanell, J., Lopez-Talavera, J.C., Arribas, J., Baselga, J., 1999. Cleavage of
the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tis-
sue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res. 59, 1196–1201.

Cuello, M., Ettenberg, S.A., Clark, A.S., Keane, M.M., Posner, R.H., Nau, M.M., Dennis, P.A.,
Lipkowitz, S., 2001. Down-regulation of the erbB-2 receptor by trastuzumab
(herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-
mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2.
Cancer Res. 61, 4892–4900.

Fan, Y.X., Wong, L., Deb, T.B., Johnson, G.R., 2004. Ligand regulates epidermal growth
factor receptor kinase specificity: activation increases preference for GAB1 and SHC
versus autophosphorylation sites. J. Biol. Chem. 279, 38143–38150.

Franklin, M.C., Carey, K.D., Vajdos, F.F., Leahy, D.J., de Vos, A.M., Sliwkowski, M.X., 2004.
Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex.
Cancer Cell 5, 317–328.

Gao, T., Furnari, F., Newton, A.C., 2005. PHLPP: a phosphatase that directly dephosphory-
lates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell 18, 13–24.

Gennari, R., Menard, S., Fagnoni, F., Ponchio, L., Scelsi, M., Tagliabue, E., Castiglioni, F.,
Villani, L., Magalotti, C., Gibelli, N., et al., 2004. Pilot study of the mechanism of action
of preoperative trastuzumab in patients with primary operable breast tumors
overexpressing HER2. Clin. Cancer Res. 10, 5650–5655.

Gijsen, M., King, P., Perera, T., Parker, P.J., Harris, A.L., Larijani, B., Kong, A., 2010. HER2
phosphorylation is maintained by a PKB negative feedback loop in response to anti-
HER2 herceptin in breast cancer. PLoS Biol. 8, e1000563.

http://dx.doi.org/10.1016/j.ebiom.2015.03.016
http://dx.doi.org/10.1016/j.ebiom.2015.03.016
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0005
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0005
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0005
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0010
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0010
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0010
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0015
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0015
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0020
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0020
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0025
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0025
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0030
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0030
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0035
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0035
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0040
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0040
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0040
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0045
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0045
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0045
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0045
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0050
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0050
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0050
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0055
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0055
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0060
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0060
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0065
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0065
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0065
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0070
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0070
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0070


405L. Yang et al. / EBioMedicine 2 (2015) 396–405
Hirsh, J., Raschke, R., 2004. Heparin and low-molecular-weight heparin: the seventh ACCP
conference on antithrombotic and thrombolytic therapy. Chest 126, 188S–203S.

Holbro, T., Beerli, R.R., Maurer, F., Koziczak, M., Barbas 3rd, C.F., Hynes, N.E., 2003. The
ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to
drive breast tumor cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 100, 8933–8938.

Hynes, N.E., Lane, H.A., 2005. ERBB receptors and cancer: the complexity of targeted
inhibitors. Nat. Rev. Cancer 5, 341–354.

Incorvati, J.A., Shah, S., Mu, Y., Lu, J., 2013. Targeted therapy for HER2 positive breast
cancer. J. Hematol. Oncol. 6, 38.

Junttila, T.T., Laato, M., Vahlberg, T., Soderstrom, K.O., Visakorpi, T., Isola, J., Elenius, K.,
2003. Identification of patients with transitional cell carcinoma of the bladder overex-
pressing ErbB2, ErbB3, or specific ErbB4 isoforms: real-time reverse transcription-
PCR analysis in estimation of ErbB receptor status from cancer patients. Clin. Cancer
Res. 9, 5346–5357.

Junttila, T.T., Akita, R.W., Parsons, K., Fields, C., Lewis Phillips, G.D., Friedman, L.S.,
Sampath, D., Sliwkowski, M.X., 2009. Ligand-independent HER2/HER3/PI3K complex
is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor
GDC-0941. Cancer Cell 15, 429–440.

Kir, Z.O., Oner, P., Iyidogan, Y.O., Turkmen, S., Kocak, H., Koser, M., Kucucuk, S.O., 2003.
Serum prolidase I activity and some bone metabolic markers in patients with breast
cancer: in relation to menopausal status. Clin. Biochem. 36, 289–294.

Kitchener, R.L., Grunden, A.M., 2012. Prolidase function in proline metabolism and its
medical and biotechnological applications. J. Appl. Microbiol. 113, 233–247.

Kumar, R., Mandal, M., Lipton, A., Harvey, H., Thompson, C.B., 1996. Overexpression of
HER2 modulates bcl-2, bcl-XL, and tamoxifen-induced apoptosis in human MCF-7
breast cancer cells. Clin. Cancer Res. 2, 1215–1219.

Lassus, H., Leminen, A., Vayrynen, A., Cheng, G., Gustafsson, J.A., Isola, J., Butzow, R., 2004.
ERBB2 amplification is superior to protein expression status in predicting patient
outcome in serous ovarian carcinoma. Gynecol. Oncol. 92, 31–39.

Leahy, D.J., 2004. Structure and function of the epidermal growth factor (EGF/ErbB) family
of receptors. Adv. Protein Chem. 68, 1–27.

Ledoux, P., Scriver, C.R., Hechtman, P., 1996. Expression and molecular analysis of
mutations in prolidase deficiency. Am. J. Hum. Genet. 59, 1035–1039.

Lin, L., Bivona, T.G., 2012. Mechanisms of resistance to epidermal growth factor receptor
inhibitors and novel therapeutic strategies to overcome resistance in NSCLC patients.
Chemother. Res. Pract. 2012, 817297.

Martin-Perez, R., Palacios, C., Yerbes, R., Cano-Gonzalez, A., Iglesias-Serret, D., Gil, J.,
Reginato, M.J., Lopez-Rivas, A., 2014. Activated ERBB2/HER2 licenses sensitivity to
apoptosis upon endoplasmic reticulum stress through a PERK-dependent pathway.
Cancer Res. 74, 1766–1777.

Muthuswamy, S.K., Siegel, P.M., Dankort, D.L., Webster, M.A., Muller, W.J., 1994. Mamma-
ry tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase
activity. Mol. Cell. Biol. 14, 735–743.

Nagata, Y., Lan, K.H., Zhou, X., Tan, M., Esteva, F.J., Sahin, A.A., Klos, K.S., Li, P., Monia, B.P.,
Nguyen, N.T., et al., 2004. PTEN activation contributes to tumor inhibition by
trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer
Cell 6, 117–127.

Petry, I.B., Fieber, E., Schmidt, M., Gehrmann, M., Gebhard, S., Hermes, M., Schormann,W.,
Selinski, S., Freis, E., Schwender, H., et al., 2010. ERBB2 induces an antiapoptotic
expression pattern of Bcl-2 family members in node-negative breast cancer. Clin.
Cancer Res. 16, 451–460.

Pohlmann, P.R., Mayer, I.A., Mernaugh, R., 2009. Resistance to trastuzumab in breast
cancer. Clin. Cancer Res. 15, 7479–7491.
Ren, Z., Schaefer, T.S., 2002. ErbB-2 activates Stat3 alpha in a Src- and JAK2-dependent
manner. J. Biol. Chem. 277, 38486–38493.

Romond, E.H., Perez, E.A., Bryant, J., Suman, V.J., Geyer Jr., C.E., Davidson, N.E., Tan-Chiu, E.,
Martino, S., Paik, S., Kaufman, P.A., et al., 2005. Trastuzumab plus adjuvant chemo-
therapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684.

Ross, J.S., Slodkowska, E.A., Symmans, W.F., Pusztai, L., Ravdin, P.M., Hortobagyi, G.N.,
2009. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 thera-
py and personalized medicine. Oncologist 14, 320–368.

Saffari, B., Jones, L.A., el-Naggar, A., Felix, J.C., George, J., Press, M.F., 1995. Amplification
and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: correlation
with overall survival. Cancer Res. 55, 5693–5698.

Sendur, M.A., Aksoy, S., Altundag, K., 2013. Cardiotoxicity of novel HER2-targeted
therapies. Curr. Med. Res. Opin. 29, 1015–1024.

Sheffield, L.G., 1998. C-Src activation by ErbB2 leads to attachment-independent growth
of human breast epithelial cells. Biochem. Biophys. Res. Commun. 250, 27–31.

Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., McGuire, W.L., 1987. Human
breast cancer: correlation of relapse and survival with amplification of the HER-2/
neu oncogene. Science 235, 177–182.

Spencer, K.S., Graus-Porta, D., Leng, J., Hynes, N.E., Klemke, R.L., 2000. ErbB2 is necessary
for induction of carcinoma cell invasion by ErbB family receptor tyrosine kinases.
J. Cell Biol. 148, 385–397.

Spiridon, C.I., Guinn, S., Vitetta, E.S., 2004. A comparison of the in vitro and in vivo
activities of IgG and F(ab′)2 fragments of a mixture of three monoclonal anti-Her-2
antibodies. Clin. Cancer Res. 10, 3542–3551.

Surazynski, A., Donald, S.P., Cooper, S.K., Whiteside, M.A., Salnikow, K., Liu, Y., Phang, J.M.,
2008. Extracellular matrix and HIF-1 signaling: the role of prolidase. Int. J. Cancer 122,
1435–1440.

Surazynski, A., Miltyk, W., Prokop, I., Palka, J., 2010. Prolidase-dependent regulation of
TGF beta (corrected) and TGF beta receptor expressions in human skin fibroblasts.
Eur. J. Pharmacol. 649, 115–119.

Tanner, M., Hollmen, M., Junttila, T.T., Kapanen, A.I., Tommola, S., Soini, Y., Helin, H., Salo,
J., Joensuu, H., Sihvo, E., et al., 2005. Amplification of HER-2 in gastric carcinoma:
association with Topoisomerase IIalpha gene amplification, intestinal type, poor
prognosis and sensitivity to trastuzumab. Ann. Oncol. 16, 273–278.

Vogel, C.L., Cobleigh, M.A., Tripathy, D., Gutheil, J.C., Harris, L.N., Fehrenbacher, L., Slamon,
D.J., Murphy, M., Novotny, W.F., Burchmore, M., et al., 2002. Efficacy and safety of
trastuzumab as a single agent in first-line treatment of HER2-overexpressing
metastatic breast cancer. J. Clin. Oncol. 20, 719–726.

Yang, L., Li, Y., Ding, Y., Choi, K.S., Kazim, A.L., Zhang, Y., 2013. Prolidase directly binds and
activates epidermal growth factor receptor and stimulates downstream signaling.
J. Biol. Chem. 288, 2365–2375.

Yang, L., Li, Y., Zhang, Y., 2014. Identification of prolidase as a high affinity ligand of the
ErbB2 receptor and its regulation of ErbB2 signaling and cell growth. Cell Death Dis.
5, e1211.

Yonesaka, K., Zejnullahu, K., Okamoto, I., Satoh, T., Cappuzzo, F., Souglakos, J., Ercan, D.,
Rogers, A., Roncalli, M., Takeda, M., et al., 2011. Activation of ERBB2 signaling causes
resistance to the EGFR-directed therapeutic antibody cetuximab. Sci. Transl. Med. 3,
99ra86.

Zhang, S., Huang, W.C., Li, P., Guo, H., Poh, S.B., Brady, S.W., Xiong, Y., Tseng, L.M., Li, S.H.,
Ding, Z., et al., 2011. Combating trastuzumab resistance by targeting SRC, a common
node downstream of multiple resistance pathways. Nat. Med. 17, 461–469.

http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0075
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0075
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0080
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0080
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0080
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0085
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0085
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0090
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0090
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0095
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0095
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0095
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0095
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0100
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0100
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0100
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0105
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0105
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0110
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0110
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0115
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0115
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0115
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0120
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0120
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0125
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0125
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0130
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0130
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0135
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0135
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0135
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0140
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0140
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0140
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0145
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0145
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0145
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0150
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0150
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0150
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0155
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0155
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0155
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0160
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0160
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0165
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0165
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0170
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0170
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0175
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0175
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0180
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0180
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0180
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0185
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0185
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0190
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0190
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0195
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0195
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0195
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0200
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0200
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0200
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0205
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0205
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0205
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0210
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0210
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0215
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0215
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0215
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0220
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0220
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0220
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0225
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0225
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0225
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0230
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0230
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0230
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0235
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0235
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0235
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0240
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0240
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0240
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0245
http://refhub.elsevier.com/S2352-3964(15)00083-3/rf0245

	Inhibition of ERBB2-�overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant
	1. Introduction
	2. Materials and Methods
	2.1. Biochemicals, Cell Lines and Reagents
	2.2. Tumor Xenograft Study in Mice
	2.3. Measurement of Plasma PEPD and Plasma sERBB2
	2.4. Measurement of SRC Activity and PI3K Activity
	2.5. Plasmids and Gene Transfection
	2.6. Immunoprecipitation and Immunoblotting
	2.7. Statistical Analysis

	3. Results
	3.1. rhPEPD Inhibits Tumor Growth, but ERBB2 Overexpression Is Critical for rhPEPD Efficacy
	3.2. A Dipeptidase-deficient rhPEPD Mutant Is Superior to Wild-type rhPEPD for Tumor Inhibition
	3.3. The Molecular Changes in the Tumor Tissues after Treatment with rhPEPD or rhPEPDG278D
	3.4. The Effects of rhPEPD and rhPEPDG278D on ERBB1 and ERBB1-ERBB2 Heterodimer Interaction
	3.5. rhPEPD and rhPEPDG278D Disrupt ERBB2-ERBB3 Heterodimer Interaction

	4. Discussion
	Author Contributions
	Conflict of Interest
	Acknowledgments
	Appendix A. Supplementary data
	References


