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Abstract

In this paper, we propose a Bayesian approach to inference on multiple Gaussian graphical 

models. Specifically, we address the problem of inferring multiple undirected networks in 

situations where some of the networks may be unrelated, while others share common features. We 

link the estimation of the graph structures via a Markov random field (MRF) prior which 

encourages common edges. We learn which sample groups have a shared graph structure by 

placing a spike-and-slab prior on the parameters that measure network relatedness. This approach 

allows us to share information between sample groups, when appropriate, as well as to obtain a 

measure of relative network similarity across groups. Our modeling framework incorporates 

relevant prior knowledge through an edge-specific informative prior and can encourage similarity 

to an established network. Through simulations, we demonstrate the utility of our method in 

summarizing relative network similarity and compare its performance against related methods. We 

find improved accuracy of network estimation, particularly when the sample sizes within each 

subgroup are moderate. We also illustrate the application of our model to infer protein networks 

for various cancer subtypes and under different experimental conditions.
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1 Introduction

Graphical models, which describe the conditional dependence relationships among random 

variables, have been widely applied in genomics and proteomics to infer various types of 

networks, including co-expression, gene regulatory, and protein interaction networks 

(Friedman, 2004; Dobra et al., 2004; Mukherjee and Speed, 2008; Stingo et al., 2010; 

Telesca et al., 2012). Here we address the problem of inferring multiple undirected networks 

in situations where some networks may be unrelated, while others may have a similar 

structure. This problem relates to applications where we observe data collected under 

various conditions. In such situations, using the pooled data as the basis for inference of a 

single network may lead to the identification of spurious relationships, while performing 

inference separately for each group effectively reduces the sample size. Instead, we propose 

a joint inference method that infers a separate graphical model for each group but allows for 

shared structures, when supported by the data. Our approach not only allows estimation of a 
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graphical model for each sample group, but also provides insights on how strongly the graph 

structures for any two sample groups are related.

Some approaches for inferring graphical models for two or more sample groups have been 

proposed in recent years. Guo et al. (2011) extend the graphical lasso to multiple undirected 

graphs by expressing the elements of the precision matrix for each group as a product of 

common and group-specific factors. In their optimization criterion, they incorporate an ℓ1 

penalty on the common factors, to create a sparse shared structure, and a second ℓ1 penalty 

on the group-specific factors, to allow edges included in the shared structure to be set to zero 

for specific groups. Danaher et al. (2013) propose a more general framework that uses 

convex penalties and explore in detail the properties of two specific penalty structures: the 

fused graphical lasso, which encourages both shared structure and shared edge values, and 

the group graphical lasso, which results in shared graph structures but not shared edge 

values. As for Bayesian approaches, Yajima et al. (2012) propose a Bayesian method to 

estimate Gaussian directed graphs for related samples. Focusing mainly on the case of two 

sample groups, the authors treat one group as the baseline and express the strength of 

association between two variables in the differential group as the sum of the strength in the 

baseline group plus a differential parameter.

In this paper, we formulate an alternative Bayesian approach to the problem of multiple 

network inference. We link estimation of the graph structures via a Markov random field 

(MRF) prior which encourages common structures. This prior favors the inclusion of an 

edge in the graph for a particular group if the same edge is included in the graphs of related 

sample groups. Unlike the approaches mentioned above, we do not assume that all 

subgroups are related. Instead, we learn which sample groups have a shared graph structure 

by placing a spike-and-slab prior on parameters that measure network relatedness. The 

posterior probabilities of inclusion for these parameters summarize the networks’ similarity. 

This formulation allows us to share information between sample groups only when 

appropriate. Our framework also allows for the incorporation of relevant prior knowledge 

through an edge-specific informative prior. This approach enables borrowing of strength 

across related sample groups and can encourage similarity to an established network. 

Through simulations, we demonstrate the utility of our method in summarizing relative 

network similarity and compare its performance against related methods. We find improved 

accuracy of network estimation, particularly when the sample sizes within each subgroup are 

moderate. We also illustrate the application of our model to infer protein networks for 

various cancer subtypes and under different experimental conditions. In such applications, a 

measure of network similarity helps determine if treatments that are successful for one 

subtype are likely to be effective in another, while the differential edges between networks 

highlight potential targets for treatments specific to each group.

The rest of the paper is organized as follows. Section 2 below provides background on 

graphical models and on Bayesian methods for estimation. Section 3 presents the model and 

the construction of the priors. Section 4 addresses posterior inference, including the Markov 

chain Monte Carlo method. Section 5 includes the simulations and Section 6 demonstrates 

the application of our method on two case studies on protein networks. Section 7 concludes 

the paper.
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2 Background

2.1 Graphical models

Graphical models use a graph G to represent conditional dependence relationships among 

random variables. A graph G = (V, E) specifies a set of vertices V = {1, 2, … , p} and a set 

of edges E ⊂ V × V. In a directed graph, edges are denoted by ordered pairs (i, j) ∈ E. In an 

undirected graph, (i, j) ∈ E if and only if (j, i) ∈ E. For an overview of graphical models in 

statistics, see Lauritzen (1996). We focus here on undirected graphical models, also known 

as Markov random fields. In this class of models, each vertex in the graph G corresponds to 

a random variable. The absence of an edge between two vertices means that the two 

corresponding variables are conditionally independent given the remaining variables, while 

an edge is included whenever the two variables are conditionally dependent.

In Gaussian graphical models (GGMs), also known as covariance selection models 

(Dempster, 1972), the conditional independence relationships correspond to constraints on 

the precision matrix Ω = Σ−1 of the multivariate normal distribution

(2.1)

with xi ∈ ℝ p the vector of observed data for subject i, μ ∈ ℝ p the mean vector, and Ω ∈ ℝ p 

× ℝ p a positive definite symmetric matrix. The multivariate normal is parametrized here in 

terms of the precision matrix Ω rather than the covariance matrix Σ since there is a 

correspondence between the conditional dependence graph G and the structure of Ω. 

Specifically, the precision matrix Ω is constrained to the cone of symmetric positive definite 

matrices with off-diagonal entry ωij equal to zero if there is no edge in G between vertex i 

and vertex j.

Many of the estimation techniques for GGMs rely on the assumption of sparsity in the 

precision matrix, which is a realistic assumption for many real-world applications including 

inference of biological networks. Regularization methods are a natural approach to inference 

of a sparse precision matrix. The most popular of these is the graphical lasso (Meinshausen 

and Bühlmann, 2006; Yuan and Lin, 2007; Friedman et al., 2008), which uses an ℓ1 penalty 

on the off-diagonal entries of the precision matrix to achieve sparsity in estimation of the 

graph structure. Among Bayesian approaches, the Bayesian graphical lasso, proposed as the 

Bayesian analogue to the graphical lasso, places double exponential priors on the off-

diagonal entries of the precision matrix (Wang, 2012; Peterson et al., 2013). Estimation of a 

sparse graph structure using the Bayesian graphical lasso is not straightforward, however, 

since the precision matrices sampled from the posterior distribution do not contain exact 

zeros.

2.2 G-Wishart prior framework

Bayesian approaches to graphical models which enforce exact zeros in the precision matrix 

have been proposed by Roverato (2002), Jones et al. (2005), and Dobra et al. (2011). In 

Bayesian analysis of multivariate normal data, the standard conjugate prior for the precision 

matrix Ω is the Wishart distribution. Equivalently, one can specify that the covariance matrix 

Peterson et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2015 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Σ = Ω−1 follows the Inverse-Wishart distribution. Early work (Dawid and Lauritzen, 1993; 

Giudici and Green, 1999) focused on restrictions of the Inverse-Wishart to decomposable 

graphs, which have the special property that all prime components are complete. The 

assumption of decomposability greatly simplifies computation, but is artificially restrictive 

for the inference of real world networks. To address this limitation, Roverato (2002) 

proposed the G-Wishart prior as the conjugate prior for arbitrary graphs. The G-Wishart is 

the Wishart distribution restricted to the space of precision matrices with zeros specified by 

a graph G which may be either decomposable or non-decomposable. The G-Wishart density 

WG(b, D) can be written as

where b > 2 is the degrees of freedom parameter, D is a p × p positive definite symmetric 

matrix, IG is the normalizing constant, and PG is the set of all p × p positive definite 

symmetric matrices with ωij = 0 if and only if (i, j) ∉ E. Although this formulation is more 

flexible for modeling, it introduces computational difficulties because both the prior and the 

posterior normalizing constants are intractable. Jones et al. (2005) and Lenkoski and Dobra 

(2011) simplify the problem by integrating out the precision matrix. Dobra et al. (2011) 

propose a reversible jump algorithm to sample over the joint space of graphs and precision 

matrices that does not scale well to large graphs. Wang and Li (2012) propose a sampler 

which does not require proposal tuning and circumvents computation of the prior 

normalizing constant through the use of the exchange algorithm, improving both the 

accuracy and efficiency of computation.

3 Proposed model

Our goal is to infer a graph structure and obtain an estimate of the precision matrix 

describing the relationships among variables within each of K possibly related sample 

groups. These networks are complex systems and may be difficult to infer using separate 

estimation procedures when the sample size for any of the subgroups is small. Our approach 

addresses this issue by allowing the incorporation of relevant prior knowledge and the 

sharing of information across subgroups, when appropriate. In addition, our method allows 

comparison of the relative network similarity across the groups, providing a pairwise 

assessment of graph relatedness.

3.1 Likelihood

We let Xk represent the nk × p matrix of observed data for sample group k, where k = 1, 2, 

… , K. We assume that the same p random variables are measured across all groups, but 

allow the sample sizes nk to differ. Assuming that the samples are independent and 

identically distributed within each group, the likelihood of the data for subject i in group k 

can be written as
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(3.1)

where μk ∈ ℝ p is the mean vector for the kth group, and the precision matrix for the kth 

group Ωk is a symmetric positive definite matrix constrained by a graph Gk specific to that 

group. The graph Gk for sample group k can be represented as a symmetric binary matrix 

where the off-diagonal entry gk,ij indicates the inclusion of edge (i, j) in Gk. The inclusion of 

edge (i, j) in graphs 1, … , K is represented by the binary vector gij = (g1,ij, … , gK,ij)T.

3.2 Markov random field prior linking graphs

We define a Markov random field (MRF) prior on the graph structures that encourages the 

selection of the same edges in related graphs. This prior does not require the assumption of 

Gaussianity, and it is sufficiently general that it could be applied to models using any type of 

undirected graph.

MRF priors have previously been used to model the relationships among covariates in the 

context of Bayesian variable selection (Li and Zhang, 2010; Stingo and Vannucci, 2011). 

Our MRF prior follows a similar structure, but replaces indicators of variable inclusion with 

indicators of edge inclusion. The probability of the binary vector of edge inclusion 

indicators gij, where 1 ≤ i < j ≤ p, is given by

(3.2)

where 1 is the unit vector of dimension K, νij is a parameter specific to each set of edges gij, 

and Θ is a K × K symmetric matrix representing the pairwise relatedness of the graphs for 

each sample group. The diagonal entries of Θ are set to zero, and the off-diagonal entries 

which are nonzero represent connections between related networks. To help visualize the 

model formulation, Figure 1 shows a supergraph Θ for three sample groups.

The normalizing constant in equation (3.2) is defined as

(3.3)

From equation (3.2), we can see that the prior probability that edge (i, j) is absent from all K 

graphs simultaneously is

Although the normalizing constant involves an exponential number of terms in K, for most 

settings of interest the number of sample groups K is reasonably small and the computation 

is straightforward. For example, if K = 2 there are 2K = 4 possible values that gij can take 

and equation (3.2) then simplifies to
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(3.4)

The joint prior on the graphs (G1, G2, … GK) is the product of the densities for each edge:

(3.5)

where ν = {νij|1 ≤ i < j ≤ p}. Under this prior, the conditional probability of the inclusion of 

edge (i, j) in Gk, given the inclusion of edge (i, j) in the remaining graphs, is

(3.6)

Parameters Θ and ν influence the prior probability of selection for edges in the graphs G1, 

… , GK. In the variable selection setting, Scott and Berger (2010) find that a fixed prior 

probability of variable inclusion offers no correction for multiple testing. Although we are 

selecting edges rather than variables, a similar idea holds here. We therefore impose prior 

distributions on ν and Θ to reduce the false selection of edges. This approach is also more 

informative since we obtain posterior estimates of these parameters which reflect 

information learned from the data.

3.3 Selection prior on network similarity

As previously discussed, the matrix Θ represents a supergraph with nonzero off-diagonal 

entries θkm indicating that the networks for sample group k and sample group m are related. 

The magnitude of the parameter θkm measures the pairwise similarity between graphs Gk and 

Gm. A complete supergraph reflects that all the inferred networks are related. For other 

cases, some of the networks will be related while others may be different enough to be 

considered independent. We learn the structure of this supergraph from the data. Our 

approach has the flexibility to share information between groups when appropriate, but not 

enforce similarity when the networks are truly different.

We place a spike-and-slab prior on the off-diagonal entries θkm. See George and Mc-Culloch 

(1997) for a discussion of the properties of this prior. Here we want the “slab” portion of the 

mixture to be defined on a positive domain since θkm takes on positive values for related 

networks. Given this restriction on the domain, we want to choose a density which allows 

good discrimination between zero and nonzero values of θkm. Johnson and Rossell (2010, 

2012) demonstrate improved model selection performance when the alternative prior is non-

local in the sense that the density function for the alternative is identically zero for null 

values of the parameter. Since the probability density function Gamma(x|α, β) with α > 1 is 

equal to zero at the point x = 0 and is nonzero on the domain x > 0, an appropriate choice for 

the “slab” portion of the mixture prior is the Gamma(x|α, β) density with α > 1.
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We formalize our prior by using a latent indicator variable γkm to represent the event that 

graphs k and m are related. The mixture prior on θkm can then be written in terms of the 

latent indicator as

(3.7)

where Γ(·) represents the Gamma function and α and β are fixed hyperparameters. As there 

are no constraints on the structure of Θ (such as positive definiteness), the θkm’s are 

variation independent and the joint prior on the off-diagonal entries of Θ is the product of 

the marginal densities:

(3.8)

We place independent Bernoulli priors on the latent indicators

(3.9)

where w is a fixed hyperparameter in [0, 1]. We denote the joint prior as

(3.10)

3.4 Edge-specific informative prior

The parameter ν from the prior on the graphs given in equation (3.5) can be used both to 

encourage sparsity of the graphs G1, … , GK and to incorporate prior knowledge on 

particular connections. Equation (3.2) shows that negative values of νij reduce the prior 

probability of the inclusion of edge (i, j) in all graphs Gk. A prior which favors smaller 

values for ν therefore reflects a preference for model sparsity, an attractive feature in many 

applications since it reduces the number of parameters to be estimated and produces more 

interpretable results.

Since larger values of νij make edge (i, j) more likely to be selected in each graph k 

regardless of whether it has been selected in other graphs, prior network information can be 

incorporated into the model through an informative prior on νij. Given a known reference 

network G0, we define a prior that encourages higher selection probabilities for edges 

included in G0. When θkm is 0 for all m ≠ k or no edges gm,ij are selected for nonzero θkm, 

then the probability of inclusion of edge (i, j) in Gk can be written as

(3.11)

Peterson et al. Page 7

J Am Stat Assoc. Author manuscript; available in PMC 2015 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We impose a prior on qij that reflects the belief that graphs Gk which are similar to the 

reference network G0 = (V, E0) are more likely than graphs which have many different 

edges,

(3.12)

where c > 0. This determines a prior on νij since νij = logit(qij). After applying a univariate 

transformation of variables to the Beta(a, b) prior on qij, the prior on νij can be written as

(3.13)

where B(·) represents the beta function.

In cases where no prior knowledge on the graph structure is available a prior that favors 

lower values, such as qij ~ Beta(1, 4) for all edges (i, j), can be chosen to encourage overall 

sparsity. To account for the prior belief that most edges are missing in all graphs while the 

few edges that are present in any one graph tend to be present in all other graphs, a prior 

favoring even smaller values of νij could be coupled with a prior favoring larger values for 

θkm.

3.5 Completing the model

The prior on the mean vector μk in model (3.1) is the conjugate prior

(3.14)

where λ0 > 0, for k = 1, 2, … , K. For the prior on the precision matrix Ωk we choose the G-

Wishart distribution WG(b, D),

(3.15)

for k = 1, 2, … K. This prior restricts Ωk to the cone of symmetric positive definite matrices 

with ωk,ij equal to zero for any edge (i, j) ∉ Gk, where Gk may be either decomposable or 

non-decomposable. In applications we use the noninformative setting b = 3 and D = Ip. 

Higher values of the degrees of freedom parameter b reflect a larger weight given to the 

prior, so a prior setting with b > 3 and D = c · Ip for c > 1 could be chosen to further enforce 

sparsity of the precision matrix.

4 Posterior inference

Let Ψ denote the set of all parameters and X denote the observed data for all sample groups. 

We can write the joint posterior as
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(4.1)

Since this distribution is analytically intractable, we construct a Markov chain Monte Carlo 

(MCMC) sampler to obtain a posterior sample of the parameters of interest.

4.1 MCMC sampling scheme

At the top level, our MCMC scheme is a block Gibbs sampler in which we sample the 

network specific parameters Ωk and Gk from their posterior full conditionals. As described in 

Section 2, a joint search over the space of graphs and precision matrices poses 

computational challenges. To sample the graph and precision matrix for each group, we 

adapt the method of Wang and Li (2012), which does not require proposal tuning and 

circumvents the computation of the prior normalizing constant. We then sample the graph 

similarity and selection parameters Θ and γ from their conditional posterior distributions by 

using a Metropolis-Hastings approach that incorporates both between-model and within-

model moves, similar in spirit to the sampler proposed in Gottardo and Raftery (2008). This 

step is equivalent to a reversible jump. Finally, we sample the sparsity parameters ν from 

their posterior conditional distribution using a standard Metropolis-Hastings step.

Our MCMC algorithm, which is described in detail in Appendix A, can be summarized as 

follows. At iteration t:

• Update the graph  and precision matrix  for each group k = 1, … , K

• Update the parameters for network relatedness  and  for 1 ≤ k < m ≤ K

•
Update the edge-specific parameters  for 1 ≤ i < j ≤ p

4.2 Posterior inference and model selection

One approach for selecting the graph structure for each group is to use the maximum a 

posteriori (MAP) estimate, which represents the mode of the posterior distribution of 

possible graphs for each sample group. This approach, however, is not generally feasible 

since the space of possible graphs is quite large and any particular graph may be 

encountered only a few times in the course of the MCMC sampling. A more practical 

solution is to select the edges marginally. Although networks cannot be reconstructed just by 

looking at the marginal edge inclusion probabilities, this approach provides an effective way 

to communicate the uncertainty over all possible connections in the network.

To carry out edge selection, we estimate the posterior marginal probability of edge inclusion 

for each edge gk,ij as the proportion of MCMC iterations after the burn-in in which edge (i, j) 

was included in graph Gk. For each sample group, we then select the set of edges that appear 

with marginal posterior probability (PPI) > 0.5. Although this rule was proposed by Barbieri 

and Berger (2004) in the context of prediction rather than structure discovery, we found that 

it resulted in a reasonable expected false discovery rate (FDR). Following Newton et al. 
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(2004), we let ξk,ij represent 1 - the marginal posterior probability of inclusion for edge (i, j) 

in graph k. Then the expected FDR for some bound

(4.2)

where 1 is the indicator function. In the current work, we found that κ = 0.5 resulted in a 

reasonable posterior expected FDR, so we retain this fixed threshold. An alternative 

approach is to select κ so that the posterior expected FDR is below a desired level, often 

0.05. Since the FDR is a monotone function of κ, this selection process is straightforward. 

We also compute the receiver operating characteristic (ROC) curve and the corresponding 

area under the curve (AUC) to examine the selection performance of the model under 

varying PPI thresholds.

Since comparison of edges across graphs is an important focus of our model, we also 

consider the problem of learning differential edges. We consider an edge to be differential if 

the true value of |gk,ij–gm,ij| is 1, which reflects that edge (i, j) is included in either Gk or Gm 

but not both. We compute the posterior probability of difference P(|gk,ij–gm,ij| = 1|X) as the 

proportion of MCMC iterations after the burn-in in which edge (i, j) was included in graph 

Gk or graph Gm but not both. In addition to the inference focusing on individual edges and 

their differences, the posterior probability of inclusion of the indicator γkm provides a broad 

measure of the similarity of graphs k and m which reflects the utility of borrowing of 

strength between the groups.

The posterior estimates of νij provide another interesting summary as they reflect the 

preference for edge (i, j) in a given graph based on both the prior distribution for νij and the 

sampled values for gk,ij for k = 1, …K. As discussed in the prior construction given in 

Section 3.4, the parameter qij, defined in equation (3.11) as the inverse logit of νij, may be 

reasonably interpreted as a lower bound on the marginal probability of edge (i, j) in a given 

graph, since the MRF prior linking graphs can only increase edge probability. The utility of 

posterior estimates of qij in illustrating the uncertainty around inclusion of edge (i, j) is 

demonstrated in Section 5.1.

5 Simulations

We include two simulation studies which highlight key features of our model. In the first 

simulation, we illustrate our approach to inference of graphical models across sample groups 

and demonstrate estimation of all parameters of interest. In the second simulation, we show 

that our method outperforms competing methods in learning graphs with related structure.

5.1 Simulation study to assess parameter inference

In this simulation, we illustrate posterior inference using simulated data sets with both 

related and unrelated graph structures. We construct four precision matrices Ω1, Ω2, Ω3, and 

Ω4 corresponding to graphs G1, G2, G3 and G4 with different degrees of shared structure. 

We include p = 20 nodes, so there are p · (p − 1)/2 = 190 possible edges. The precision 
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matrix Ω1 is set to the p×p symmetric matrix with entries ωi,i = 1 for i = 1, …, 20, entries 

ωi,i+1 = ωi+1,i = 0.5 for i = 1, …, 19, and ωi,i+2 = ωi+2,i = 0.4 for i = 1, …, 18. This represents 

an AR(2) model. To construct Ω2, we remove 5 edges at random by setting the 

corresponding nonzero entries in Ω1 to 0, and add 5 edges at random by replacing zeros in 

Ω1 with values sampled from the uniform distribution on {[−0.6, −0.4] ∪ [0.4, 0.6]}. To 

construct Ω3, we remove 10 edges in both Ω1 and Ω2, and add 10 new edges present in 

neither Ω1 nor Ω2 in the same manner. To construct Ω4, we remove the remaining 22 

original edges shared by Ω1, Ω2 and Ω3 and add 22 edges which are present in none of the 

first three graphs. The resulting graph G4 has no edges in common with G1. In order to 

ensure that the perturbed precision matrices are positive definite, we use an approach similar 

to that of Danaher et al. (2013) in which we divide each off-diagonal element by the sum of 

the off-diagonal elements in its row, and then average the matrix with its transpose. This 

procedure results in Ω2, Ω3 and Ω4 which are symmetric and positive definite, but include 

entries of smaller magnitude than Ω1, and therefore somewhat weaker signal.

The graph structures for the four groups are shown in Figure 2. All four graphs have the 

same degree of sparsity, with 37/190 = 19.47% of possible edges included, but different 

numbers of overlapping edges. The proportion of edges shared pairwise between graphs is

We generate random normal data using Ω1, …, Ω4 as the true precision matrices by drawing 

a random sample Xk of size n = 100 from the distribution  for k = 1, …, 4. In the 

prior specification, we use a Gamma(α, β) density with α = 2 and β = 5 for the slab portion 

of the mixture prior defined in equation (3.7). As discussed in Section 3.3, the choice of α > 

1 results in a non-local prior. We would not only like the density to be zero at θkm = 0 to 

allow better discrimination between zero and nonzero values, but would also like to avoid 

assigning weight to large values of θkm. As discussed in Li and Zhang (2010), Markov 

random field priors exhibit a phase transition in which larger values of parameter rewarding 

similarity lead to a sharp increase in the size of the selected model. For this reason, β = 5, 

which results in a prior with mean 0.4 such that P(θkm ≤ 1) = 0.96, is a reasonable choice. To 

reflect a strong prior belief that the networks are related, we set the hyperparameter w = 0.9 

in the Bernoulli prior on the latent indicator of network relatedness γkm given in equation 

(3.9). We fix the parameters a and b in the prior on νij defined in equation (3.13) to a = 1 

and b = 4 for all pairs (i, j). This choice of a and b leads to a prior probability of edge 

inclusion of 20%, which is close to the true sparsity level.

To obtain a sample from the posterior distribution, we ran the MCMC sampler described in 

Section 4 with 10,000 iterations as burn-in and 20,000 iterations as the basis of inference. 

Figure 3 shows the traces of the number of edges included in the graphs G1, …, G4. These 
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plots show good mixing around a stable model size. Trace plots for the remaining 

parameters (not shown) also showed good mixing and no strong trends.

The marginal posterior probability of inclusion (PPI) for the edge gk,ij can be estimated as 

the percentage of MCMC samples after the burn-in period where edge (i, j) was included in 

graph k. The heat maps for the marginal PPIs of edge inclusion in each of the four simulated 

graphs are shown in Figure 4. The patterns of high-probability entries in these heat maps 

clearly reflect the true graph structures depicted in Figure 2. To assess the accuracy of graph 

structure estimation, we computed the true positive rate (TPR) and false positive rate (FPR) 

of edge selection using a threshold of 0.5 on the PPIs. The TPR is 1.00 for group 1, 0.78 for 

group 2, 0.68 for group 3, and 0.57 for group 4. The FPR is 0.00 for group 1, 0.01 for group 

2, 0.01 for group 3, and 0.01 for group 4. The TPR is highest in group 1 because the 

magnitudes of the nonzero entries in Ω1 are greater than those of the other precision matrices 

due to the way these matrices were generated. The overall expected FDR for edge selection 

is 0.051. The TPR of differential edge selection is 0.73, and the FPR is 0.04. The expected 

FDR for differential edge selection is 0.13.

The ROC curves showing the performance of edge selection for each group under varying 

thresholds for the marginal PPI are shown in Figure 5. The AUC was a perfect 1.00 for 

group 1, 0.996 for group 2, 0.96 for group 3, and 0.94 for group 4. The overall high AUC 

values demonstrate that the marginal posterior probabilities of edge inclusion provide an 

accurate basis for graph structure learning. The lower AUC for group 4 reflects the fact that 

G4 has the least shared network structure and does not benefit as much from the prior 

linking the graph estimation across the groups. The AUC for differential edge detection is 

0.94. This result demonstrates that although our model favors shared structure across graphs, 

it is reasonably robust to the presence of negative association.

To assess estimation of the precision matrices Ω1, …, Ω4, we computed the 95% posterior 

credible intervals (CIs) for each entry based on the quantiles of the MCMC samples. 

Overall, 96.7% of the CIs for the elements ωk,ij where i ≤ j and k = 1, …, 4 contained the 

true values.

To illustrate posterior inference of the parameter νij in equation (3.5), in Figure 6 we provide 

empirical posterior distributions of qij, the inverse logit of νij defined in equation (3.11), for 

edges included in different numbers of the true graphs G1, …, G4. Each curve represents the 

pooled sampled values of qij for all edges (i, j) included in the same number of graphs. Since 

there are no common edges between G1 and G4, any edge is included in at most 3 graphs. As 

discussed in Section 3.4, the values of qij are a lower bound on the marginal probability of 

edge inclusion. From this plot, we can see that the inclusion of an edge in a larger number of 

the simulated graphs results in a posterior density for qij shifted further away from 0, as one 

would expect. The means of the sampled values for qij for edges included in 0, 1, 2 or 3 

simulated graphs are 0.11, 0.18, 0.25, and 0.35, respectively.

We can also obtain a Rao-Blackwellized estimate of the marginal probability of the 

inclusion of edge (i, j) in a graph k by computing the probabilities p(gij |νij,Θ) defined in 

equation (3.2) given the sampled values of νij and Θ. This results in marginal edge inclusion 
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probabilities for edges included in 0, 1, 2 or 3 simulated graphs of 0.13, 0.22, 0.31, and 0.44. 

By comparing these estimates to the values for qij given above, we can see the impact of the 

prior encouraging shared structure in increasing the marginal edge probabilities. A more 

direct estimate of the number of groups in which in edge (i, j) is present is the MCMC 

average of Σk gk,ij. For edges included in either 0, 1, 2, or 3 simulated graphs, the 

corresponding posterior estimates of Σk gk,ij are 0.08, 0.77, 1.52 and 2.49. Together these 

summaries illustrate how varying marginal probabilities of edge inclusion translate into 

different numbers of selected edges across graphs.

The marginal PPIs for the elements of Θ can be estimated as the percentages of MCMC 

samples with γkm = 1, or equivalently with θkm > 0, for 1 ≤ k < m ≤ K. These estimates are

(5.1)

and reflect the degree of shared structure, providing a relative measure of graph similarity 

across sample groups. In addition, these probabilities show that common edges are more 

strongly encouraged when the underlying graphs have more shared structure, since in 

iterations where θkm = 0 common edges between graphs k and m are not rewarded. The 

marginal posterior mean of θkm conditional on inclusion, estimated as the MCMC average 

for iterations where γkm = 1, is consistent with the inclusion probabilities in that entries with 

smaller PPIs also have lower estimated values when selected. The posterior conditional 

means are

(5.2)

To assess uncertainty about our estimation results, we performed inference for 25 simulated 

data sets, each of size n = 100, generated using the same procedure as above. The average 

PPIs and their standard errors (SE) are

The small standard errors demonstrate that the results are stable for data sets with moderate 

sample sizes. The performance of the method in terms of graph structure learning was 

consistent across the simulated data sets as well. Table 1 gives the average TPR, FPR, and 

AUC for edge selection within each group and for differential edge selection, along with the 

Peterson et al. Page 13

J Am Stat Assoc. Author manuscript; available in PMC 2015 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated standard error (SE). The average expected FDR for edge selection was 0.07, with 

standard error 0.01. The expected FDR for differential edge detection was 0.14, with 

standard error 0.01.

5.2 Simulation study for performance comparison

In this simulation, we compare the performance of our method against competing methods 

in learning related graph structures given sample sizes which are fairly small relative to the 

possible number of edges in the graph.

We begin with the precision matrix Ω1 as in Section 5.1, then follow the same procedure to 

obtain Ω2. To construct Ω3, we remove 5 edges in both Ω1 and Ω2, and add 5 new edges 

present in neither Ω1 nor Ω2 in the same manner. Finally, the nonzero values in Ω2 and Ω3 

are adjusted to ensure positive definiteness. In the resulting graphs, the proportion of shared 

edges between G1 and G2 and between G2 and G3 is 86.5%, and the proportion of shared 

edges between G1 and G3 is 73.0%.

We generate random normal data using Ω1, Ω2 and Ω3 as the true precision matrices by 

creating a random sample Xk of size n from the distribution , for k = 1, 2, 3. We 

report results on 25 simulated data sets for sample sizes n = 50 and n = 100.

For each data set, we estimate the graph structures within each group using four methods. 

First, we apply the fused graphical lasso and joint graphical lasso, available in the R package 

JGL (Danaher, 2012). To select the penalty parameters λ1 and λ2, we follow the procedure 

recommended in Danaher et al. (2013) to search over a grid of possible values and find the 

combination which minimizes the AIC criterion. Next, we obtain separate estimation with 

G-Wishart priors using the sampler from Wang and Li (2012) with prior probability of 

inclusion 0.2. Finally, we apply our proposed joint estimation using G-Wishart priors with 

the same parameter settings as in the simulation given in Section 5.1. For both Bayesian 

methods, we used 10,000 iterations of burn-in followed by 20,000 iterations as the basis for 

posterior inference. For posterior inference, we select edges with marginal posterior 

probability of inclusion > 0.5.

Results on structure learning are given in Table 2. The accuracy of graph structure learning 

is given in terms of the true positive rate (TPR), false positive rate (FPR), and the area under 

the curve (AUC). The AUC estimates for the joint graphical lasso methods were obtained by 

varying the sparsity parameter for a fixed similarity parameter. The results reported here are 

the maximum obtained for the sequence of similarity parameter values tested. The 

corresponding ROC curves are shown in Figure 7. These curves demonstrate that the 

proposed joint Bayesian approach outperforms the competing methods in terms of graph 

structure learning across models with varying levels of sparsity.

Results show that the fused and group graphical lassos are very good at identifying true 

edges, but tend to have a high false positive rate. The Bayesian methods, on the other hand, 

have very good specificity, but tend to have lower sensitivity. Our joint estimation improves 

this sensitivity over separate estimation, and achieves the best overall performance as 

measured by the AUC for both n settings.
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Results on differential edge selection are given in Table 3. For the fused and group graphical 

lasso, a pair of edges is considered to be differential if the edge is included in the estimated 

adjacency matrix for one group but not the other. In terms of TPR and FPR, the fused and 

group graphical lasso methods perform very similarly since we focus on differences in 

inclusion rather than in the magnitude of the entries in the precision matrix. The Bayesian 

methods have better performance of differential edge detection than the graphical lasso 

methods, achieving both a higher TPR and lower FPR. Relative to separate estimation with 

G-Wishart priors, the proposed joint estimation method has somewhat lower TPR and FPR. 

This difference reflects the fact that the joint method encourages shared structure, so the 

posterior estimates of differential edges are more sparse.

It is not possible to compute the AUC of differential edge detection for the fused and group 

graphical lasso methods since even when there is no penalty placed on the difference across 

groups, the estimated adjacency matrices share a substantial number of entries. Therefore, 

we cannot obtain a full ROC curve for these methods. The ROC curves for the Bayesian 

methods are given in Figure 8. Since the proposed joint estimation method is designed to 

take advantage of shared structure, detection of differential edges is not its primary focus. 

Nevertheless, it still shows slightly better overall performance than separate estimation.

5.3 Sensitivity

In assessing the prior sensitivity of the model, we observe that the choice of a and b in 

equation (3.13), which affects the prior probability of edge inclusion, has an impact on the 

posterior probabilities of both edge inclusion and graph similarity. Specifically, setting a and 

b so that the prior probability of edge inclusion is high results in higher posterior 

probabilities of edge inclusion and lower probabilities of graph similarity. This effect is 

logical because the MRF prior increases the probability of an edge if that edge is included in 

related graphs, which has little added benefit when the probability for that edge is already 

high. As a general guideline, a choice of a and b which results in a prior probability of edge 

inclusion smaller than the expected level of sparsity is recommended. Further details on the 

sensitivity of the results to the choice of a and b are given in Appendix B.

Smaller values of the prior probability of graph relatedness w defined in equation (3.9) result 

in smaller posterior probabilities for inclusion of the elements of Θ. For example, in the 

simulation setting of Section 5.1, using a probability of w = 0.5 leads to the following 

posterior probabilities of inclusion for the elements of Θ:

(5.3)

These values are smaller than those given in equation (5.1), which were obtained using w = 

0.9, but the relative ordering is consistent.
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6 Case studies

We illustrate the application of our method to inference of real-world biological networks 

across related sample groups. In both case studies presented below, we apply the proposed 

joint estimation method using the same parameter settings as the simulations in Section 5. 

The MCMC sampler was run for 10,000 iterations of burn-in followed by 20,000 iterations 

used as the basis for inference. For posterior inference, we select edges with marginal 

posterior probability of inclusion > 0.5.

6.1 Protein networks for subtypes of acute myeloid leukemia

Key steps in cancer progression include dysregulation of the cell cycle and evasion of 

apoptosis, which are changes in cellular behavior that reflect alterations to the network of 

protein relationships in the cell. Here we are interested in understanding the similarity of 

protein networks in various subtypes of acute myeloid leukemia (AML). By comparing the 

networks for these groups, we can gain insight into the differences in protein signaling that 

may affect whether treatments for one subtype will be effective in another.

The data set analyzed here, which includes protein levels for 213 newly diagnosed AML 

patients, is provided as a supplement to Kornblau et al. (2009) and is available for download 

from the MD Anderson Department of Bioinformatics and Computational Biology at http://

bioinformatics.mdanderson.org/Supplements/Kornblau-AML-RPPA/aml-rppa.xls. The 

measurements of the protein expression levels were obtained using reverse phase protein 

arrays (RPPA), a high-throughout technique for protein quantification (Tibes et al., 2006). 

Previous work on inference of protein networks from RPPA data includes Telesca et al. 

(2012) and Yajima et al. (2012).

The subjects are classified by subtype according to the French-American-British (FAB) 

classification system. The subtypes, which are based on criteria including cytogenetics and 

cellular morphology, have varying prognosis. It is therefore reasonable to expect that the 

protein interactions in the subtypes differ. We focus here on 18 proteins which are known to 

be involved in apoptosis and cell cycle regulation according to the KEGG database 

(Kanehisa et al., 2012). We infer a network among these proteins in each of the four AML 

subtypes for which a reasonable sample size is available: M0 (17 subjects), M1 (34 

subjects), M2 (68 subjects), and M4 (59 subjects). Our prior construction, which allows 

sharing of information across groups, is potentially beneficial in this setting since all groups 

have small to moderate sample sizes.

The resulting graphs from the proposed joint estimation method are shown in Figure 9, with 

edges shared across all subgroups in red and differential edges dashed. The edge counts for 

each of the four graphs and the number of overlapping edges between each pair of graphs 

are given below, along with the posterior probabilities of inclusion for the elements of Θ:
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The estimated graphs have a fair amount of overlapping structure, with 9 edges common to 

all four groups. This highlights the fact that our joint estimation procedure is able to account 

for the presence of shared structure.

6.2 Protein-signaling networks under various perturbations

The data for this case study, provided as a supplement to Sachs et al. (2005), include the 

levels of 11 phosphorylated proteins and phospholipids quantified using flow cytometry 

under 9 different experimental conditions. The sample sizes for each condition are large (in 

the range 700–1000) since each observation corresponds to a single cell. Sachs et al. (2005) 

use the 9 perturbation conditions to infer a single DAG. Subsequently, Friedman et al. 

(2008) use the pooled data across all perturbations to infer a single undirected graph.

We use our method to infer an undirected graph for each of the 9 conditions allowing for the 

possibility of shared structure. We would like to note that as the number of groups increases, 

the prior probability that a given edge will be shared across all groups declines. If there is a 

preference for shared structure across all groups, for increasing numbers of groups the prior 

probability of shared structure could be increased by setting the parameter w from equation 

(3.9) closer to 1. Since the prior formulation and posterior summaries used here are 

primarily focused on pairwise comparison, we retain the previous parameter settings for 

consistency. The resulting graph structures are shown in Figure 10, with edges shared across 

all subgroups in red and differential edges dashed.

The number of edges included in each graph and the number of edges shared between each 

pair of graphs are

The posterior probabilities of inclusion for the elements of Θ are
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These probabilities reflect that group 5 is the most different from the other groups. In Figure 

10, we see that it has the sparsest network, a difference that is ignored when inference is 

performed on the pooled data. Although some inferred connections (such as Mek–Raf and 

Jnk–P38) are also selected in Friedman et al. (2008), treating the data as a single group does 

not account for the heterogeneity across the groups and therefore results in inference of a 

different graph structure.

7 Discussion

In this work, we have developed a novel modeling approach to inference of multiple graphs 

and illustrated its important features. The proposed model utilizes a Markov random field 

prior to encourage shared edges between related groups and a selection prior on the 

parameters that describe the similarity of the networks. This approach allows us to share 

information between sample groups, when appropriate, as well as to obtain a measure of 

relative network similarity across groups. A key difference of our approach from previous 

work on inference of multiple graphs is that we do not assume the networks for all 

subgroups are related, but rather infer the relationships among them from the data.

Through simulations, we have shown that the posterior probabilities of network similarity 

provide a reasonable summary of network relatedness across sample groups. We have also 

demonstrated that our joint estimation approach increases sensitivity and enables the 

selection of edges that would have been missed with separate estimation procedures. Finally, 

we have illustrated the utility of our method in inference of protein networks across various 

subtypes of acute myeloid leukemia and in estimation of signaling networks under different 

experimental interventions.

The results reported in this paper rely on the median model for selection. As noted in 

Section 4.2, an alternative approach to fixing the selection threshold on the posterior 

probabilities would be select this threshold so that the posterior expected FDR is controlled 

to a desired level, typically 0.05. Applying this alternative criterion to the simulation of 

Section 5.1 has minimal impact on the results for edge selection since the posterior expected 

FDR of edge selection is already close to 0.05. For differential edge detection, however, 

controlling the posterior expected FDR to 0.05 results in a much higher threshold on the 

posterior probabilities of difference and a correspondingly lower TPR and FPR. The reason 

for this is that our model favors shared edges, so the posterior probabilities of edges that are 
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not selected in related networks are not always very close to zero, and consequently few 

posterior probabilities of difference are relatively large.

The approach developed here links the dependence structures within each group, but does 

not enforce similarity of the nonzero elements of the precision matrices. This modeling 

decision, which reflects our interest in network inference, was also influenced by the 

mathematical and computational difficulties entailed in the development of priors which not 

only enforce common zeros but also shrink nonzero elements toward a common mean. In 

the context of covariance estimation, Hoff (2009) proposes encouraging similarity of 

covariance matrices across groups through a hierarchical model relating their eigenvectors. 

This approach, however, does not enforce sparsity of the covariance or precision matrices. 

An extension to inference of Gaussian graphical models is not straightforward, but would be 

of interest for future research.

The G-Wishart prior framework utilized in this paper enforces exact zeros in the precision 

matrix corresponding to missing edges in the graph G. Off-diagonal entries, however, may 

still be arbitrarily small. Although it would be interesting to pursue a non-local prior on the 

precision matrices to encourage better differentiation between zero and nonzero entries, a 

challenge in developing such an approach is that the entries in the precision matrix are 

dependent due to the constraint of positive definiteness.

To integrate group-specific prior information, the model could be extended to include a 

parameter νk,ij for each group k = 1, …, K. This would give additional flexibility to allow 

groups to have different degrees of sparsity or favor particular edges only in certain groups. 

In the current model formulation where the parameter νij is shared across groups, its 

posterior is shaped by the observed data for each group, as illustrated in the simulation 

results given in Section 5.1. This implies that information can still be shared across graphs 

even when Θ = 0.

Our approach provides a flexible modeling framework which can be extended to new 

sampling approaches or other types of data. In particular, the proposed model can be 

integrated with any type of G-Wishart sampler. Although the Wang and Li (2012) algorithm 

works well in practice, it has potential drawbacks. Specifically, the proposed double 

Metropolis-Hastings approach relies on an approximation to the posterior and requires that 

moves in the graph space are constrained to edge-away neighbors. The recently proposed 

direct sampler of Lenkoski (2013), which resolves these limitations, could be considered as 

an alternative. In addition, although we have focused on normally distributed data, the 

approach can be extended to other types of graphical models, such as Ising or log-linear 

models.
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Appendix A: Details of MCMC sampling

A.1 Updating of Ωk and Gk

For simplicity, we assume that the data for each group are column centered. The likelihood 

for each group is then

(A.1)

Since the G-Wishart distribution is conjugate to the likelihood, the posterior full conditional 

of Ωk is the G-Wishart density

(A.2)

where .

Sampling from the G-Wishart distribution requires MCMC methods even when the graph G 

is known. In this case, we want to learn the graph structure as well, so we need to search 

over the joint posterior space of graphs G1, …, Gk and precision matrices Ω1, …, Ωk 

conditional on the remaining parameters. To accomplish this, we use a sampling scheme 

based on Algorithm 2 from section 5.2 of Wang and Li (2012). We prefer this approach over 
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other recent proposals since it avoids computation of prior normalizing constants and does 

not require tuning of proposals.

The only modification required to use the algorithm from Wang and Li (2012) to sample 

from the conditional distribution p(Ωk, Gk|ν, Θ, {Gm}m≠k) is to use the conditional 

probability p(Gk|ν, Θ, {Gm}m≠k) for each graph rather than the unconditional p(Gk). 

Following their notation, when proposing a new graph  which differs from the current 

graph Gk in that edge (i, j) is included in Gk but not in , given the MRF prior on the graph 

structure we have

(A.3)

At each MCMC iteration, we apply this move successively to each (i, j) for i < j.

A.2 Updating of θkm and γkm

We sample θkm and γkm from their joint posterior full conditional distribution. The terms in 

the joint prior on the graphs G1, …, Gk that include θkm are

considering only the terms that include θkm. Given the prior on θkm from equation (3.7) and 

the prior on γkm from equation (3.9), the posterior full conditional of θkm and γkm can be 

written

(A.4)

Since the normalizing constant for this mixture is not analytically tractable, we use 

Metropolis-Hastings steps to sample θkm and γkm from their joint posterior full conditional 

distribution for each pair (k, m) where 1 ≤ k < m ≤ K. Our construction is based on the 

MCMC approach described in Gottardo and Raftery (2008) for sampling from mixtures of 

mutually singular distributions. At each iteration we perform two steps: a between-model 

and a within-model move. As discussed in Gottardo and Raftery (2008), this type of sampler 

is effectively equivalent to reversible jump Markov chain Monte Carlo (RJMCMC).

For the between-model move, if in the current state γkm = 1, we propose  and . 

If in the current state γkm = 0, we propose  and sample  from the proposal density 
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. When moving from γkm = 1 to , the Metropolis-

Hastings ratio is

(A.5)

where Θ* represents the matrix Θ with entry . When moving from γkm = 0 to 

, the Metropolis-Hastings ratio is

(A.6)

We then perform a within-model move whenever the value of γkm sampled from the 

between-model move is 1. For this step, we propose a new value of θkm using the same 

proposal density as before. The Metropolis-Hastings ratio for this step is

(A.7)

A.3 Updating of νij

To find the posterior full conditional distribution of νij, we consider the terms in the joint 

prior on the graphs G1, …, Gk that include νij:

considering only the terms that include νij. Given the prior from equation (3.13), the 

posterior full conditional of νij given the data and all remaining parameters is proportional to

(A.8)

For each pair (i, j) where 1 ≤ i < j ≤ p, we propose a value q* from the density Beta(2, 4), 

then set ν* = logit(q*). The proposal density can be written in terms of ν* as
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(A.9)

For the simulation given in Section 5.1, this proposal resulted in an average acceptance rate 

of 38.8%, which is a reasonable proportion. Although the use of a fixed proposal may result 

in low acceptance rates in some situations, the efficiency of this step is not a pressing 

concern since we require many iterations to search the graph space, so we can obtain a 

reasonable sample of νij even if the mixing is slow. The Metropolis-Hastings ratio is

(A.10)

Appendix B: Details of sensitivity analysis

Here we provide more details of the sensitivity analysis summarized in Section 5.3.

B.1 Sensitivity to prior parameters a and b

The parameters a and b are the shape and scale parameters of the Beta prior on the 

parameter qij defined in equation (3.11). The parameter qij can be interpreted as a lower 

bound on the prior probability of inclusion for edge (i, j) which may be increased by the 

effect of the prior encouraging shared structure across groups.

To assess the impact of the choice of a and b on posterior inference, we applied the 

proposed joint estimation method at a range of (a, b) settings to a single fixed data set 

generated following the setup of the simulation given in Section 5.1. The results given in 

Section 5.1 were obtained using the setting a = 1 and b = 4, which reflects a Beta prior on qij 

with mean 0.2. To examine the effect of varying a and b, we performed inference for 6 

additional settings chosen so that mean of the Beta prior ranged from 0.05 to 0.35 while the 

variance of the Beta prior remained fixed. The effect on the average edge PPIs and on the 

average PPI for the entries of Θ is summarized in Figure 11.

The average edge PPIs showed a steady increase from just over 0.17 for prior means in the 

range 0.05 – 0.10 to around 0.19 for prior mean 0.35. The direction of the effect is logical, 

and the overall difference in levels is not strong. The average PPIs for the elements of Θ are 

relatively stable for prior means up 0.25, just above the true sparsity level of 0.20. Beyond 

this point, they decline sharply, demonstrating that shared structure is no longer rewarded 

when the prior on qij results in a prior probability of edge inclusion much greater than the 

true level before factoring in the impact of the sharing of information across graphs.
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Figure 1. 
Illustration of the model for three sample groups. The parameters θ12, θ13, and θ23 reflect the 

pairwise similarity between the graphs G1, G2, and G3.
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Figure 2. 
Simulation of Section 5.1. True graph structures for each simulated group.
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Figure 3. 
Simulation of Section 5.1. Trace plots of the number of edges included in each graph, 

thinned to every fifth iteration for display purposes.
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Figure 4. 
Simulation of Section 5.1. Heat maps of the posterior probabilities of edge inclusion (PPIs) 

for the four simulated graphs.
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Figure 5. 
Simulation of Section 5.1. ROC curves for varying thresholds on the posterior probability of 

edge inclusion for each of the simulated groups. The corresponding AUCs are 1.00 for 

group 1, 0.996 for group 2, 0.96 for group 3 and 0.94 for group 4.

Peterson et al. Page 29

J Am Stat Assoc. Author manuscript; available in PMC 2015 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Simulation of Section 5.1. Empirical posterior densities of edge-specific parameters qij for 

edges included in 0, 1, 2 or 3 of the simulated graphs.
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Figure 7. 
Simulation of Section 5.2. ROC curves for graph structure learning for sample size n = 50.
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Figure 8. 
Simulation of Section 5.2. ROC curves for differential edge detection for sample size n = 50.
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Figure 9. 
Case study of Section 6.1. Inferred protein networks for the AML subtypes M0, M1, M2, 

and M4, with edges shared across all subgroups in red and differential edges dashed.
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Figure 10. 
Case study of Section 6.2. Inferred protein signaling networks, with edges shared across all 

subgroups in red and differential edges dashed.
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Figure 11. 
Simulation of Section B.1. Sensitivity of the average edge PPIs (left) and average PPIs for 

the elements of Θ (right) to the parameters a and b in the prior qij ~ Beta(a, b).
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Table 1

Simulation of Section 5.1. Average true positive rate (TPR), false positive rate (FPR), and area under curve 

(AUC) with associated standard error (SE) across 25 simulated data sets.

TPR (SE) FPR (SE) AUC (SE)

Group 1 1.00 (0.01) 0.002 (0.003) 1.00 (0.002)

Group 2 0.61 (0.08) 0.007 (0.006) 0.98 (0.01)

Group 3 0.73 (0.05) 0.007 (0.008) 0.98 (0.01)

Group 4 0.63 (0.06) 0.006 (0.005) 0.94 (0.02)

Differential 0.71 (0.03) 0.039 (0.006) 0.94 (0.01)
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