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Abstract

Brain-computer interface (BCI) systems allow users to interact with their environment by 

bypassing muscular control to tap directly into the users’ thoughts. In the present study, we 

investigate the role of prior experience with yoga and meditation, examples of formalized mind-

body awareness training (MBAT), in learning to use a one-dimensional sensorimotor rhythm 

based BCI. Thirty-six human subjects volunteered to participate in two different cohorts based on 

past experience with MBAT — experienced MBAT practitioners and controls. All subjects 

participated in three BCI experiments to achieve competency in controlling the BCI system. The 

MBAT cohort achieved BCI competency significantly faster than the control cohort. In addition, 

the MBAT cohort demonstrated enhanced ability to control the system on various measures of 

BCI performance and improved significantly more over time when compared to control. Our work 

provides insight into valuable strategies for reducing barriers to BCI fluency that limit the more 

widespread use of these systems.

INTRODUCTION

In recent years, research efforts have been increasingly made in the development of brain-

computer interface (BCI) systems as potential therapeutic outlets for individuals suffering 

from a variety of neuromuscular diseases1. Diseases such as amyotrophic lateral sclerosis 

(ALS), spinal cord injury, brainstem stroke, and cerebral palsy have all garnered attention as 

potential beneficiaries of this technology. Although physically disabled, the cognitive 

abilities of such individuals are still intact. As such, there is a great need for these patients to 

communicate with and manipulate their environment in a way that bypasses muscular 

control2. A BCI is a system that senses and decodes the cognitive intent of the user and 

generates commands that control a computer or external device in the user’s environment 

using only signals detected from the user’s central nervous system3–6.
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In an attempt to gain the ability of movement control, various forms of brain signals have 

been used, including electrophysiological signals acquired over the scalp 

(electroencephalography; EEG), over the cortical surface (electrocorticography; ECoG), and 

within the brain (single-neuron action potentials (single units) and local field potentials; 

LFPs). Invasive BCI systems have received considerable attention for accomplishing 

thought-based BCI control6–12. While such invasive BCI systems have made substantial 

progress in recent years using recording electrodes within the brain or over the brain surface, 

these systems are accompanied by significant risks relating to the implantation of 

intracranial electrodes. Parallel to the investigation of BCI control using invasive electrodes, 

non-invasive BCI systems have been developed using scalp-recorded EEG to decode the 

user’s intention from sensorimotor rhythms (SMRs)13–15, or event related potentials 

(ERPs)1,16–19. While ERP-based BCIs provide a higher information transfer rate and require 

less training, SMR-based BCIs are controlled asynchronously by the user’s intention without 

external stimuli1,16,17. SMRs are generated by the primary sensory and motor cortices of the 

brain. Utilizing a motor imagery paradigm13–15,20–28, SMR-based BCIs employ two 

characteristic states: event-related synchronization (ERS) and event-related 

desynchronization (ERD). The mu rhythm from 8 to 12 Hz and the beta rhythm from 13 to 

26 Hz have been distinctly useful as control signals in SMR-based BCIs. When the brain 

processes sensory information or plans to execute movement, a response known as ERD 

occurs in which the sensorimotor rhythms decrease in amplitude on the hemisphere 

contralateral to the body region for imagined movement. A simultaneous increase in the 

amplitude of the mu rhythm on the ipsilateral hemisphere has been characterized and 

referred to as ERS. Teaching users to intentionally modulate these physiological phenomena 

is at the basis of many motor imagery-based BCI systems.

The recordings of SMRs that are produced from motor imaginations have provided users 

with the ability to control a computer cursor or a virtual helicopter in up to three 

dimensions25–27. Thus, the methods for training subjects in up to 3-dimensional (3D) control 

have been established and the utilization of the mu and beta rhythms as control signals has 

been well distinguished. However, substantial limitations still exist in the application of 

noninvasive BCI systems to clinical scenarios. These limitations include the lengthy training 

time that is required by users to achieve satisfactory performance and that, even after 

training, only a suboptimal proportion of BCI users ever achieve acceptable BCI 

performance29,30. Current noninvasive EEG-based BCI systems for up to 3D cursor control 

require weeks to months of training before acceptable levels of performance are attained. 

Even after training, some BCI users still fail to achieve adequate control of the system29,30.

Algorithm, sensor, and system development are making substantial progress within the field 

of BCI, but perhaps plateauing in terms of the impact on the change that these refinements 

may offer in the level of user control. Owing to these advances, in the last decade there have 

been dramatic improvements in performance measures of control accuracy, information 

transfer rate (ITR), and speed. However, the field of neural interface control faces a 

challenge to show that these gradually enhanced changes in control are translating to 

clinically meaningful applications. System developments have approached only a minimal 

clinically important difference in terms of the neuro-rehabilitation outcome measures for 

patients31–33. While researchers are dedicating substantial effort into the machine side of 
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BCI utility, little effort has been focused on enhancing the users themselves. As such, there 

exists an important need for user-centered training techniques that focus on the refinement 

of the mental rehearsal practices to improve the signal produced by the user.

User-centered BCI training approaches have been pursued with more interest recently34,35. 

User-centered approaches emphasize early focus on the BCI users, tasks, and the 

environment, and the active participation of users with the goal of improving the 

performance of BCIs from the “brain” perspective of the brain-computer interface. Given 

that BCI is the interface between the “brain” and “computer”, the exploration of both aspects 

will be important to further improve the performance of BCIs and contribute to its 

translation for wide applications.

It has been suggested that mental rehearsal and concentration ability can improve the 

performance of an EEG-based BCI36,37. However, the level of performance depends on a 

variety of factors including individual differences and quality of motor imagery. Mental 

rehearsal refers to the repetition of a physical activity in the mind, without any physical 

movement of the body, and with the intention of learning and refining. The effects of mental 

rehearsal on motor learning are the result of practice on the central motor system. According 

to this logic, it seems reasonable that mental rehearsal should modulate the neuronal activity 

in the primary sensorimotor cortex and, as a result, change the performance of an SMR-

based BCI38–40.

In both the world of public health and the popular culture at large, mind-body awareness 

training (MBAT), in the forms of yoga and meditative practices, has become increasingly 

prevalent due to an increase in awareness of the potential health benefits and improvements 

in concentration that this training can provide to practitioners. A growing body of evidence 

has supported the idea that yoga and meditation benefit both physical and mental health via 

down-regulation of the hypothalamic-pituitary-adrenal axis and the sympathetic nervous 

system. In particular, several studies have been conducted that examined the impact of yoga 

and meditation on specific health conditions including cardiovascular disease, metabolic 

syndrome, diabetes, cancer, and anxiety41–44. These studies have contributed to the large 

body of supporting evidence attesting to the positive health benefits of yoga and meditation. 

Many forms of yoga practices such as Nidra, Vinyasa, and Hatha in addition to related 

meditative practices such as Mindfulness and Transcendental Meditation all employ 

particular mental techniques that produce increases and decreases in the spectral power of 

the alpha and theta band during the meditative state of the mind44–46. These mind-body 

awareness practices have demonstrated the capability of enabling the user to enhance 

concentration, and to induce different measurable states of consciousness and mind-body 

awareness during the performance of a mental task.

The aim of the present study is to investigate the role of experience with yoga and/or 

meditation, examples of formalized mind-body awareness practices, in the initial learning of 

a one-dimensional (1D) SMR-based BCI. Furthermore, we evaluate subject performance 

and the rate of subject learning using standard and modified metrics of classification 

accuracy, information transfer rate, and the number of hits per run, together with EEG 

analyses of various neural correlates of BCI control. Figure 1a displays a conceptual 
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diagram of the present study and the potential role of MBAT in the context of an SMR-

based BCI. The EEG signal that is produced from motor imaginations is depicted in the 

background of the figure. The schematic diagram in Fig. 1b represents the 1D cursor task 

that is used for initial training using the widely disseminated BCI2000 development 

platform.

INNOVATION

Mind-body awareness practices and the ability to refine mental training techniques in order 

to focus for an extended amount of time are intuitively important skills that may help to 

bridge the gap between users who struggle with BCI control and those to whom it comes 

naturally. As such, a formal scientific investigation of MBAT practices in the context of 

SMR-based BCI training may identify a means to reduce the training obstacles to BCI 

utility. No brain-computer interface applications to date have investigated previous long-

term experience with MBAT such as yoga or meditation in the context of an EEG-based 

brain-computer interface.

METHODS

Data acquisition and cursor control

This study was conducted according to a human subject protocol approved by the 

Institutional Review Board (IRB) of the University of Minnesota. Thirty-six healthy 

volunteers, 17 female and 19 male (ages 22 to 35 years old), participated in this study. 

Subjects were seated facing a computer monitor while wearing a 64-channel EEG cap, 

which was set up according to the international 10–20 system. The scalp-recorded EEG 

signals were sampled at 1000 Hz and filtered from DC–200 Hz by a Neuroscan Synamps 2 

amplifier (Neuroscan Lab, VA) before they were imported into BCI2000 with no spatial 

filtering. The control signal was extracted as the difference between the autoregressive (AR) 

spectral amplitudes of electrodes C3 and C4 at 12 Hz. The magnitude of the cursor 

movement was determined by the normalized AR amplitude difference. At the end of each 

3-minute trial, the control signal was normalized so that it had a zero mean and unit variance 

across a multiple trial buffer. In the BCI2000 1D cursor task, a yellow-colored, rectangular 

target appeared on either the left or right side of the computer screen (for the left vs. right 

task) or at the top or bottom of the screen (for the up vs. down task). Because SMRs were 

used as the control signal for this BCI, subjects were instructed to use motor imaginations of 

their right hand movement to move a computer cursor (red circle) to the right target, and left 

hand movement to move the cursor to the left target. In comparison, subjects used motor 

imaginations of both hands to move the cursor up, and a volitional rest to move the cursor 

down.

Study design

The 36 subjects fell into one of two groups. The first group included 12 subjects with at least 

one year of previous MBAT experience, who practiced at least 2 times per week for at least 

1 hour. The specific types of MBAT practices most commonly used in this cohort were 

reported as Yoga Nidra and Vinyasa in addition to Reiki, Mindfulness, and Transcendental 
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Meditation. The second group included 24 subjects with little or no MBAT experience (less 

than 10 total MBAT sessions), and served the purpose of representing healthy controls from 

the general population.

Regardless of the group that subjects were assigned to, each subject was previously naive to 

BCI, and participated in three, 2-hour BCI experiments over the period of 1 to 4 weeks. 

Each experiment consisted of ten, 3-minute trials using the standard BCI2000 cursor task47. 

Subjects were first introduced to and trained in the 1D left vs. right cursor task26–28. All 

subjects were instructed to use imaginations of either left or right hand movements to move 

a computer cursor to hit a target on the left or right side of a computer screen respectively. If 

subjects achieved accuracies of ≥ 80% over four consecutive 3-minute runs or an overall 

session (ten, 3-minute runs) accuracy of ≥ 80%, subjects progressed to an up vs. down 

control task, which consisted of imagining both hands versus a volitional rest state to control 

the movement of the cursor to targets located at top or bottom of a computer screen 

respectively. Again, if subjects achieved accuracies of ≥ 80% over four consecutive 3-

minute runs or an overall session accuracy of ≥ 80% for this up vs. down task, subjects were 

deemed proficient in 1D BCI control. All subjects were given 3 BCI sessions, each 

consisting of ten, 3-minute trials each, to attempt to reach 1D BCI competency. Figure 1b 

illustrates the experimental design of subject progression for the MBAT and control groups.

Performance analysis

A time-to-event analysis was employed to determine the significance of passing rates 

between the pair of cohorts. The time-to-event analysis was 3-fold. Firstly, a Kaplan-Meier 

plot was created for the pair of cohorts, which visually displayed the percentages of subjects 

who passed the paradigm against the number of attempts. Secondly, a log rank test, 

calculated as a chi-square value, was constructed using the data to determine the 

significance of separation between the pair. Lastly, the chi-square value that was calculated 

from the log rank test was converted to a P value; α = 0.05 for all statistical analyses in this 

study.

Several metrics of subject performance were analyzed in order to formally compare the two 

experimental groups. These measures included percent valid correct (PVC), the average 

number of hits per run, information transfer rate (ITR) in bits per minute, the average scalp 

R2 (correlation coefficient) value with respect to the topographical locations of control 

electrodes C3 and C4, and the magnitude of the spectral power difference (SPD) from 

electrodes C3 and C4. The weighted average (± SEM) for each metric was calculated for 

each subject and across all the data pooled from each group.

PVC was calculated by determining the ratio of target hits to valid outcomes. Thus, invalid 

outcomes corresponding to aborted trials were not included in the calculation. The time 

required for subjects to hit the target was determined from the time during which the cursor 

was under cortical control. For this experimental paradigm, the time began when the cursor 

first appeared, and ended either when the cursor hit the correct target, the cursor hit the 

“incorrect” target (i.e., the subject controlled the cursor to the opposite, or incorrect side of 

the computer screen where the imaginary incorrect target was located), or the trial was 
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aborted. Each 3-minute run provided the subject with 6 seconds to control the cursor to the 

desired target, before the trial was classified as an aborted trial.

A particularly useful measure of comparing BCIs is via their information transfer rate, either 

in bits/trial or bits/min. As provided in Wolpaw et al.3, bits/trial can be calculated from the 

following equation:

(1)

In this equation, B is the ITR in bit rate (bits/symbol), N is the number of possible choices 

(targets) and P is the probability that the desired choice will be selected, also called the 

classification accuracy. Typically, Bt in bits/min is used to indicate the ITR of a BCI system

(2)

where T (seconds/symbol) is the time needed to convey each symbol.

A valuable aspect of using this specific measure is that it combines both accuracy and speed 

into one number. Thus, ITR in bits per minute was calculated for each run for this protocol.

EEG data analysis

During motor imaginations of the upper extremity, a decrease (ERD) of spectral power over 

the contralateral hemisphere and an increase (ERS) of spectral power over the ipsilateral 

hemisphere occur21,22,38. Two additional measures based on the EEG data analysis — the 

average scalp R2 value and SPD were used to quantitatively evaluate the neural correlates of 

subject performance. The average R2 value is a topographical measure of the correlation 

between movement imagination and mu rhythm source activities15,23,24,28. Specifically, R2 

was calculated as the total proportion of variance in mu rhythm amplitude between the two 

imagination state pairings that was due to target position, and based on single-trial source 

estimates. For left vs. right trials, the control signal was extracted as the difference between 

the autoregressive spectral amplitudes of electrode C3 subtracted from C4 at 12 Hz. For up 

vs. down trials, the control signal was calculated as the sum of the spectral amplitudes of 

electrodes C3 and C4 relative to the resting state. The magnitudes of these differences in 

spectral power (measured in µV2 at 12 Hz) were calculated as neural correlates of cursor 

control. As for previously mentioned metrics, the R2 values and SPD were calculated for 

each subject and across all the data pooled from each group.

Performance progress analysis

In order to quantitatively examine the process of learning and refining BCI control over 

time, each subject’s outcome data for each left vs. right three-minute run were first plotted 

as a line graph and visually inspected for trends. Next, an approximation for average rates of 

subject performance progress for each metric was calculated as: Average Rate = (Final 

Metric Value − Initial Metric Value) / Number of Runs. These values were group-averaged 

and an unpaired, two-way t-test was also performed to evaluate the significance between the 

two groups of interest. Due to this particular experimental design of subject progression, the 
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number of completed left vs. right and up vs. down runs varied considerably between 

subjects. The introduced dependence of the average rate on the number of runs helps correct 

this disparity.

RESULTS

During the course of the study, we quantitatively examined three main components of data: 

the proportion of subjects that achieved the predetermined threshold of 1D BCI competency 

as a time-to-event analysis, how subjects performed on average in each metric over the 

course of the study, and subject learning over time, as analyzed in a linear regression. 

Multiple measures for each of those components are presented below.

Time-to-event analysis

Time-to-event analysis was used to provide a quantitative representation of the overall 

trends of learning rates between the two cohorts. The final event was defined as passing the 

paradigm (either left vs. right or overall 1D). Figure 2a displays the Kaplan-Meier plots that 

were constructed for the two cohorts for each of the paradigms. For the left vs. right cursor 

task, the experienced MBAT group passed the paradigm significantly faster than the control 

group. The log rank test yielded a significant P value of 9.21E-5. The overall 1D paradigm 

experienced parallel results. The MBAT cohort passed the paradigm significantly faster than 

the control group (P = 0.0296). Figure 2b displays the percentage of each cohort that 

completed left-right and overall 1D training by the end of 30, three-minute runs.

Performance analysis

On average, subjects from the MBAT group attained higher accuracies of control compared 

to the control group. PVC is the classification accuracy in all trials that resulted in a valid 

outcome (either correct or incorrect). Table 1 displays the group-weighted average left-right 

and overall 1D performance results for the three groups, in addition to the standard errors of 

the mean (SEM) within each group. For the left vs. right task, the group-weighted averages 

for the MBAT and control groups were 82.0% and 63.0%, respectively. For 1D cursor 

control, the group-weighted average accuracies for the two groups were 74.4% and 65.7%, 

respectively. A summary of these and all other performance metrics can be seen in Table 1.

A similar metric that evaluated subject performance was the average number of hits per (3-

minute) run. Overall, subjects from the MBAT group achieved more hits per run than 

subjects from the control group. For the left vs. right task, the group-weighted averages for 

target acquisition rate for the MBAT and control groups were 14.3 hits/run and 8.5 hits/run, 

respectively. For overall 1D cursor control, including both left-right and up-down training, 

the group-weighted average target acquisition rates were 12.8 hits/run and 9.3 hits/run, 

respectively.

ITR is a standard metric of BCI control that combines both speed and accuracy into one 

measure. As hypothesized, subjects from the MBAT group achieved higher average ITRs 

than subjects from the control group, with the two experimental groups reaching 8.0 bits/min 

and 2.6 bits/min respectively, for the left vs. right task. The group-weighted averages for 

overall 1D control for the two groups were 6.0 bits/min and 3.4 bits/min, respectively.
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EEG analysis

In order to quantitatively examine the neural correlates of subject control, the average R2 

value and the SPD were calculated for each subject, and across all the data pooled from each 

group. For both left vs. right and overall 1D control, the group-weighted average neural 

power measures were greater for the MBAT cohort compared to the control group. For the 

left vs. right control task, the group-weighted average SPD results for the MBAT and 

control groups were 232.1 µV2 and 45.9 µV2, respectively. For overall 1D control, the 

group-weighted average results were 209.7 µV2 and 91.4 µV2, respectively. A summary of 

these neural measures of control in addition to the group-weighted average scalp R2 values 

for C3 and C4 can be seen in Table 2.

Performance progress analysis

An important feature of this study was to investigate whether experience with MBAT can 

accelerate the early stages of learning to control a BCI. Subjects with MBAT experience 

demonstrated the ability to learn at a significantly greater rate than control subjects. The 

average rate of subject performance progress, as measured by the change in left vs. right 

performance outcomes as a function of number of runs, is displayed in Fig. 3. Asterisks 

indicate significance between the two groups evaluated. Due to the nature of the 

experimental design, the number of completed left vs. right runs varied appreciably between 

subjects. The number of trials that subjects completed was directly related to their 

performance ability. Subjects who passed the left vs. right paradigm quickly had relatively 

higher performance rates due to the smaller number of runs. Subjects from the MBAT 

cohort showed superior performance in all evaluated metrics in the first four runs of the left-

right control task. Figure 4 displays the group-weighted average (± SEM) outcomes for the 

evaluated performance measures for the first four left vs. right runs of all subjects.

DISCUSSION

Establishing brain control of movement for patients suffering from various neurological 

disorders and the general healthy population represents a grand challenge to neuroscience 

and neuroengineering1,48. The goal of the present study was to test the hypothesis that 

experience with mind-body awareness training (MBAT), such as yoga/meditation, can 

improve learning to control a sensorimotor rhythm (SMR) based brain-computer interface 

(BCI). MBAT subjects not only outperformed control subjects in various measures of BCI 

control, these subjects also demonstrated the ability to learn at a significantly greater rate 

than control subjects. The reason for this substantially greater performance in the MBAT 

group may be due to the process of learning and refining particular mental techniques that 

provide subjects with the experience and practice of modulating their sensorimotor rhythms 

prior to even participating in a BCI task. Several forms of such yoga and meditative 

practices utilize such specific mental techniques that intentionally produce increases and 

decreases in the spectral power of the alpha and beta bands during training45,46. Since many 

of these practices do not require physical exertion, they may find utility in training 

physically disabled patient populations in the use of SMR-based BCIs. As such, future 

studies that investigate MBAT in the context of patient populations are needed to confirm 

this hypothesis.
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The fact that learning occurred within the three experimental sessions does not necessarily 

signify that subjects were fully trained over this period. The main purpose of this study was 

to investigate the early learning stages of a BCI with prior MBAT experience. As such, all 

subjects completed only three, 2-hour experiments over the period of 1 to 4 weeks. By that 

time, 75% of the MBAT subjects passed the threshold for 1D competency compared to the 

passing rate of only 33.3% for the control group. The 1D BCI training times for 

contemporary publications in SMR-based BCI’s have demonstrated that subjects typically 

require weeks to even months to achieve adequate performance levels of BCI 

control26,28–30. Based on these findings, it is most likely that a greater proportion of the 

control subjects from the present study would eventually pass the 1D competency threshold 

had they been given more time to train. It is also important to note that all subjects were 

assigned to the same control signal (C3–C4 at 12 Hz) for the purposes of this particular 

paradigm. In the absence of completely automated control signal optimization, the process 

of signal optimization was an extra variable that could become difficult to separate from 

user learning. It was the characterization of the trajectory of learning in the absence of 

algorithmic or system side enhancement that was the central goal of this paradigm. Because 

of this, it is possible that more subjects, from both the MBAT and control cohorts, would 

have passed the 1D paradigm had their control signals been optimized using the wealth of 

methodologies developed to do so. Nevertheless, the present study indicates that subjects 

with MBAT experience demonstrated over 200% increase in their ability to reach 1D BCI 

competency by the end of the 30 experimental runs as compared with controls. This supports 

the notion that such mental training techniques may provide a valuable tool for substantially 

reducing the ubiquitous obstacle to BCI utility of lengthy training time.

The significant improvement of BCI performance in the MBAT cohort over the control 

cohort may be due to the improved skills of concentration in MBAT subjects. Figure 3 and 

Table 2 show significant differences between the MBAT and control cohorts in their ability 

to modulate mu rhythm as recorded in C3 and C4, two locations close to the left and right 

motor cortex. Yoga/meditation practices may contribute to the mental rehearsal ability of 

MBAT subjects, improving the ability of the brain to generate stronger synchronized 

responses from the neural population that is involved in mental rehearsal. This may be 

considered as a mental skill for human subjects, and MBAT may serve as a means of 

acquiring such skill for human subjects that could be translated to improved BCI 

performance using a motor imagery paradigm.

In contrast to similar objectives described in Mahmoudi et al.36, an important difference in 

the present study is that subjects in the MBAT group began BCI training with prior MBAT 

experience. One reason for this particular feature of the study design was to address the 

issue of a possible third variable of BCI learning that may have contributed to an increase in 

performance levels in place of mental practice and concentration skill development. 

Furthermore, we wanted to investigate the utility of various forms of MBAT in the early 

training of an SMR-based BCI. Recruiting subjects with a wide diversity of MBAT 

experience, ranging from Yoga Nidra and Vinyasa to Mindfulness and Transcendental 

Meditation, we demonstrate the importance of general mind-body awareness in learning to 

modulate SMRs to control a BCI. However, it is likely that some forms of MBAT are more 
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useful than others in the specific context of SMR-based BCI control. As such, future studies 

are necessary to address which particular meditative techniques are optimal in EEG-based 

BCI training.

All of the recruited MBAT subjects began BCI training with at least one prior year of 

MBAT experience, practiced at least two times per week. Thus, this particular paradigm 

investigated relatively long-term experience with MBAT in learning to control an SMR-

based BCI. In contrast, previous research explored the utility of short-term meditative 

training (evaluating subjects 10 and 20 days after the initial experiment) in the performance 

of an EEG-based BCI. Future studies that compare short-term and long-term exposure to 

MBAT practices are thus warranted in order to address the question of how much time is 

necessary for MBAT to have a significant impact on the performance of an EEG-based BCI. 

Another important distinction between this study and previous studies is that we used a more 

comprehensive method of evaluating subject performance and, in particular, learning. In 

contrast to the evaluation of only classification accuracies in previous studies, we 

quantitatively examined three main components of the data: the percentage of subjects that 

achieved 1D competency, the group-weighted average levels of performance of several 

measures of control, in addition to the rate of subject learning over time. These results 

extend the findings of previous research and provide a more thorough illustration of the 

benefits of MBAT in EEG-based BCI training.

Because a successful BCI system is dependent on the extent to which neural activity can be 

voluntarily controlled, it is important that user-centered training techniques are investigated 

in parallel to the optimization of sensing and decoding techniques of the machine. Current 

EEG-based BCI training practices rely on difficult and oft en frustrating methods of learning 

to modulate SMRs. Using abstract target bars as feedback can be a challenge to BCI users, 

especially for older subjects from a patient population in which the concept of motor 

imagery can be difficult to comprehend. Furthermore, experimenters often lack expertise in 

providing the mental training that is necessary to teach users how to optimally modulate 

their sensorimotor rhythms. MBAT offers a convenient and affordable method of training 

users to voluntarily control their neural activity and to improve concentration. Occurring in a 

comfortable and relaxing environment, MBAT avoids the intimidating context of 

contemporary scientific laboratory environments, while maintaining the rigorous training 

techniques that are crucial in developing the requisite skills for controlling an EEG-based 

BCI. As all BCIs are systems of communication between the human mind and a machine, 

ensuring optimal performance of both through system development and user training is a 

necessity of any successful BCI system.

It is important to note that there are different ways of improving performance of BCIs. It is 

known that mental activity affects the heart rate, and the heart rate changes may be observed 

during motor imagery. It was demonstrated that BCI performance could be improved when a 

hybrid BCI utilized both the EEG signal and a different type of user input such as the heart 

rate or a signal from an external device such as an eye tracking system35. The present study 

adds to what has been explored in the past — that mind-body awareness training such as 

yoga and meditation may offer an alternative means of improving BCI performance.
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CONCLUSION

In the present study, we have evaluated the role that mind-body awareness training may play 

in the initial learning of a motor imagery-based brain-computer interface. To our knowledge, 

there are currently no other studies that have reported the effects of long-term experience 

with yoga or meditation in the context of sensorimotor rhythm based BCI applications. The 

experienced mind-body awareness training (MBAT) cohort not only passed both left vs. 

right and one-dimensional paradigms significantly faster than the control group but also 

outperformed the control group on a broad diversity of accepted measures of brain-computer 

interface performance. Lastly, the MBAT cohort demonstrated significantly greater 

improvement over time (learning) compared to the control group. Therefore, MBAT may 

provide an effective and widely accessible means to augment current training practices for 

brain-computer interface technology and in doing so, broaden the population of users for 

whom these devices can become meaningful.
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Figure 1. 
(a) A conceptual diagram of the study design and the potential role of mind body awareness 

training (MBAT) in the context of a sensorimotor rhythm based brain-computer interface 

(BCI). The EEG signal that is produced from motor imaginations is depicted in the 

background of the figure. The yellow target bars displayed on the left and right sides of the 

figure, in addition to the red ball in the middle, represent the standard left vs. right cursor 

task that is used for initial one-dimensional (1D) BCI training. (b) Experimental paradigms. 

Subjects belong to one of two cohorts — MBAT practitioners and controls. All subjects 

undergo the same task progression starting with a left vs. right cursor task. The subjects pass 
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when they have completed the task with 80% accuracy (or higher) for four consecutive runs 

or if their accuracy averages 80% or higher over ten runs. Those who pass the left vs. right 

cursor task move onto the up vs. down cursor task with the same passing criteria. Subjects 

who pass the up vs. down cursor task are deemed proficient in 1D BCI control. Opaque dots 

on the figure represent the percentage of subjects (drawn to scale) who have passed each 

stage of the protocol. Translucent dots represent the original pool of subjects.
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Figure 2. 
(a) Kaplan-Meier plots between pairs of cohorts. The top plot illustrates time-to-event 

analyses for the left-right task, while the bottom plot reports the overall 1D results. In the 

present paradigm, the event of interest is passing the left-right and up-down tasks to achieve 

1D BCI competency. Initially, all subjects fail to pass. For both left-right and overall 1D 

control, the MBAT cohort showed significantly faster passing rates compared to the control 

group. (b) The percentage of each cohort that completed left-right (top plot) and overall 1D 

(bottom plot) training by the end of 30, three-minute experimental runs.
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Figure 3. 
Performance progress. Average rates were calculated as the change in performance over the 

total number of runs. An unpaired, two-way t-test was performed to determine the 

significance of progression rates between the control and practitioner groups. Asterisks 

indicate P-value < 0.01.
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Figure 4. 
Experimental performance results for the group-weighted average (± SEM) outcomes for the 

first four, three-minute runs of the left vs. right task. The topmost plot reports accuracy (% 

valid correct). The second plot reports the number of target hits per 3-minute run (hits/run) 

and bottom plot reports the information transfer rate (bits/min).
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