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Abstract

Positron emission tomography data are typically reconstructed with maximum likelihood 

expectation maximization (MLEM). However, MLEM suffers from positive bias due to the non-

negativity constraint. This is particularly problematic for tracer kinetic modeling. Two 

reconstruction methods with bias reduction properties that do not use strict Poisson optimization 

are presented and compared to each other, to filtered backprojection (FBP), and to MLEM. The 

first method is an extension of NEGML, where the Poisson distribution is replaced by a Gaussian 

distribution for low count data points. The transition point between the Gaussian and the Poisson 

regime is a parameter of the model. The second method is a simplification of ABML. ABML has a 

lower and upper bound for the reconstructed image whereas AML has the upper bound set to 

infinity. AML uses a negative lower bound to obtain bias reduction properties. Different choices 
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of the lower bound are studied. The parameter of both algorithms determines the effectiveness of 

the bias reduction and should be chosen large enough to ensure bias-free images. This means that 

both algorithms become more similar to least squares algorithms, which turned out to be necessary 

to obtain bias-free reconstructions. This comes at the cost of increased variance. Nevertheless, 

NEGML and AML have lower variance than FBP. Furthermore, randoms handling has a large 

influence on the bias. Reconstruction with smoothed randoms results in lower bias compared to 

reconstruction with unsmoothed randoms or randoms precorrected data. However, NEGML and 

AML yield both bias-free images for large values of their parameter.

Index Terms

Image reconstruction; iterative methods; positron emission tomography (PET)

I. Introduction

Nowadays, positron emission tomography (PET) reconstruction is mainly done by applying 

iterative reconstruction methods. Iterative reconstruction is based on a forward model, which 

offers the possibility to model the true acquisition process better than analytical methods, 

e.g., by incorporation of finite resolution, irregularities in the geometry, etc. Iterative 

reconstruction in PET is usually based on a maximum likelihood (ML) approach, to take 

into account the Poisson statistics of the measured data. To suppress the noise propagation, 

the likelihood can be combined with a prior that favors smooth reconstructions [1].

The most popular iterative ML method for PET reconstruction is ML expectation 

maximization (MLEM [2], [3]). MLEM reconstructions tend to be biased in regions with 

low activity, in particular if these regions are surrounded by high activity structures. 

Moreover, MLEM suffers from noise induced bias [4]. This means that for kinetic PET 

studies, analytical methods, like filtered backprojection (FBP), are still the method of choice 

despite the fact that these images have often lower resolution and more streak artifacts due 

to noise [5], [6]. Dynamic PET data have often very limited numbers of counts that are 

sparsely divided over the lines of response. This is due to the fact that the early frames are 

often very short and for late frames only limited activity might be left due to the decay of the 

activity [6]. When bias is present in the derived time-activity curves, the resulting kinetic 

rate constants will also be biased. Increased variance is usually less problematic, because its 

influence is suppressed by fitting the kinetic model to a fairly large number of data points 

[11].

In every iteration of the MLEM algorithm, the current reconstruction image λ is updated by 

adding the image Δλ which is given for voxel j by

(1)

with
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(2)

where yi are the measured counts for detector pair i, ŷi is the estimate of the sinogram mean 

based on the current reconstruction λ, cij is the sensitivity of detector pair i for activity in 

voxel j, and ri is the estimated number of scattered and/or random events.

The reconstruction formula in (1) shows that the update of a voxel is proportional to λj, the 

current activity estimate for voxel j. This means that regions with low activity with respect 

to the rest of the reconstruction, will converge much slower and a very high number of 

iterations is required to eliminate the positive bias. In practice one is not usually iterating 

long enough to avoid this incomplete convergence bias. Since there are other causes of bias, 

iterating longer by itself would not make the image bias-free.

The inherent non-negativity constraint in image space means that creating a region with zero 

mean is only possibly by making all voxels zero since no negative voxels values are 

allowed. Under noisy circumstances MLEM will always have some remaining positive bias 

in low-activity regions. FBP reconstruction has no constraints on the image values and has 

usually both positive and negative values in a cold region. In case of very noisy data (i.e., 

with very low counts), MLEM not only introduces bias in cold regions but also in regions 

with higher activity. It is known that MLEM with Poisson likelihood is only asymptotically 

unbiased, which means that it is only unbiased for an infinite number of counts [7], [8]. Each 

realization is forced to be positive and this positivity constraint is the origin of this bias. This 

property causes, even at convergence, positive bias in the image for low count 

measurements.

The ABML-method proposed by Byrne in [9] can be used for bias reduction. The ABML 

method extends MLEM by minimizing the Kullback-Leibler (KL) distance, between yi and 

ŷi, using a lower boundary A and upper boundary B. It is based on a well chosen 

combination of KL distances [9] such that when applying the natural constraints of MLEM, 

A = 0 and B = ∞, minimizing the KL cost function is equivalent to maximizing the Poisson 

likelihood. By setting A to negative values, negative values in the image and sinogram 

domain are allowed, resulting in bias reduction behavior [10]–[12]. The convergence of 

different regions is still dependent on the activity but to a lesser extent. Since reconstruction 

values are usually not known beforehand, upper bound B is often chosen very high and A is 

often set to a very low value (i.e., a negative value with high magnitude). It was not 

evaluated whether less extreme values for A would have an influence on bias reduction or 

convergence.

In [13], Nuyts et al. proposed the NEGML algorithm. It was originally developed to obtain 

images with a higher diagnostic value for reconstruction without attenuation correction. 

NEGML allows for negative values in the image domain. Moreover, the convergence of the 

different image parts was not dependent on λj but a uniform weight was used for all voxels. 

Because of these two characteristics the algorithm could also be used to reduce bias, 

especially in cold regions surrounded by warm regions [14]. It was less successful for 

reconstruction based on very low count data, under those circumstances bias could still be 
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observed. Moreover, its effectiveness seemed to be dependent on the implementation. The 

NEGML algorithm has a safety value that prevents division by zero and negative values. In 

[13] it was proposed to apply a lower limit of 1 on the denominator of the update formula. In 

other implementations a much smaller value was used, apparently leading to different bias 

reduction capacities [11].

In this work, the NEGML algorithm is extended such that negative values in the image and 

in the sinogram are allowed. This is obtained by replacing the Poisson distribution by a 

Gaussian distribution for small sinogram values. The bias reduction properties of this new 

NEGML algorithm and the influence of the transition point thereon will be evaluated in this 

work. A simplified version of ABML which is called AML is presented. In AML upper 

boundary B is set to infinity. The influence of lower boundary A on the bias is investigated. 

NEGML and AML will be compared to each other, to FBP, and to MLEM.

II. Methods

A. NEGML

Since the Poisson distribution is in theory the correct distribution, we prefer to use it 

whenever the number of counts is large enough to avoid introduction of bias and switch to 

another distribution when the number of counts is small. The determination of an optimal 

transition point between both distributions is part of the scope of this work.

The most obvious choice for a distribution which is close to Poisson and allows for negative 

values is a Gaussian distribution. Ignoring constant terms, the original Poisson log-

likelihood as a function of the activity equals

(3)

(4)

Extended with a Gaussian part, the newly proposed likelihood becomes

(5)

with

(6)

where ψ defines the point where the Poisson distribution switches to a Gaussian distribution. 

The last three terms in (6) ensure that the transition is continuous. Note that a Gaussian with 
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a constant variance has been chosen. Fig. 1 plots the original and new likelihood with ψ = 4 

for different values of yi.

Computing the reconstruction λ by maximizing the log-likelihood of (6) is not 

straightforward. Therefore, in every iteration n + 1, the objective function Lψ(ŷ;y) is 

approximated by the quadratic function Tψ(ŷ;ŷ(n), y) as follows:

(7)

where Di is independent of ŷi, and ŷ(n) denotes the calculated sinogram, obtained by 

applying (2) to the image λ(n) produced in iteration n. This function Tψ is equal to the 

likelihood Lψ in the current reconstruction and so are their first derivatives. Moreover, the 

derivatives of Lψ and Tψ have the same sign everywhere. Because they are both concave 

functions, this implies they have the same unique maximum

(8)

(9)

(10)

Using (2), Tψ(ŷ;ŷ(n), y) can be rewritten as a function of the new reconstruction λ. 

However, it is convenient to rewrite this new reconstruction as an update of the result from 

the previous iteration as follows:

(11)

where we introduced a set of αj ≥ 0 as design parameters. Now Tψ can be rewritten as a 

function of Δxj

(12)

To optimize T1, a gradient ascent algorithm as described in [13], [15], is applied. First, a 

series expansion of T1 around Δx = 0 is computed, applying the chain rule and noting that 

∂ŷi/∂Δxj = αjcij is a constant [see (2)]
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where the derivatives are evaluated in ŷ = ŷ(n). Since T1 is a quadratic function, the second-

order expansion is exact. The second derivative of Tψ is always negative

(13)

Using in addition the inequality 2ΔxjΔxk ≤ (Δxj)2 + (Δxk)2, a surrogate function T2 for T1 can 

be defined. This surrogate function is equal to T1 in the current reconstruction λ(n) and lies 

below T1 elsewhere

(14)

(15)

Maximization of T2 is guaranteed to increase T1. Because every term of T2 depends on a 

single Δxj only, maximization of T2 is straightforward and yields

(16)

Using (11) and expanding the derivatives produces the new version of the NEGML 

algorithm

(17)

The original NEGML algorithm [13] is obtained when setting ψ = 1 and αj = 1. Neither ψ 

nor αj were explicit parameters in the original NEGML work. Instead of using ψ, division by 

zero was avoided by restricting the denominator to values larger than or equal to 1. Since ŷi 

is a number of photons, ŷi ≥ 1 was chosen as a reasonable value and gave good results. In 

other implementations of NEGML, this restriction was sometimes set at much smaller 

values e.g., ŷi ≥ 10−4 [11]. The results of different implementations were different regarding 

bias reduction, probably due to the different restriction for the denominator. The 
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experiments in this work will explicitly test the influence of ψ on convergence and bias 

values.

When only using the Poisson likelihood, i.e., ŷi ≥ ψ for all i, and by using  and ri = 

0, the update becomes the MLEM update. The original NEGML algorithm used a mixed 

update step to improve the convergence in high activity regions. The update obtained for 

MLEM and NEGML were both calculated for voxel j and the largest of both was applied. 

This mixed update is equivalent to over-relaxation and might cause convergence problems. 

Hence, we prefer to use a pure NEGML update.

The convergence of high activity regions could be improved by altering the values for αj. 

This parameter was introduced in our work on metal artifact reduction and iterative 

reconstruction in CT [15], [16] and serves as a voxel convergence weight during 

reconstruction. Similar weights were used in the grouped coordinate algorithm by Fessler et 

al. [17]. Choosing  gives the weighting used in MLEM, choosing αj = 1 results in 

the weighting of the original NEGML algorithm. A compromise could be obtained by 

defining weights that have a weaker dependence on the activity but still assign higher 

weights to high activity regions.

NEGML can be accelerated with ordered subsets, similarly as proposed for MLEM by 

Hudson and Larkin in [18].

B. AML

The ABML algorithm presented by Byrne [9] allows to perform an MLEM-like 

reconstruction between an image upper bound B and lower bound A by optimizing a well-

chosen combination of KL distances (see [9]). This KL cost function can be considered as 

the sum of KL distances between yi and ŷi, using A and B as offsets. ABML can be seen as 

an extension of the MLEM algorithm, because when using the natural boundaries for 

MLEM, A = 0 and B = ∞, the KL cost function is equal to the Poisson likelihood and 

ABML becomes equivalent to MLEM.

The ABML reconstruction formula as used by Erlandsson et al. in [10] is

(18)

with

(19)

ABML can be used as a bias reduction algorithm by setting Aj to negative values. This way 

it allows for negative values in the image and the sinogram domain. It has been shown to 
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reduce bias substantially [10], [11]. Often a single value for Aj is chosen, i.e., Aj = A for all 

voxels. This sets the lower limit for the reconstruction values to A and for the sinogram 

values to AΣkcik. Since there is no reason to have an upper bound for the image, Bj is usually 

set to a value much larger than the expected maximum activity. Introducing some 

approximations ABML can be extended to an ordered subsets version [10] with inclusion of 

randoms [11].

Since very large values are usually chosen for B, we propose to use ABML with infinite 

upper bound (as in MLEM), referred to as AML. This simplifies the expressions and avoids 

numerical problems that might occur for extreme values of B in (19). The AML update step 

for λj, with uniform A, in additive form becomes

(20)

This update step can be considered as an update where the image and sinogram are shifted, 

with A and AΣkcik respectively, for calculating the update step. This means that the Poisson 

distribution is evaluated at higher values where the influence of the non-negativity constraint 

is negligible. Before adding this to the current reconstruction the update is shifted back. 

Note that choosing A = 0 results in the original MLEM algorithm. The factor (λj − A)in (20) 

still represents an activity dependent weight for the update of voxel j, however, the weights 

become more uniform when A becomes more negative. Hong et al. [19] developed a variant 

of ABML that also allows for negative image values and reduces the influence of the non-

negativity constraint during reconstruction by combining multiple time frames.

The parameter A is defined in image space. It is not straightforward to determine a lower 

bound such that bias-free images are ensured (i.e., such that negative values are not 

suppressed). To our knowledge no guidelines for choosing such a value for A have been 

published. When the lower bound is not low enough, bias might still occur. Therefore, A is 

usually set to a relatively extreme (negative) value to make sure that any constraint on the 

negativity has been eliminated. As argued in the next section, this turns the algorithm 

effectively into a least squares algorithm. It is unclear if such an extreme value is the best 

choice.

C. Unweighted Least Squares and Extreme Values for ψ and A

The influence of the parameter ψ and A on the reconstructions of NEGML and AML will be 

studied in this paper. The behavior of NEGML and AML for extremely high values for ψ 

and extremely low values of A will be studied as well. For large ψ, all sinogram pixels will 

be in the Gaussian regime. It is therefore expected that NEGML will become more and more 

similar to unweighted least squares reconstruction. The same holds for AML. When |A| is 

large1, the shift from A will be so large that the difference in Poisson weighting will be very 

small, eliminating all weighting difference in practice.

1To avoid confusion when discussing negative values of A, |A| is used. Since this paper only considers negative values of A, |A| is 
unambiguous. Large |A| thus means a negative value of A with large magnitude.
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The NEGML algorithm for αj = 1 with ψ → ∞ becomes

(21)

This update formula is used whenever ŷi ≤ ψ for all ŷi.

The AML algorithm with A → −∞ yields

(22)

Unlike for NEGML this formula is theoretically only valid when A = −∞ since all finite 

values for A will still follow the Poisson distribution at ŷi − AΣhcih. However, this 

distribution becomes very flat for large |A|. For comparison, the typical least squares 

algorithm has the following form:

(23)

with ρ a relaxation factor. The results in (21) and (22) resemble the least squares update, but 

are not identical to it. Only when Σkcik is constant, both algorithms yield the least squares 

expression.

D. Additive Contamination

The additive contamination ri can be modeled as in (2). This is often referred to as ordinary 

Poisson, because it assumes that the randoms term ri is not noisy such that the Poisson 

model for yi is preserved. Ordinary Poisson is valid when an estimate of the randoms with 

low noise is available. This can be obtained by smoothing the randoms estimate [20] or by 

calculating them from the singles [21].

In some clinical PET systems, randoms precorrection is still applied. In this case, the 

randoms estimate is subtracted from the measurement, possibly leading to negative values in 

yi. For reconstruction with MLEM, these values should be set to zero which already 

introduces bias in the data. FBP, NEGML, and AML support negative sinogram values and 

no positivity requirement is needed. In [22] some modified statistical methods are given that 

specifically model randoms-precorrected PET emission data.

In the experiments described below, three different ways to correct for the randoms have 

been considered for the different reconstruction algorithms. For FBP, the randoms were 

always subtracted, with or without randoms smoothing. Since a uniform randoms 

contribution was used, this smoothing can be done with a Gaussian function. More dedicated 

smoothing algorithms have been developed for real PET systems [20]. For the iterative 

algorithms the following reconstructions can be used, where si is the noisy estimate of the 
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randoms and  is a smoothed randoms estimate (full-width half-maximum (FWHM) = 5 

pixels).

• Randoms precorrection with randoms smoothing: .

• Ordinary Poisson with randoms smoothing: yi and .

• Ordinary Poisson without randoms smoothing: yi and ri = si.

III. Experiments

This section describes the experiments that are performed to evaluate the bias reduction 

capacity of NEGML and AML, compared to FBP and MLEM. The experiments are based 

on 2-D simulations and consider the influence of the parameter ψ and A on the bias, 

variance, convergence and noise characteristics of NEGML and AML, respectively, for two 

different phantoms simulated with different settings.

A. Phantom 1

1) Simulations—A 2-D phantom with a cold, warm, and hot region, as shown in Fig. 2, is 

simulated. The activity in the image in activity per voxel is: 0 for the cold region, 1 for the 

warm region, and 4 for the hot region. The phantom is discretized in an image of 46 cm × 46 

cm. During simulation this image was represented by a 920 × 920 pixel grid and a parallel 

beam simulation is performed with 920 lines of response per projection and 200 projections. 

Uniform water attenuation is applied. A uniform randoms contribution was simulated, 

assuming a Poisson distribution with the expectation equal to the mean of the 

uncontaminated sinogram. The system resolution was modeled by a Gaussian with FWHM 

of 5 mm.

The obtained sinogram is rebinned to 230 lines of response per projection and 200 

projections. This means that the simulation was four times oversampled. This simulation 

was repeated for 60 (Poisson) noise realizations and 50 time frames of increasing duration, 

resulting in data sets with mean count per sinogram pixel between 0.05 and 1000 counts. In 

a second simulation setting for this phantom, the activity in the image was multiplied by 

three.

2) Reconstructions—Reconstructions were performed with FBP, MLEM, NEGML, and 

AML on a 230 × 230 pixel grid, with pixel size 2 mm × 2 mm. FBP was performed using a 

standard ramp filter. For NEGML different values of ψ were evaluated: ψ = {1, 4, 9, 16, 25, 

100, 100000}, αj = 1 was used for all j. For AML different values of A where used: A = {−1, 

−5, −10, −50, −100, −1000, −100000}. For all iterative methods 200 iterations were applied 

without the use of ordered subsets. During reconstruction the resolution was modeled by a 

Gaussian with FWHM 4 mm, introducing a small mismatch with the resolution of the 

simulation.

The simulations were reconstructed with three different ways of randoms handling, as listed 

in Section II-D.
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3) Evaluation—A cold, warm and hot region of interest (ROI) are defined in the phantom. 

The ROIs exclude all pixels close to the edges, as shown in Fig. 2. The bias is estimated by 

calculating the mean value in a ROI over the different noise realizations, the ROI mean, 

defined by

(24)

with N the number of noise realizations and JROI the total number of pixels in the region. 

The ROI mean values are calculated for all 50 frames. The variance of the mean value over 

the noise realizations, the ROI Var, is calculated by

(25)

B. Phantom 2

This experiment is designed to further investigate whether the findings for phantom 1 and 

for the configuration described in the previous section, remain valid for other configurations. 

We will investigate whether changes in the number of projection lines (i.e., projection 

angles) for a fixed number of total counts has influence on the results. This will give an 

indication whether the results obtained in this study can be extended to fully 3-D PET and 

time-of-flight PET, where the ratio of the number of sinogram pixels to the number of image 

voxels is much larger than in 2-D PET. Because 3-D (TOF) PET simulations are very time 

consuming, it is more practical to study this effect by simulating 2-D PET with a much 

larger number of angles.

A different phantom with one cold and one warm region and three different projection 

settings are used for this experiment.

1) Simulations—A simple 2-D phantom consisting of a uniform disk with one cold 

region, depicted in Fig. 3, is simulated. The activity in the warm region is set to 1, in the 

cold region it is set to 0. The phantom is discretized in an image of 20 × cm 20 cm using a 

400 × 400 pixel grid.

To evaluate the dependence on the sinogram pixel values this phantom was simulated with 

three different settings. For setting 1, 100 projection angles were calculated, 500 for setting 

2, and 1000 for setting 3. However, the total number of counts for each simulation was kept 

constant, i.e., the sensitivity of each line of response of the simulated PET system was five 

times lower for setting 2 and 10 times lower for setting 3.

A parallel beam simulation with 400 lines of response per projection, was performed, 

assuming that the phantom was a uniform attenuator (consisting of water). A uniform 

randoms estimate was set equal to the mean of the uncontaminated sinogram. This simulated 
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estimate was subjected to Poisson noise. The simulation was rebinned for reconstruction to 

100 projection lines per angle.

For all three settings, 100 noise realizations were performed for 20 time frames of increasing 

duration. Only relatively short time frames were considered with mean sinogram count 

between 0.05 and 10 counts per pixel.

The system resolution was again modeled by a Gaussian with FWHM of 5 mm.

2) Reconstruction—The simulated measurements were reconstructed on a 100 × 100 

pixel grid (2 mm isotropic pixel size) with FBP, MLEM, NEGML (ψ = {1, 4, 16}, again 

with αj = 1 for all j) and AML (A = {−1, −5, −50}). Precorrection of the randoms, using 

smoothed randoms (FWHM = 5 pixels), was used for FBP, Ordinary Poisson with smoothed 

randoms (FWHM = 5 pixels) was applied for the iterative methods. Iterative reconstruction 

was performed for 20 iterations with 10 subsets. As for phantom 1, a small mismatch with 

the resolution in the simulation was created by using by a Gaussian with FWHM = 4 mm 

during reconstruction.

3) Evaluation—A warm and a cold ROI are defined as shown in Fig. 3. The ROI mean is 

calculated, as in (24). Note that although all three settings have the same total amount of 

activity in the image and the sinogram, the mean count per sinogram pixel is larger for 

settings with fewer projection views.

IV. Results

A. Phantom 1

This section describes the main results of this work for the phantom depicted in Fig. 2. The 

ROI means as functions of the frame durations are shown in Fig. 4. The frame duration is 

represented by the mean number of sinogram counts in the frame. The standard error on the 

mean is given in Fig. 5

(26)

The results for ordinary Poisson with and without smoothed randoms and for randoms 

precorrection are shown. The upper row of the figure evaluates different values for ψ in 

NEGML, in comparison with FBP and MLEM. The lower row gives the evaluation of AML 

for different values of A.

Ordinary Poisson with randoms smoothing has the lowest bias for all methods. In general 

MLEM has the highest bias, especially in the cold and warm region. The bias of NEGML 

and AML is dependent on the model parameter. The positive bias in the cold region is 

higher when the data are noisier. Evaluating the bias in the cold region with respect to the 

expected value in the warm region, 40%–60% bias is observed for low count data. The bias 

only drops below 10% at on average 10 counts per sinogram pixels. The bias in the warm 
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region is less pronounced, lower than 10%, for ordinary Poisson with randoms smoothing. It 

increases up to 40% for Ordinary Poisson without randoms smoothing and precorrection for 

very low count data. For NEGML all methods perform similarly with bias in the cold region 

mostly less than 2% (compared to the warm region). When the mean sinogram count has a 

value around ψ, a local increase in the bias can be observed. This is the most obvious in case 

of unsmoothed randoms. This local increase becomes less pronounced as ψ increases. We 

have currently no good explanation for this behavior. AML is dependent on A for bias 

reduction, the bias decreases with increasing |A|. This effect is again the most pronounced in 

case of unsmoothed randoms. For high values of |A| the bias is also below 2% everywhere 

and increases when |A| decreases.

In the hot region, even at relatively high counts, some remaining bias, of about 2%, is 

observed for NEGML and for AML with large |A|. This bias reduces when the number of 

iterations increases (data not shown). For less noisy data, MLEM performs in general better 

than both NEGML and AML in the high activity region. Note that there seems to be positive 

bias in the high activity region for FBP. However, this is a random error, caused by the high 

amounts of noise and the limited number of noise realizations. We verified this with 

additional noise realizations for low counts (data not shown).

Fig. 6 depicts the ROI Mean as a function of the frame duration for the cold region of the 

same phantom with threefold increased activity reconstructed with Ordinary Poisson with 

randoms smoothing. In comparison with the phantom with lower activity, AML has more 

bias, which increases for smaller |A|. The results for NEGML are very similar to the case 

with less activity in the image. The reconstructions remain almost bias free. The difference 

between AML and NEGML for increased activity is due to the fact that was not changed 

while the activity in the image did change. The influence of increased activity on the bias in 

the warm and hot regions was less pronounced (not shown).

The reconstructed images for the different methods with ordinary Poisson with randoms 

smoothing for on average five counts per sinogram pixel are shown in Fig. 7. After 

reconstruction, the images were smoothed with a Gaussian filter with FWHM of 4 mm. The 

maximum number of counts in this sinogram is 19 with more than 95% of the sinogram 

pixels below 16 counts. The typical noise-induced streaks are the most pronounced in the 

FBP reconstruction. MLEM suffers the least from these streaks. NEGML and AML have 

only few streaks for small ψ and small |A|. The streaks become more pronounced with 

increasing ψ or increasing |A|. AML has pixel dependent convergence weighting which 

means that it has more MLEM-like characteristics. The hot region is therefore sharper in 

MLEM and AML with small |A|. With respect to noise streaks there is no obvious difference 

observed between bias-free NEGML and AML images, only that AML has somewhat more 

streaks in the background of the image.

The influence of the parameter ψ or A on the ROI Mean and ROI Var is shown in Fig. 8. 

The frames represented in this figure have on average 1 or 5 counts per sinogram pixel. The 

variance in the cold and warm region is lower for NEGML and AML compared to FBP but 

still higher than for MLEM. For most parameter choices, the bias in NEGML and AML is 

better than for MLEM in the cold and warm regions. A local increase of the bias was 
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observed when the mean sinogram count is close to the chosen value of ψ, the higher the 

value of ψ the smaller this increase in bias. This local increase is negligible from ψ = 16 and 

larger. The bias due to incomplete convergence in the hot region, for NEGML and AML 

with large |A|, was expected from previous results.

The influence of ψ and A on the convergence of NEGML and AML for all three regions is 

given in Fig. 9, for a measurement with on average five counts per sinogram pixel. The 

result is shown for ordinary Poisson with randoms smoothing and for parameters: ψ = {4, 

25} and A = {−1, −10, −105}. For this frame duration NEGML with ψ = 25 worked 

completely in the Gaussian regime. The convergence for the cold and warm region is 

relatively fast. At 50 iterations all methods converged. In the hot regions MLEM and AML 

with small |A| converge faster than NEGML and AML with larger |A|. An experiment with 

more iterations (not shown) indicates that most of the algorithms were not yet converged in 

the hot region, another 100–200 iterations are needed to obtain complete convergence and a 

hot region without bias.

B. Phantom 2

The graphs in Fig. 10 depict the ROI mean in the cold and warm region of phantom 2 for a 

set of short frame durations for FBP, MLEM, NEGML, and AML. Three different 

projection setting, with a different number of projection angles were used.

FBP and NEGML show similar bias reduction for all three settings. For the smaller 

parameters, ψ = {1, 4}, again a local increase is observed, this is the most obvious for the 

warm region. For ψ = 16 no bias is observed for all three settings. The bias for MLEM and 

AML is not the same for all three settings. Although the activity in the image is the same for 

all settings, the same value for A results in different bias reduction depending on the setting. 

The largest value of |A|, A = −50, results in bias-free reconstruction for all three settings.

V. Discussion

Two methods for bias reduction have been presented. They both use a likelihood function 

which can be considered as a modified Poisson function.

NEGML uses a combination of a Poisson and Gaussian function with a transition between 

both functions at ψ such that negative sinogram values are allowed. AML is a modification 

of ABML with upper bound B set to infinity, which simplifies and stabilizes (numerically) 

the algorithm. AML can be considered to apply a shift on the data such that they are 

evaluated at higher values where the influence of the positivity constraint is negligible.

The influence of the parameters ψ and A on the bias in the reconstructed images has been 

investigated. It was shown that both algorithms converge to least squares-like algorithms 

when their parameter is sufficiently large.

For NEGML, very low bias was observed for most values of ψ. For low values of ψ, a (so 

far unexplained) increase in bias was seen when the mean sinogram count was similar to ψ. 

Consequently, sufficiently large negative values should be allowed to ensure bias-free 

reconstructions; ψ =16 was found to result in bias-free images under all circumstances. Note 
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that the original NEGML method [13] implicitly used ψ =1 and that it was sometimes also 

used with even smaller values of ψ (e.g., 10−4 in [11]) leading to remaining bias in the 

images.

Small values for |A| in AML result in MLEM-like reconstruction properties, gradually 

increasing |A| yields a transition to least squares reconstruction properties. When |A| is 

sufficiently large, bias-free reconstructions are obtained. Note that in this work a fixed value 

for A was chosen. Studying the influence of an nonuniform image Aj with j = 1 … J, was 

beyond the scope of this paper.

For both algorithms large values for their parameter yield bias-free images. It turned out that 

least-squares-like behavior is required to obtain bias-free images. Both for NEGML and 

AML this bias-reduction comes at the cost of increased variance. No situation could be 

found where NEGML and AML have equal bias properties but significantly different 

variance behavior. Nevertheless, they both have lower variance than FBP, which is a useful 

property.

Parameters that give rise to bias-free NEGML and AML images often reduce the 

convergence rate of the hot region, even for relatively high counts. To reduce the required 

number of iterations ordered subsets can be used (to avoid limit cycle solutions the number 

of subsets could be decreased at higher iteration numbers). For NEGML, αj could be chosen 

non-uniformly but care has to be taken since convergence will be slowed down for voxels 

with relatively low αj. We tested some choices where αj increased monotonically with λj 

(data not shown), the results were comparable to the results for small |A| in AML: improved 

convergence in hot regions at the cost of risking more bias for cold regions.

This study also investigated the influence of the randoms handling on the bias in the image. 

The way the randoms are handled may have a large influence on the severeness of the bias. 

Ordinary Poisson with randoms smoothing copes best with noisy low count data. Ordinary 

Poisson without randoms smoothing shows the worst performance.

For precorrected data, the Shifted Poisson method as proposed by Yavuz and Fessler in [23] 

should be used instead of the Ordinary Poisson method. In a test using Shifted Poisson (data 

not shown), similar results have been obtained: the bias for Shifted Poisson without randoms 

smoothing was substantially increased compared to Shifted Poisson with randoms 

smoothing. The difference between Shifted Poisson and Ordinary Poisson was negligible 

compared to the difference between the use of unsmoothed and smoothed randoms. 

Randoms precorrection creates negative sinogram values, which must be set to zero in 

MLEM and therefore contribute a positive bias [5]. Since AML and NEGML can handle 

negative sinogram values, these algorithms do not encounter this problem. Under all 

circumstances both NEGML and AML (with large parameter) were able to mitigate the bias.

The experiments with the adjusted phantom 1 (threefold activity) and phantom 2 confirm the 

conclusions drawn for phantom 1, despite the fact that different activity and different 

projection settings were used. The experiments in this work have thus only been performed 

on 2-D data. However, a tenfold increase in the number of sinogram pixels for the same 

number of image pixels did not change the major results. Therefore, we anticipate that 
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similar results will be obtained in 3-D and time-of-flight PET, where the ratio of sinogram 

pixels to image pixels is also much larger.

VI. Conclusion

Two algorithms are introduced that modify the Poisson likelihood in order to mitigate bias. 

Using very different mechanisms, both algorithms provide a kind of balance between the 

Poisson likelihood and the Gaussian likelihood (i.e., least squares), which is controlled by a 

single parameter.

NEGML combines a Poisson and Gaussian distribution and was shown to reduce the bias 

significantly when the parameter that determines the switch between both distributions, ψ, 

was at least equal to 16. AML is proposed as a simplification of ABML with upper bound B 

set to infinity. It results in bias-free images when the lower bound A is set low enough. Both 

algorithms are effective in reducing bias when their parameter was chosen high enough in 

magnitude. This comes at the cost of increased variance compared to MLEM but they both 

have lower variance than FBP.

Another issue that was studied was the influence of randoms handling. The use of 

unsmoothed randoms or randoms precorrected data increases the bias substantially. 

However, NEGML with ψ ≥ 16 and AML with a “sufficiently high” magnitude of A 

performed well for all randoms processing approaches.

Although the experiments in this work have been applied on 2-D data, the results suggested 

that the conclusion drawn may hold for 3-D and time-of-flight-PET configurations as well.
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Fig. 1. 
Standard likelihood function (dashed lines) is drawn for yi = 6 (black), yi = 2 (light grey), 

and yi = −2 (dark grey). Corresponding modified likelihood functions with ψ = 4, as 

proposed in (6), are drawn as solid lines.
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Fig. 2. 
Phantom 1. Phantom has a cold, warm, and hot region. Activity for the main experiment was 

0 for the cold region, 1 for the warm region, and 4 for the hot region. In a second setting, the 

phantom’s activity was multiplied by three. Phantom is assumed to have uniform water 

attenuation.
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Fig. 3. 
Phantom 2. Phantom consists of a warm and cold region. Activity and attenuation are 

shown. Phantom is assumed to have uniform water attenuation.
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Fig. 4. 
Phantom 1. Evaluation of the ROI Mean for different frame durations. Frame duration is 

represented by the mean number of counts per sinogram pixel in the frame. Three different 

ways for randoms handling are shown. Upper row gives the results for NEGML, the lower 

row shows the results for AML.
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Fig. 5. 
Phantom 1. Standard error on the mean for the Ordinary Poisson method with randoms 

smoothing (Fig. 4) for FBP, MLEM, NEGML 16, and AML −5 in the cold, warm, and hot 

region of phantom 1.
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Fig. 6. 
Phantom 1 with threefold increased activity. Evaluation of the ROI Mean for the cold 

regions for different frame durations with ordinary Poisson. Frame duration is represented 

by the mean number of counts per sinogram pixel in the frame. Upper row gives the results 

for NEGML, the lower row shows the results for AML.
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Fig. 7. 
Phantom 1. FBP, MLEM, NEGML (ψ = {1, 4, 9, 16, 25}), and AML reconstruction (A = 

{−1, −5, −10, −50, −100}). Ordinary Poisson with randoms smoothing.
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Fig. 8. 
Phantom 1. Mean with respect to variance in the cold regions, warm region and hot region 

for different values of ψ and A. Chosen frame duration correspond to on average 1 and 5 

counts per sinogram pixel. Solid line represent the true value for each region. Ordinary 

Poisson with randoms smoothing.
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Fig. 9. 
Phantom 1. Convergence of MLEM, NEGML (with ψ = {4, 25}), and AML (with A = {−1, 

−10, −105}). Value for FBP is given as a reference.
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Fig. 10. 
Phantom 2. ROI mean in the cold and warm region for three setting. Setting 1: 100 

projections angles (solid line), setting 2: 500 projection angles (small dashes), setting 3: 

1000 projection angles (long dashes).
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