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Abstract

Although mankind has been suffering from osteoarthritis (OA) dating to the dawn of humankind, 

its pathogenesis remains poorly understood. OA is no longer considered a “wear and tear” 

condition but rather one driven by proteases where chronic low-grade inflammation may play a 

role in perpetuating proteolytic activity. While multiple factors are likely active in this process, 

recent evidence has implicated the importance of the innate immune system, the older or more 

primitive part of our body’s immune defense mechanisms. The role of some of the components of 

the innate immune system have been tested in OA models in vivo including the role of synovial 

macrophages and the complement system. This review is a selective overview of a large and 

evolving field. Insights into these mechanisms might inform our ability to phenotype patient 

subsets and give hope for the advent of novel OA therapies.
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Introduction

Osteoarthritis (OA) is considered an “old” disease. Not only is it a disease of the elderly but 

evidence for OA exists in the archeological record of ancient man (1). OA involves the 

“whole joint”, including articular and meniscal cartilage degeneration and loss, sclerotic 

changes to the subchondral bone, bony osteophytosis and synovial inflammation (2). 

Although this disease is widely prevalent, the exact mechanisms involved in its pathogenesis 

are not well understood. However, OA is no longer thought to be a purely non-inflammatory 

or a biomechanical (“wear and tear”) process but rather one that has been increasingly 

recognized to include low grade inflammation, often subclinical (3), that is predictive of 
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articular chondropathy. In one study (4), 422 patients (85% with moderate radiographic 

Kellgren-Lawrence grade 2–3 OA at baseline) underwent knee arthroscopy at the beginning 

of the study and 12 months later. Those noted to have inflammatory changes in the medial 

perimeniscal synovium at baseline were more likely to have progression of tibiofemoral 

cartilage damage observed upon follow-up arthroscopy. This study did not adjust for 

baseline severity of OA which itself is correlated with synovitis (5), so taken alone cannot 

directly prove an independent effect of inflammation on structural progression. However, at 

least two other studies more convincingly show a direct effect of inflammation on OA 

progression. In one recent study with the novel imaging agent 99mTc-Etarfolatide that 

detects activated macrophages (6), a soluble macrophage marker (CD163) in synovial fluid 

was strongly associated with 99mTc-Etarfolatide positivity of the knee and was also 

associated with OA progression based on osteophyte controlling for baseline osteophyte 

severity (7). Another study showed that effusion synovitis, assessed by MRI, was an 

independent predictor of cartilage loss in the tibiofemoral joint at 30 months follow-up in 

subjects with neither cartilage damage nor tibiofemoral radiographic OA of the knee at 

baseline (8). Based on histological and cytokine expression profiling, synovial membranes 

from patients with OA show increased cellular infiltrates (9) and a pannus similar but not as 

extensive as that observed in rheumatoid arthritis (RA) (10). A number of inflammatory 

cytokines, most notably IL-1β and TNFα, are increased in synovial fluid, and both are 

produced by synovial membranes and chondrocytes from OA patients (11, 12).

The latest theories of OA pathogenesis implicate the interplay between mechanical damage 

and chronic inflammation (13, 14). Activation of the innate immune system is intricately 

involved in initiation and perpetuation of this low-grade inflammation (15–17). Thus, OA 

pathology is the result of an imbalance between the anabolic and catabolic processes in the 

joint (11). It seems only fitting that the innate immune system, considered the older or more 

“primitive” branch of our body’s defense, plays a key role in this “oldest” known disease of 

humans (1). This article is a non-systematic review of in vitro and in vivo studies that 

examine the role of the innate immune system in OA pathogenesis. We provide a brief 

overview of innate immunity and the basic mechanisms by which it becomes activated; 

secondly, we review the literature that implicates the innate immune system, including the 

complement system and synovial macrophages, in the pathogenesis of OA. Although we 

will discuss the evidence implicating each, in actuality, this process involves a complex 

interaction between the various branches of the innate immune system.

Overview of Innate Immunity

How does innate immunity, which serves as our first line of defense, lead to inflammation 

and joint pathology? The answer lies in how the innate immune system reacts to changes 

that take place in the joint over time. Unlike the adaptive immune system, innate immunity 

relies on recognition of conserved motifs generated by pathogens or damage within the body 

(18). Damage to cellular and cartilage extracellular matrix products from trauma, 

microtrauma (from repetitive overuse) or normal aging generates damage-associated 

molecular patterns (DAMPs) that activate the innate immune system (15, 17). DAMPs can 

be fragments generated from proteins, proteoglycans or remnants of cellular breakdown, 

such a uric acid (16, 18, 19) (Table 1). DAMPs elicit a sterile inflammatory response 
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through interaction with particle recognition receptors (PRR), such as toll-like receptors 

(TLR), on the surface of immune cells, or with PRRs in the cell cytoplasm, such as nod-like 

receptors (NLRs) (15, 17, 18).

TLR activation leads to increased expression of pro-inflammatory cytokines via a number of 

transcription factors, such as activator protein 1 (AP1), cyclic AMP responsive element 

binding (CREB) protein, interferon regulatory factors (IRF) and NF-kB (20); the latter has 

been found to play a role in OA (15). The PRRs, TLR-2 and TLR-4, have both been thought 

to play a role in OA. TLR-2 and TLR-4 are upregulated in the synovial tissue from patients 

with OA, although not to the same extent as those with RA (21). Histological studies have 

shown increased expression of both TLR-2 and TLR-4 in articular cartilage lesions in OA 

patient samples (22) as well as the synovial membranes of patients with OA (21). Human 

chondrocytes express TLRs and their activation in tissue culture by TLR agonists leads to 

upregulation of matrix metalloproteases (MMPs), nitric oxide, and prostaglandin E2 (PGE2) 

(22). Tenascin-C, a ECM glycoprotein, has been shown in experimental models to cause 

persistence of synovial inflammation via TLR-4 (23). The plasma proteins Gc-globulin 

(vitamin D-binding protein), a1-microglobulin, and a2-macroglobulin, found to be enriched 

in OA synovial fluid (24), can signal via TLR4 to induce macrophage production of 

inflammatory cytokines implicated in OA (25). Whereas knockout of TLR-4 resulted in a 

less severe phenotype in a mouse IL-1 driven model of arthritis, knockout of TLR-2 showed 

a more severe disease phenotype suggesting its activation may be a countermeasure to joint 

catabolism (26). Opposing actions of TLR-2 and TLR-4 have also been described in other 

tissues including presynaptic terminals in the spinal cord and astroglia (27) as well as 

hippocampal neurons (28). Cell culture studies revealed that the extracellular domain A of 

fibronectin can trigger TLR-4 to produce an inflammatory response (29, 30). Both in vitro 

cell culture studies as well as an animal model of inflammatory arthritis have suggested that 

low molecular weight hyaluronic acid (HA) can also trigger either TLR-2 or TLR-4 to 

produce an inflammatory response (31, 32).

NLR activation leads to inflammasome assembly and activation of the inflammasome 

mediated inflammatory pathways (33). In addition, in response to inflammatory cytokines, 

chondrocytes have the ability to produce complement (34), another component of the innate 

immune response. Various ECM components, such as Cartilage Oligomeric Matrix Protein 

(COMP) (35–37), and the NC4 domain of type 4 collagen (38), can also fix complement. 

Finally, activation of mechanoreceptors in the cartilage and the synovium can lead to 

upregulation of various inflammatory mediators (39)

Once initiated, this inflammatory response leads to upregulation of catabolic factors, such as 

pro-inflammatory cytokines, proteolytic enzymes and chemokines, and downregulation of 

anabolic factors, such as anti-inflammatory cytokines and growth factors (11). From a 

teleological prospective, the ability of DAMPs to trigger the innate immune system probably 

is meant to promote wound healing and tissue repair (18, 40). However, these events can 

lead to further tissue breakdown, which contributes to an on-going sterile wound healing 

cycle resulting in joint tissue pathology (see Figure 1). There are other mechanisms 

activated in joint tissues in response to injury and an altered mechanical environment 

including altered mechanoreceptor signaling (41) and release of growth factors such as 
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fibroblast growth factor (42). The balance of these responses in conjunction with the level of 

activation of the innate immune response likely orchestrates the net rate and severity of joint 

tissue catabolism.

Overall, the pathologic response of the joint results from a combination of anabolic (growth 

factors and anti-inflammatory cytokines) and catabolic forces (proteolytic enzymes and pro-

inflammatory cytokines) (43). The two major pro-inflammatory cytokines implicated in OA 

are IL-1β and TNFα (11); synovial membrane biopsies from patients with early OA 

(symptomatic but no radiographic changes) had greater immunostaining of these two 

cytokines compared with late OA (requiring hip arthroplasty) (44), implying that 

inflammation may play an important role early in the disease course. In these early OA 

samples they also observed upregulation of indicators of inflammation such as cellular 

infiltrates, ICAM-1, VEGF, NF-κB and COX-2 (44). Another group found increased 

concentrations of IL-15 in the synovial fluid from patients with early versus late-stage OA 

suggesting activation of an innate immune response in the synovial membrane (45). 

Analysis of synovial membranes from 54 patients requiring arthroplasty for hip or knee OA 

revealed that the majority (57%) had inflammatory infiltrates (46); the subgroup with 

inflammatory infiltrates had higher mean levels of plasma high sensitivity CRP, which was 

strongly correlated with IL-6 concentrations in the synovial fluid (46). In addition, various 

other inflammatory cytokines and chemokines have possible links to OA pathogenesis; these 

include IL-8, IL-17, IL-18, IL-21 and leukemia inhibitory factor (LIF) (11, 43).

While the pro-inflammatory cytokines and chemokines represent the “marching orders”, 

proteolytic enzymes are the actual mediators on “the frontline” responsible for actual 

degradation of the articular cartilage. The two main groups of enzymes that mediate this 

catabolic process are the MMPs and ADAMTS (a disintegrin and metalloproteinase with 

thrombospondin motifs) (11). Various MMPs and tissue inhibitor of metalloproteinases 

(TIMP) were found to be upregulated in the synovial fluid from patients with OA (47). Also, 

MMP-1, MMP-3, and MMP-13 were isolated from both OA pannus cells and 

chrondocytes--with MMP-3 being the most highly expressed from both (48). Both bovine 

and human chondrocytes have shown the ability to produce ADAMTS protein (49). 

Furthermore, RNA expression of ADAMTs from human OA synovial cells can be altered by 

exposure to IL-1β and TNFα and pharmacologic blockade of thes cytokines (50).

The Complement System

The complement system consists of over 30 proteins. It includes serine proteases that 

contribute to an enzymatic cascade that yields proteins involved with opsonization, 

chemotaxis, and cell lysis as well as naturally occurring inhibitors, such as CD59 (also 

known as protectin) and factor H, which serve to keep the complement system in check (51). 

There are three different pathways by which the complement system can become activated 

(Figure 2) but all converge into the membrane attack complex (MAC) formed from C5b to 

C9. The MAC forms a cytotoxic ring-structure that perforates its target (51). As shown by 

some recent studies, MAC forms in response to the presence of certain extracellular matrix 

(ECM) proteins, such as fibromodulin (35). Furthermore, MAC also has sublytic properties 

that can upregulate inflammatory mediators without causing direct cytotoxic effects (35).
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Complement proteins (see Table 2) have been found to be upregulated in both the synovial 

membranes as well as the synovial fluid of OA patients (24, 52, 53). The amount of MAC 

deposition in the synovial membrane is correlated with the level of synovial inflammation 

on histology (53). Chondrocytes are also capable of synthesizing complement components 

whose synthesis in OA can be upregulated by pro-inflammatory cytokines such as IL-1β and 

TNF-α (34). C5a receptors have been found to be upregulated on the surface of OA 

chondrocytes but not to the same extent as in RA (54). Other histological studies have found 

that complement deposition increases during an acute flare of the disease (52). Likewise, 

complement levels in the synovial fluid are elevated during the earlier acute phases of the 

disease (35). CD59, a natural occurring complement inhibitor, appears to be continuously 

upregulated in OA (52) implying that the complement system is chronically activated in OA. 

As described above, various ECM breakdown products, such as COMP, fibromodulin, and 

the NC4 domain of type 4 collagen, have all been shown to activate certain components of 

the complement pathway (see Table 1).

While this evidence has implicated the complement system in the pathogenesis of OA, a 

series of recent studies in transgenic mouse models have more definitively demonstrated a 

pathological role of the complement system in OA. For instance, in a medial menisectomy 

mouse-model, knocking out components of the complement pathway (C5 and C6), 

attenuated joint damage (35). Conversely, knocking out CD59 (Protectin) increased 

degenerative changes compared to wild type mice (35). Pharmacologically blocking the 

complement system by CR2-fH, a fusion protein of a complement receptor and the naturally 

occurring inhibitor factor H, was associated with less severe joint damage (35). The same 

group showed that carboxypeptidase B (CPB) appeared to have a protective role in OA by 

inhibiting the complement system (55). Similar to their previous findings (35), in a medial 

menisectomy OA model, mice that were deficient for CPB showed more cartilage 

degeneration, osteophyte formation and synovitis than wild-type mice (55). In addition, they 

found that levels of CPB correlated to levels of MAC in the synovial fluid of patients with 

OA; suggesting that CPB has an anti-inflammatory role in the joint (55). Finally, in an in 

vitro model, CPB treated serum decreased MAC formation. Subsequently, they concluded 

that CPB has an anti-inflammatory effect in OA by inhibiting formation of MAC (55).

Synovial Macrophages

Similar to a war being fought in the air, land and sea, the overall innate immune response 

requires a concerted effort of multiple lines of defense. In addition to the complement 

system, innate immune cells, such as macrophages, serve vital functions to our body’s 

defense (56) and play a key role in innate immunity; they are involved in RA as well as OA 

(9) (see Table 2). Macrophages, as their name implies, are major phagocytic cells of the 

body, but they also carry out a number of other important functions, such as initiating 

inflammation, resolving inflammation, and restoring and repairing tissue damage (56, 57). 

Usually, macrophages exhibit a functional plasticity based on signals from their 

environment. However, their chronic activation can lead to deleterious effects (56, 57).

Macrophages can be activated in a variety of ways. As mentioned earlier, one of the primary 

ways is through activation of PRRs, which in turn activate a number of intracellular 
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pathways, such as NF-κB (58). Another way macrophages can become activated is through 

inflammasome mediated pathways (59). Inflammasomes are large multimeric intracellular 

protein complexes that help process caspase-1 which is responsible for producing the mature 

forms of several pro-inflammatory cytokines such as IL-1β (60). NLRP3 is the most 

extensively studied of all the inflammasomes (59) and has been associated with crystal-

induced inflammation triggered by uric acid and calcium pyrophosphate (61) as well as 

hydroxyapatite crystals (62, 63). One study of knee OA patients without gout suggested 

involvement of uric acid activated NLRP3 inflammasomes in the pathogenesis of OA (64). 

In this study, synovial fluid uric acid concentrations correlated with the concentrations of 

two cytokines, IL-18 and IL-1β, known to be produced by uric acid activated 

inflammasomes, and synovial fluid IL-18 was associated with OA progression. Hyaluronan 

also activates inflammasome pathways (65). Since there is a high degree of correlation of 

uric acid crystal deposition and cartilage lesions (66), and evidence for inflammasome 

activation in association with uric acid in OA (62, 64). it has been postulated that the chronic 

low-grade inflammasome activation helps drive OA progression (62, 64).

Experimental therapies aimed at macrophages have shown the ability to both decrease 

inflammation and progression of OA. Depletion of macrophages from a cell-culture 

suspension of human OA synovium decreases the inflammatory response, including both the 

cytokine response and the activity of proteolytic enzymes, such as matrix metalloproteases 

and aggrecanases, known to play a role in OA (50). Depletion of synovial macrophages via 

intra-articular injection of clodronate leads to less MMP activity and less cartilage damage 

in mouse model of OA (67). On the other hand, macrophages also secrete growth factors, 

such as TGFβ, that can enhance cartilage repair (68). However, intra-articular injections of 

TGFβ into the knees of mice can lead to fibrosis and extensive osteophyte formation; this 

response was abrogated by injecting clodronate beforehand which successfully depleted 

macrophages from the synovial lining (69). Thus, experimental therapies directed toward 

macrophages appear to be an attractive future target for OA.

Therapeutic Implications

Since OA has traditionally been thought to be a purely biomechanical disease, patients 

diagnosed with this condition are primarily treated to palliate symptoms. The growing body 

of evidence implicating the innate immune system in the pathogenesis of OA provides hope 

that insights into these mechanisms might inform our ability to phenotype patients who 

would stand to benefit the most from a particular therapy and treat these patient subsets 

more specifically than is currently possible. Although currently there are few effective 

pharmacologic treatment options for symptomatic OA, intra-articular glucocorticoids have 

shown some efficacy and are recommended by a number of international treatment 

guidelines (70, 71). Among their many effects, glucocorticoids lower expression of 

complement (72, 73), and induce macrophage polarization to an anti-inflammatory 

phenotype (74). However, their effects are broad and associated with numerous adverse 

effects including decreased bone formation, hyperglycemia and increased risk of infections 

(74). Development of more targeted therapies is critical for gaining clinical benefit without 

adverse effects.
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Does the growing body of knowledge implicating the innate immune system in OA 

pathogenesis provide any hope for new treatments of OA in the future? Specifically, can 

slowing the inflammatory response lead to either symptomatic improvement or halt the 

progression in OA? Previous animal knockout models for COX-1 and COX-2 (75) and 

IL-1β and ICE have failed to show any chondroprotective effect (76) (and may have lead to 

increased disease). Knockout models are not always the most informative as it is difficult to 

ascertain any possible off-target effects (as illustrated by the previous study by Fukai et al 

(75)). Instead, are there other in vivo study designs that provide a more realistic but 

accelerated model for OA? As has been previously pointed out, one of the difficulties facing 

OA therapeutic studies is the long-natural history of the disease (77). As such, post-

traumatic arthritis models might provide a way to evaluate a critical period of OA 

pathogenesis where inflammation may play a key role. Prior studies from our group have 

shown that IL-1β is upregulated in the synovial fluid of animals with post-traumatic arthritis 

(78, 79). A prior study found that recombinant IL-1RA used intra-articularly prevented OA 

development in an experimental animal model (80). More recent studies from our group 

have shown IL-1 inhibition to be effective in preventing progression of post-traumatic OA 

(81, 82). Several proof of concepts studies showed that a dual-variable domain 

immunoglobulin directed to both IL-1α and IL-1β prevented cartilage degradation in an 

animal model of OA (83, 84).

How close are some of these anti-inflammatory therapies that have been efficacious in 

preclinical OA, to going from “bench to bedside”? Prior human studies using current RA 

therapies to block cytokines in OA have met with mixed success. Intra-articular injections of 

adalimumab, an anti-TNF-α monoclonal antibody, showed some improvement in pain 

scores for knee OA (85) but showed no statistically significant improvement in pain for 

hand OA (86). Another small study showed improvement in pain but no changes in 

radiographic scores after 12 months for patients with hand OA that received intra-articular 

infliximab injections (87). Intra-articular injections of anakinra, an IL-1 receptor antagonist, 

have shown mixed results in improving pain in several small studies (88, 89). In a proof of 

concept from our group, the effects of intra-articular IL1RA injections were looked at 

following acute joint injury. Patients were randomized to either placebo intra-articular 

IL1RA. Those who received the intra-articular IL1RA were found to have less pain and 

improved function (90).

Also, targeting the cells or proteins of the innate immune system holds some promise for 

OA. There has been a growing body of literature on therapies targeting inflamed synovial 

tissue. Recently, a new recombinant protein (MT07), representing a fusion of an anti-C5 

monoclonal antibody and a synovial-homing peptide, both prevented and successfully 

treated synovial inflammation in two different animal models of inflammatory arthritis (91). 

Another new strategy involved intra-articular injection of a DNA vector encoding an anti-C5 

recombinant mini-antibody (MB12/22). This treatment lead to in situ production of this 

neutralizing antibody, which resulted in a statistically significant reduction in joint 

inflammation in a rat model of inflammatory arthritis (92). A human anti-DR5 antibody 

(TRA-8) was able to selectively induce apoptosis in a subset of inflammatory macrophages 

in a transgenic mouse model that led to less synovial hyperplasia and cellular infiltrates as 
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well as improved clinical scores (93). As this therapy is directed toward a subset of 

inflammatory macrophages, theoretically it should have less off-target effects but further 

studies are needed. Tigatuzumab, a humanized monoclonal antibody to DR5, has been well 

tolerated in Phase I cancer studies (94). To the best of our knowledge, these therapies have 

not been studied in human for arthritis.

Conclusions

In addition to serving as our first line of defense, the innate immune system plays a key role 

in the pathogenesis of OA. Once activated, innate immunity “goes on the offensive”, leading 

to an inflammatory response that is a major driver of the disease process. The analogy of an 

innate immune system on the offensive is apt based on the failure of the innate immune 

response to resolve, which drives OA progression, if not development (43). A greater 

understanding of the basic mechanisms by which innate immunity becomes activated 

provides insights into OA pathogenesis. The advent of a much-improved understanding of 

the pathogenesis of OA is critical for effective phenotyping of OA patient subsets. Only 

through effective phenotyping will personalized medicine become a reality, the goals of 

which are to increase drug response rates, decrease adverse event rates, and improve the 

overall cost-effectiveness of medical therapy (95). It might be imagined that in addition to 

being able to identify inflammatory subsets of OA, the relative severity and profile of the 

innate immune response may reveal ‘subsets within subsets’ of OA. These advances could 

lead to potential new therapeutics for OA that would be expected to both modify symptoms 

and structural progression. While OA remains an “old” disease, our new understanding of it 

offers hope for more effective therapies in the future.
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Glossary of Terms

ADAMTS a disintegrin and metalloproteinase with thrombospondin motifs

CD cluster of differentiation

COMP cartilage oligomeric matrix protein

CPB carboxypeptidase B

CR complement receptor

ECM extracellular matrix

DAMP damage associated molecular patterns

DR death receptor

HA hyaluronic acid
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ICAM intracellular adhesion molecule 1

ICE IL-1β converting enzyme

IL interleukin

IL-1RA interleukin 1 receptor antagonist

MAC membrane attack complex

MASP mannan-binding lectin serine protease

MB mannose binding

MBL mannose binding lectin

MMP matrix metalloproteases

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

NLR NOD (nucleotide-binding domain)-like receptor

OA osteoarthritis

PRR particle recognition receptor

RA rheumatoid arthritis

TGF tissue growth factor

TIMP tissue inhibitor of metalloproteinases

TLR toll-like receptor

TNF tumor necrosis factor

VEGF vascular endothelial growth factor
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Figure 1. Osteoarthritis Pathogenesis
This figure depicts the self-perpetuating cycle of joint degeneration that characterizes the 

pathogenesis of osteoarthritis. In this paradigm, an inciting injury to the joint tissue causes 

the breakdown of the extracellular matrix (ECM), which initiates activation of innate 

immunity and a cyclic cascade of inflammatory events leading to further and ongoing joint 

damage.
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Figure 2. The Complement System
The complement cascade is a complex system that can become activated by one of three 

separate pathways: the classical, the mannose-binding (MB)-Lectin and alternative 

pathways. All three pathways converge on the C3 protein. C3 cleavage products participate 

in the activation of C5 whose cleaved components contribute to a local inflammatory 

response (C5a) or form part of the membrane attack complex that plays a role in cell lysis 

(C5b). Abbreviations: CD, cluster of differentiation; H, complement factor H; MAC, 

membrane attack complex; MASP, mannan-binding lectin serine protease; MB, mannose 

binding; MBL, mannose binding lectin. Complement effectors=blue, complement 

inhibitors=red. Adapted from Wang 2011 (35) and Sturfelt 2012 (51).
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Table 1

Extracellular matrix breakdown products that can trigger innate immunity.

COMP Happonen et al. 201036 Regulates complement

Collagen IX (NC4 domain) Kalchishkova et al. 201138 Direct/indirect inhibition of complement

Fibromodulin Sjoberg A et al. 200537 Activates classical complement pathway via C1q

Fibromodulin Wang et al. 201135 Upregulates C5b-9 (MAC) from human OA sera

Fibronectin (EC domain) Okamura et al. 200129 Triggers TLR-4

Fibronectin (EC domain) Gondokaryono et al. 200730 Triggers TLR-4 mast cells

Hyaluronan Yamasaki et al. 200965 HA triggers inflammasome->IL-1β

Hyaluronan Scheibner et al. 200631 HA triggers TLR-2

Hyaluronan Taylor et al. 200732 HA triggers TLR4/CD44/MD-2

Tenascin-C Midwood et al. 200923 TLR-4 agonist leading to persistent synovial inflammation

COMP-cartilage oligomeric matrix protein, MAC=membrane attack complex, OA=osteoarthritis, TLR=toll like receptor
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Table 2

Components of Innate Immunity with a Putative Role in Osteoarthritis.

C3c, C5, Konttinen et al. 199652 Increased in synovial membranes of OA patients
-Further increased during acute flare

C3 Gobezie et al. 200724 Significantly increased from other SF proteins in proteomic assay.

C3a Wang et al. 201135 Increased in SF of OA patients

C4b Gobezie et al. 200724 Significantly increased from other SF proteins in proteomic assay.

C5b-9 (MAC) Wang et al. 201135 Increased in SF of OA patients

C5b-9 (MAC) Corvetta et al. 199253 Increased in synovial membrane of OA patients

C5, C6 Wang et al. 201135 Knockout mice for these complement proteins showed less OA damage

CD59 (inhibitor) Konttinen et al. 199652 Chronically upregulated in human OA synovium

CD59 (inhibitor) Wang et al. 201135 Knockout mice for this complement inhibitor showed more severe OA damage

Macrophages Blom et al. 200767 Depletion of synovial macrophages leads to MMP activity and less severe OA in mice

Macrophages van Lent et al. 200469 Macrophages secrete TGF-β that leads to osteophytes

SF=synovial fluid, OA=osteoarthritis; TGF-tissue growth factor
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