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Abstract

Quantitative analysis of microstructures using computerized stereology systems is an essential tool 

in many disciplines of bioscience research. Section thickness determination in current non-

automated approaches requires manual location of upper and lower surfaces of tissue sections. In 

contrast to conventional autofocus functions that locate the optimally focused optical plane using 

the global maximum on a focus curve, the present study identified by two sharp “knees” on the 

focus curve as the transition from unfocused to focused optical planes. Analysis of fourteen gray-

scale focus functions showed, the thresholded absolute gradient function, was best for finding 

detectable bends that closely correspond to the bounding optical planes at the upper and lower 

tissue surfaces. Modifications to this function generated four novel functions that outperformed 

the original. The “modified absolute gradient count” function outperformed all others with an 

average error of 0.56 μm on a test set of images similar to the training set; and, an average error of 

0.39 μm on a test set comprised of images captured from a different case, i.e., different staining 

methods on a different brain region from a different subject rat. We describe a novel algorithm 

that allows for automatic section thickness determination based on just out-of-focus planes, a 

prerequisite for fully automatic computerized stereology.
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1. INTRODUCTION

Current computerized stereology systems require trained users to carry out several manual 

steps in order to generate design-based estimates of first- and second-order stereological 

parameters of biological interest. Existing autofocus functions for brightfield microscopy 

*Corresponding Author, Lawrence O. Hall, Computer Science and Engineering, 4202 E. Fowler Ave., ENB 118, University of South 
Florida, Tampa, FL 3620-5399; phone: 813-974-4195. hall@cse.usf.edu. delozory. kkramer. baishali. obonam. goldgof. 
pmouton@health.usf.edu. 

HHS Public Access
Author manuscript
J Microsc. Author manuscript; available in PMC 2015 June 14.

Published in final edited form as:
J Microsc. 2012 December ; 248(3): 245–259. doi:10.1111/j.1365-2818.2012.03669.x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



locate the optimal focal plane, i.e., the plane at which biological microstructures appear at 

maximal focus as determined by a trained observer (Shen et al., 2008, Liu et al., 2006, 

Hilsenstein, 2005, Sun et al., 2004, Santos et al., 1997). For the purpose of automatic 

stereological anlaysis using computerized systems, one prerequisite is location of the optical 

planes that correspond to the out-of-focus planes above and below the stained tissue 

sections. A second requirement is that any approach for automatic section thickness 

determination must be robust across a range of conditions, including healthy vs. diseased 

tissue; tissue from different species; and, tissues stained with a variety of techniques 

(Mouton, 2002; Mouton & Gordon, 2010, Mouton, 2011a,b). A critical obstacle to the full 

automation of feature recognition algorithms to enable automatic recognition of biological 

structures of interest (Mouton et al., 2005) is the requirement to locate the boundaries 

between in-focus and out-of-focus optical planes at the upper and lower surfaces of stained 

tissue sections. Using current, non-automated approaches, section thickness determination is 

carried out by manual adjustments using the microscope’s fine focusing mechanism to 

locate “just-out-of-focus” optical planes above and below the cut surfaces of the tissue. 

Computerization of this process with an autofocus algorithm represents a significant 

advance toward fully automated applications of design-based stereology to biological tissue.

The goals of this research were three-fold. The first goal was to develop a function to 

automatically locate the top and bottom surface of a routine section of stained tissue, and 

then repeat this process at multiple X-Y locations within an anatomically defined reference 

space. Locating the top and bottom surface enables correct automatic placement of 

geometric probes for stereology, for example disector, as well as automatic determination of 

the section thickness. Using a brightfield microscope at high magnification (100x objective), 

the upper and lower surfaces of the tissue section were defined as the “just out of focus” 

optical planes, i.e., above and below the first in-focus optical planes. The desired level of 

accuracy for an automated function was to be within 1.0 μm of the top and bottom “just out 

of focus” optical planes, on average, compared to the manually measured surface location 

(ground truth). With a typical step size of 1.0 μm between optical planes in the Z-axis, this 

level of accuracy translates to ±1 optical plane from the ground-truth plane. No attempt was 

made to interpolate between Z-stack images to locate a more refined boundary.

The second goal was to develop a method for training the automated surface location 

algorithm across a range of threshold parameters to optimize the performance of each focus 

function. The locations of 36 tissue surfaces within 18 Z-stacks were manually identified for 

use as the training set for these studies. Incorporating a focus function into an autofocus 

algorithm requires thresholding the focus function output, i.e., focus measure, also known as 

the focus threshold. Additionally, the focus functions were divided into two categories: 1) 

functions with a pixel-to-pixel contrast threshold (thresholded functions); and, 2) functions 

with no contrast threshold (non-thresholded functions). For thresholded functions, the 

Nelder Mead simplex optimization method (Press, 1988) for two dimensional parameter 

spaces was used to find the optimal pixel-to-pixel contrast threshold, which was paired with 

the total image focus threshold to yield the focus function with the lowest average error rate. 

For non-thresholded functions, the golden ratio optimization method (Press, 1988) was used 

to locate the best focus threshold.
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Finally, because the morphological and histological characteristics of biological 

microstructures vary within and between tissue sections (Mouton & Gordon, 2010, Mouton, 

2011a), focus function threshold parameters typically require retraining for different 

datasets. The ideal focus function would have thresholds that perform well across datasets, 

without retraining; for different hardware; across the range of biological variation in 

microstructures; and for different staining methods used to process tissue sections for 

computerized stereological analysis. Thus, the third goal of this research was to evaluate the 

robustness of the threshold selection for different datasets collected across a range of actual 

conditions.

A significantly less complete version of this work was published in (Elozory et al., 2011). 

Here, 7 more existing focus functions are evaluated and we introduce 2 new functions. 

There are 7 functions (vs. 1) fully evaluated for automated surface location. In this paper, an 

extra test set was acquired from the hypocampus region and which is completely different 

than the training set. This allows for the much more extensive evaluation done here.

2. MATERIALS AND METHODS

2.1. Data Collection Equipment

These studies were carried out using the Stereologer system (Stereology Resource Center, 

Inc., Chester, MD) that consists of a Zeiss Axioskop 20 brightfield microscope with a range 

of low (Zeiss Plan Neofluar 2.5x) to high (Zeiss Plan-Apochromat 100x oil immersion, 

numerical aperture 1.4) magnification objectives equipped with digital imaging and 

interfaced to a motorized X-Y-Z stage (ASI, Eugene, Oregon) for both manual and 

automated modes via the system software. The digital camera (Microfire, Optronics, Goleta, 

CA) was capable of capturing 800 × 600 pixel images in 8-bit by three channel (RGB) color 

mode. The charged-coupled device (CCD) for the camera was a single 2/3” 1600 × 1200 

pixels array with 7.4 μm × 7.4 μm pixel size using a Bayer mosaic filter array to capture 

color information. This common Bayer filter placed a mosaic filter over the CCD such that 

each 2 × 2 pixel square had an RGB (25 Red, 50 Green, 25 Blue) color filter. The 

Stereologer software was compatible with both iMac G4 platform (32-bit 1.25GHz, OS10.6) 

and Dell Optiplex GX280 (32 bit 3.20 GHz Intel Pentium4) running Microsoft Windows 7 

Enterprise version.

Depth of field (DOF) was calculated to be 0.43 μm using Equation (1), where: λ is the 

wavelength of illuminating light (0.55 μm for average visible light); η is the refractive index 

(1.516 for immersion oil); NA is the objective numerical aperture; M is the lateral 

magnification; and, e is the lateral resolution power (constrained to a minimum of 0.24 μm 

by Abbe diffraction limit).

(1)

The second term becomes insignificant at high magnification and high numerical aperture 

(100x oil immersion, NA 1.4). Finally, the proper choice of objective is used to achieve the 

practical light microscope minimum DOF. A shallow DOF results in a shallow depth of 
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focus that is desirable as reducing depth of focus is equivalent to enhancing axial resolution 

(Yuste & Konnerth, 2005), e.g., DOF of less than 1.0 μm is required to achieve 1.0 μm 

precision.

2.2. Datasets

Tissue for these studies provided by the Stereology Resource Center (SRC, Chester, MD)] 

included sections stained with two common approaches to reveal microstructures of 

biological interest: tyrosine hydroxylase (TH) immunocytochemistry to reveal dopaminergic 

neurons in the rat substantia nigra; and, Nissl histochemistry (cresyl violet) to stain 

pyramidal neurons in the CA region of the hippocampus. The sections are cryostat and not 

plastic embedded. The cut section thickness, i.e., block advance, for the tissue was 40 

microns, while the final section thickness after all tissue processing was about 20 microns. 

This tissue shrinkage of about 50% is expected for tissue staining protocols that include a 

dehydrating alcohol series. A Z-stack was defined as a series of images captured at 

incremental (0.1 μm) steps in the Z plane. Three separate datasets (Table 1) consisting of Z-

stacks of images were acquired at high magnification (100x, 1.4 n.a.) with the X-Y plane 

and Z-axis perpendicular and parallel, respectively, to the camera axis. The Stereologer 

captured Z-stacks using the following procedure:

1. Anatomically defined reference spaces (the substantia nigra and the hippocampus) 

were outlined by manual user clicks at low magnification (2.5x objective).

2. After switching to high magnification, the Stereologer automatically selects a series 

of X-Y locations within the reference space in a systematic-random manner.

3. The user locates the top and bottom optical planes at each X-Y location by clicking 

the location of interfaces between unfocused and focused images at the top and 

bottom of the tissue section.

4. The user sets step increment and buffer in Z-axis to ensure acquisition of unfocused 

images above and below tissue.

5. The Stereologer system automatically acquires Z-stack at that X-Y location.

6. With user assistance, the Stereologer system collects multiple Z stacks by repeating 

steps 3, 4 and 5 at different systematic-random locations through the X-Y plane of 

the reference space.

The acquired Z-stacks were divided into three datasets – a training set and two test sets. The 

training set and test set #1 included Z-stacks from sections through a single brain region 

(substantia nigra) and stained with TH immunocytochemistry from the brain of a single rat. 

A second test set (test set #2) included Z-stacks acquired from sections though the brain of a 

different rat, from a different brain region (hippocampus), and stained with a different 

procedure (Nissl histochemistry).

2.3. Focus Functions

2.3.1. Common Thresholded Focus Functions—A total of eighteen focus functions 

were analyzed, including fourteen published functions from the literature of microscopy 

autofocusing. The remaining four functions resulted from modifications to the thresholded 
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absolute gradient function which had the lowest error in locating the “just out of focus” 

optical plane as described in the proceeding. The first six functions, as well as all four 

modified functions, required selection of a threshold. Threshold selection adds a level of 

complexity, yet enables “fine tuning” of the function. Equation (2), used in the thresholding 

equations that follow, returns a given value when the given value exceeds the specified 

threshold.

(2)

Six previously developed thresholded focus functions, as shown in Equations (3) through 

(8), were tested:

(3)

(Elozory et al., 2011, Groen et al., 1985, Hamm et al., 2010, Krotkov, 1988, Liu et al., 2006, 

Santos et al., 1997, Sun et al., 2004, Sun et al., 2005, Vollath, 1987)

(4)

(Elozory et al., 2011, Groen et al., 1985, Liu et al., 2006, Pech-Pacheco et al., 2000, Santos 

et al., 1997, Sun et al., 2004, Sun et al., 2005, Vollath, 1987)

(5)

(Brenner et al., 1976, Elozory et al., 2011, Firestone et al., 1991, Hamm et al., 2010, Liu et 

al., 2006, Osibote et al., 2010, Santos et al., 1997, Sun et al., 2004, Sun et al., 2005)

(6)

(Firestone et al., 1991, Groen et al., 1985, Liu et al., 2006, Pech-Pacheco et al., 2000, 

Santos et al., 1997, Sun et al., 2004, Sun et al., 2005)

(7)

(Groen et al., 1985, Liu et al., 2006, Pech-Pacheco et al., 2000, Santos et al., 1997, Sun et 

al., 2004, Sun et al., 2005)

(8)

(Firestone et al., 1991, Groen et al., 1985, Liu et al., 2006, Pech-Pacheco et al., 2000, 

Santos et al., 1997, Sun et al., 2004, Sun et al., 2005)
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2.3.2. Common Non-Thresholded Focus Functions—A total of eight conventional, 

non-thresholded focus functions were evaluated, as shown in Equations (9) through (16). 

These less complex non-thresholded focus functions do not require a pre-selected threshold.

(9)

where Sx and Sy are the convoluted images with Sobel operators.

(Bueno-Ibarra et al., 2005, Hamm et al., 2010, Hilsenstein, 2005, Huang & Jing, 2007, 

Krotkov, 1988, Liu et al., 2006, Osibote et al., 2010, Santos et al., 1997, Sun et al., 2004, 

Sun et al., 2005, Tenenbaum, 1970)

(10

(Groen et al., 1985, Huang & Jing, 2007, Krotkov, 1988, Liu et al., 2006, Osibote et al., 

2010, Sun et al., 2004, Sun et al., 2005)

(11)

(Elozory et al., 2011, Groen et al., 1985, Huang & Jing, 2007, Krotkov, 1988, Liu et al., 

2006, Santos et al., 1997, Sun et al., 2004, Sun et al., 2005)

(12)

(Elozory et al., 2011, Firestone et al., 1991, Groen et al., 1985, Hamm et al., 2010, Liu et 

al., 2006, Osibote et al., 2010, Santos et al., 1997, Sun et al., 2004, Sun et al., 2005)

(13)

(Elozory et al., 2011, Hamm et al., 2010, Hilsenstein, 2005, Liu et al., 2006, Osibote et al., 

2010, Santos et al., 1997, Sun et al., 2004, Sun et al., 2005, Vollath, 1987)

(14)
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(Elozory et al., 2011, Hamm et al., 2010, Liu et al., 2006, Santos et al., 1997, Sun et al., 

2004, Sun et al., 2005)

(15)

where hist(i) is the number of pixels of intensity i.

(Firestone et al., 1991, Liu et al., 2006, Santos et al., 1997, Sun et al., 2004, Sun et al., 

2005)

(16)

(Firestone et al., 1991, Krotkov, 1988, Liu et al., 2006, Santos et al., 1997, Sun et al., 2004, 

Sun et al., 2005).

2.3.3. New Focus Functions—The initial testing of the above 14 functions [Equations 

(3) through (16)] identified Equation (3), the thresholded absolute gradient, as superior to all 

others in determining tissue surface location in terms of overall rank based on minimum 

error. Four modifications were made in an effort to achieve greater performance from this 

function. Intermediate functions below [Equations (17) through (19)] simplify the 

descriptions of Equations (20) through (23). Equation (17) is an indicator function that 

signifies whether the current pixel location (i, j) is high contrast, and returns 1 if this is true 

or 0 otherwise. High contrast for this function occurs when the absolute value of the 

difference between the current pixel and either its neighboring pixel to the right or directly 

below is greater than or equal to the designated threshold value. Equation (18) describes the 

binary 3 × 3 median filter used in functions represented by Equations (22) and (23). 

Equation (18) determines the number of the eight immediate neighboring pixel locations 

with high contrast, while Equation (19) returns the thresholded absolute gradient contrast 

strength in both the horizontal and vertical direction for a given pixel location (i, j).

(17)

(18)

(19)

Equations (20) through (23) represent the four new focus functions introduced by the present 

work (Elozory, 2011). The modified absolute gradient (MAG) function [Equation (20)] is a 
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rotationally invariant form of the absolute gradient function [Equation (3)]. The modified 

absolute gradient count (MAGC), Equation (21), is rotationally invariant with a simple 

count of high contrast pixels, as determined by Equation (17). Equations (22) and (23) 

reduced spurious noise through applications of a 3 × 3 median filter to the MAG function 

[Equations (20)] and the MAGC function [Equation (21)].

(20)

(21)

(22)

(23)

Using a Z-stack of images as input, each of the above functions generated a focus curve. 

Acquisition of Z-stacks of images started at the optical plane above the top surface of the 

tissue and proceeded to a focal plane below the bottom surface. A low incremental step-size 

(1 μm) through the Z-axis ensured identification of the boundary between unfocused and 

focused regions within an acceptable error rate. For locating the depth of focus of a tissue 

surface, the just out of focus image was defined as the boundary between unfocused and 

focused regions, with no interpolation between images.

The primary goal of the present study, to locate the just out of focus planes, is an important 

distinction compared to traditional approaches, e.g., the work of Osibote et al. (2010), which 

was designed to locate the optical plane of peak focus. These earlier approaches are based 

on the idea that focus functions behave like Gaussian curves near their peaks (Nayar & 

Nakagawa, 1994), and based on the knowledge that the logarithm of a Gaussian is quadratic, 

enable fitting of a parabolic curve between adjacent images to determine optimal peak focus 

along the focus curve. In contrast, the just out of focus area of the focus curve targeted by 

the present study does not approach a Gaussian or any other well-defined function; 

therefore, no interpolation or curve fitting was carried out.

To locate the just out of focus images, the ideal focus curve should differentiate three 

regions in each Z-stack:

1. The unfocused images above the tissue sample.
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2. The in-focus images within the tissue sample.

3. The unfocused images below the tissue sample.

The two unfocused regions on either side of the in focus region were assumed to behave in a 

similar manner, i.e., these regions of the focus curve response would be zero with no points 

of focus in the image. In practice, these regions would be at, or close to, a minimum and 

relatively flat compared to the in-focus region, with no assumption that these regions would 

be monotonic. The only requirement for an in-focus region is that the bounding images 

would have a higher focus measure than every image from the unfocused regions. Note, 

even the bounding planes of the in focus regions cannot be expected to have the same 

measure of focus since the number and size of object surfaces cut by the optical plane are 

expected to vary. Finally, there was no assumption of unimodality in the region and no 

requirement for all these images to yield higher focus measures than the unfocused images.

2.4. Automated Surface Location Algorithm

We developed an algorithm to locate the top and bottom tissue surfaces of a Z-stack of 

images using a specified focus function. Within the in focus regions, there is no expectation 

of symmetry. There are two main reasons: (1) slices contain different structures and so vary 

from slice to slice, and (2) slices closer to the bottom are imaged through more and more 

semi-transparent slices above and, hence, have different pixel intensities. The algorithm uses 

a training set of Z-stacks with manually determined tissue surfaces to optimize the focus 

function threshold parameters. Pseudo-code is shown in Appendix 1. Automating the 

thresholded functions requires optimization of a two-dimensional parameter space. The 

Nelder Mead simplex optimization method (Press, 1988) was selected on the basis of 

computational simplicity – no need to calculate function derivatives – and ability to adjust 

the traversal rate by expanding or contracting the step size as needed. Automation of the 

non-thresholded functions requires optimization in a single dimensional parameter space. 

The golden ratio optimization method (Press, 1988) was used on the basis of simplicity and 

efficiency. Once the algorithm was trained and the optimized thresholds determined, Z-

stacks were analyzed to find the top and bottom focal planes for automatic section thickness 

determination. The automated surface locating algorithm started at the top of the Z-stack and 

moved down the Z-stack one image at a time. Focus of the first image was assessed over the 

trained focus threshold, and repeated for each consecutive image with each previous image 

designated as the just-out-of-focus optical plane, i.e., the top surface boundary. Second, the 

algorithm started from the bottom of the Z-stack and moved up the Z-stack, one image at a 

time, until the first image with focus measure over the trained focus threshold was located, 

with the previous image designated as the bottom tissue surface boundary. Except for the 

first image on either side of the in-focus region, no images within the in-focus region were 

analyzed.

3. RESULTS

Figures 1 through 5 show the focus curves for each of the fourteen common functions 

analyzed using a typical Z stack in the training set. Figure 6 indicates the focus curves for 

the four modified functions for the same Z-stack. All functions were optimized over the 

Elozory et al. Page 9

J Microsc. Author manuscript; available in PMC 2015 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



training set to minimize deviation from the top and bottom surfaces located in a manual 

manner (i.e., ground truth). The two vertical bars in every figure represent ground truth and 

separate each focus curve into three regions: the middle region between the ground truth 

bars, that is, the in-focus region; and the two out-of-focus regions on either side of the in 

focus region that include the ground truth bars. When possible to select correct focus 

thresholds, the range of acceptable thresholds is shaded horizontally across the figure to 

separate the focus curve at the ground truth bars (see Figure 1, Figure 3b, and Figure 6).

Of the eighteen focus functions analyzed, the thresholded gradient based functions (Figure 1 

and Figure 6) were the only functions to achieve the performance requirements as defined in 

the first goal of this study. These seven focus functions were each independently 

incorporated into the automated surface location algorithm, and each trained to find the top 

and bottom tissue surfaces within an average tolerance of 1.0 μm using the arbitrarily 

selected training set (Table 2). With trained threshold parameters, all seven functions 

identified the top and bottom tissue surfaces within 1.0 μm on a test set of similar Z-stacks, 

Test set #1 (Table 3); and, on a Test set #2 that represents a set of Z-stacks from a different 

rat brain case study (Table 4).

Ranking the algorithms by both average error rate as well as standard deviation from the 

ground truth showed that the MAGC function outperformed the others by finding tissue 

section surfaces within 0.56 μm on average for test set #1, and within 0.39 μm on average 

for test set #2. Surpassing the tolerance goal of ±1.0 μm for each surface, tissue thickness 

was also determined within ±1.0 μm on average. Because two surface locations for each Z-

stack are required to determine each section thickness measure, the two test sets were 

combined to determine tissue thickness. On the resulting set of 34 tissues samples, six of the 

seven thresholded gradient functions yielded an error rate of less than 1.0 μm (Table 5). 

Once again, the MAGC function had the lowest error rate (0.76 μm).

Supervised sets of Z-stack images stored as portable gray scale maps (pgm files) on hard 

disk were used to develop a training method to optimize the automated surface location 

algorithm. The automation of the thresholded gradient functions required selection of two 

thresholds: The pixel-to-pixel contrast threshold to determine whether to include the contrast 

between two pixels in the function summation; and, the total image focus threshold to decide 

whether an image is in focus or not. Since the Nelder Mead optimization outcome is 

dependent on the initial selection of simplex coordinates (Press, 1988), the method was run 

three times for each focus function, with a different initialization each time. The automated 

surface location algorithm used each of the hundreds of threshold pairs selected by Nelder 

Mead with each focus function to locate 36 tissue surfaces within 18 Z-stacks consisting of a 

total of 480 images. This analysis led to seven focus functions that located correct tissue 

surfaces within the desired error rate tolerance after application of the optimized thresholds.

Test set #2, a set of rat brain coronal sections taken from a different study than the rat brain 

coronal sections from the training set, was used to analyze the robustness of the optimized 

thresholds. Importantly, both the histochemical stain (cresyl violet) and reference space 

(hippocampus) for sections in test set #2 differed markedly in appearance from that of the 

training set obtained from TH-immunostained sections through the substantia nigra in test 
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set #1. Nonetheless, using threshold parameters optimized on the training set, the same 

seven focus function that performed well on test set #1 performed to the same level on test 

set #2 (see Table 4), with the MAGC function outperforming others with an average error 

rate of 0.76 μm.

To test the statistical significance of these findings, the success rate of all seventeen focus 

functions were compared to the MAG. Success was defined as automatic identification of a 

tissue surface within 1 μm of the tissue surface location determined by the user in a manual 

manner. The seven thresholded gradient functions attained this goal, while the remaining 

functions did not. When one looks at which of the seven functions is more likely to find the 

right boundary with the paired t-test one finds the MAGC stands out. The paired t-test 

(Tamhane & Dunlop, 2000) confirmed that the MAGC function was statistically different 

than all the other gradient functions, except the modified absolute gradient, with regard to 

accurate determinations of tissue surfaces locations with a confidence interval of 95% 

compared to the mean difference from ground truth (Elozory, 2011). Now, if you look at 

both top and bottom or slice thickness, the MAGC function found the correct tissue 

thickness relative to ground truth in a more consistent manner than all other functions, with 

a confidence interval of 99% or more (see Table 6).

The distribution of the deviation of the automated location of tissue surfaces from the 

ground truth is shown in Tables 7 through 10. The deviation is the positive difference 

between the automated surface location algorithms determination of surface location and the 

ground truth. This difference is measured in whole micrometers. Since the step size through 

the Z-stacks was 1 μm, this difference is the number of images from the correct just out of 

focus image returned by the algorithm. On Test set #1 and Test set #2 the MAGC function 

was never more than two images away, i.e., within 2 μm, from the ground truth. 94% of the 

tissue surfaces determined by the MAGC function were within a single image from the 

ground truth. For thickness determination, this was not the case, since measuring thickness 

requires measurement of both the upper and lower surfaces, and therefore requires a higher 

tolerance level. Nonetheless, tissue thickness was determined within 1 μm by the MAGC 

function 78% of the time, and never greater than 3 μm from than ground truth.

4. DISCUSSION AND CONCLUSIONS

The novel finding in this study is the introduction of the MAGC function that allows 

automatic location of tissue surfaces, which enables automatic placement of geometric 

probes as well as accurate measurement of section thickness. We note that all methods to 

determine the just-out-of-focus optical planes using the modified absolute gradient function 

with a precision equal to +/− 1.0 micron (one optical plane) require the use of a high 

resolution oil objective-immersion oil combination with depth of focus less than 1 micron. 

The MAGC function located tissues surfaces within 1 μm of ground truth on average and 

determined tissue thickness within 1 μm of ground truth on average. To optimize the 

function parameters, a training algorithm was developed using a set of tissue surfaces 

identified by a trained user. With optimized parameters, the automated surface location 

algorithm using the MAGC function meets the criteria for automatic section thickness 

determination, as required for computerized stereology applications across a range of 
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different studies using different tissues and a variety of staining techniques. The processes 

automated by the MAGC function are currently performed manually, even in state-of-the-art 

computerized stereology systems. Automation of these processes using the MAGC function 

has the potential to dramatically increase throughput of studies to quantify morphometric 

parameters using unbiased stereological approaches.

Absolute gradient, squared gradient, and Brenner gradient were the only three of the 

fourteen common functions tested at the start of this study to achieve the goal of locating 

tissue surfaces with an average tolerance of 1.0 μm relative to ground truth. Furthermore, 

only two of these conventional functions – absolute gradient and Brenner gradient – 

measured tissue thickness with an average tolerance of 1.0 μm. Of these two functions, the 

absolute gradient function achieved the superior performance, as evidenced by the function 

rankings in Table 2 through Table 5.

Three modifications to the absolute gradient threshold function led to further enhancements 

in the performance of the absolute gradient function. Addition of pixel-to-pixel comparison 

in the vertical and horizontal directions improved performance through rotational invariance. 

For weighting improvement, the squared gradient gave higher weight to relatively high 

contrast pixels than absolute gradient; nevertheless, absolute gradient performed better than 

squared gradient. To test whether the performance of absolute gradient could be further 

improved by eliminated weighting of higher contrast pixels, a simple count function 

enumerated pixels over the absolute contrast threshold. Under the reasoning that isolated 

high contrast pixels were most likely “salt and pepper” noise, rather than actual points of 

focus, a median filter was applied to the intermediary binarized image of the MAG function.

Modifications to the absolute gradient function generated four new functions (see Figure 6), 

all of which achieved the average tolerance goal of ±1.0 μm for surface location with similar 

test and training sets. These four functions met the robustness goal by achieving the same 

tolerance goal for a dissimilar test set; all four modified functions determined tissue 

thickness within ±1.0 μm average. Thus, the MAGC function achieved higher performance, 

as assessed by lowest error rate and greatest robustness across different training sets.

The computational complexity to determine focus of an image using the modified functions 

is Ο(n2), where nis the number of rows or columns of the image. For rotational invariance, 

the vertical comparison is done in parallel with the horizontal comparison with no increase 

in complexity. The median filter, however, requires a second pass through the image raster, 

with the second pass pipelined one row and column behind the first pass, with only a slight 

constant time increase. With current processing speeds of standard computers, a Z-stack is 

captured and analyzed in real time, with the step motor speed of the automated stage as the 

time limiting factor.

With regard to practical application, the Absolute Gradient Focus Function is designed to 

locate the “just-out-of-focus” focal plane at the upper and lower surfaces of the tissue 

section with an error that is directly proportional to the resolving power of the objective and 

the contrast (signal: noise ratio) of stained microstructures in the tissue. While fluorescent 

immunostaining highlights cells with specific antigens, the approach fails to stain general 
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proteins as required for identification of top and bottom surfaces of cut sections. For this 

reason the Absolute Gradient Focus Function requires a light general counterstain, e.g., 

cresyl violet, for automatic measurement of the top and bottom of the sections. Higher 

resolution objectives, e.g., 100x oil, NA 1.4, provide thinner focal planes and enhanced 

contrast as compared to lower resolution objectives. For all objectives the advantage of the 

automatic computerized function over the manual approach is higher measurement precision 

(higher repeatability) by the same and different investigators, i.e., higher intra- and inter-

rater reliability.
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APPENDIX 1

Algorithm pseudo-code:

1. Capture images automatically using Stereologer

2. Start with training Z stacks which have manually determined tissue surfaces

3. Optimize focus parameters using Nelder mead for thresholded functions and 

Golden Ratio for non thresholded focus functions.

4. Determine top and bottom focal planes.

4.1 Start from top of the stack and move down. Focus of the first image was 

assessed against the trained focus threshold, and this was repeated for each 

consecutive image with each previous image designated as the just-out-of-focus 

image until the threshold is exceeded

4.2 The algorithm starts from the bottom of the Z-stack and moves up the Z-stack, 

one image at a time, until the first image with a focus measure over the trained 

focus threshold was located
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Figure 1. 
Thresholded Gradient Focus Curves from a typical Z stack in the Cryostat Training Set (Rat 

C1 Sec09 XY02). The two red vertical bars depict the manually determined surface depth. 

The green region depicts the range of threshold values that correctly identify the surface 

depth by partitioning the Z-stack into a focused region bounded by an unfocused region on 

either side.
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Figure 2. 
Zoomed in Thresholded Intuitive Focus Curves. Little variation can be seen using full scale 

so these functions were plotted with the vertical scale magnified to better show curve 

characteristics.
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Figure 3. 
Non-Thresholded Gradient Focus Curves. As in Figure 1, the green region depicts the range 

of threshold values that correctly identify the surface depth by partitioning the Z stack into a 

focused region bounded by an unfocused region on either side.
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Figure 4. 
Non-Thresholded Statistical Focus Curves
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Figure 5. 
Histogram Based Functions
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Figure 6. 
Modified Absolute Gradient Focus Curves. These functions were modified in an attempt to 

better locate the surface depth. As in Figure 1, the green region depicts the range of 

threshold values that correctly identify the surface depth by partitioning the Z-stack into a 

focused region bounded by an unfocused region on either side.

Elozory et al. Page 20

J Microsc. Author manuscript; available in PMC 2015 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Elozory et al. Page 21

Table 1

Characteristics of Datasets Used for Evaluation

Dataset Description
Number of

Z-stacks
Number of

Images

Training Set Cryostat 010610 Substantia Nigra
Rat C1 Sec: 05,07,08,09 18 455

Test Set #1 Cryostat 010610 Substantia Nigra
Rat C1 Sec: 05,07,08,09 16 373

Test Set #2 Nissl 041696 Hippocampus
Rat10 18 490
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Table 2

Automated Focus Determination Training Set Optimization.

Eq. Function
Contrast

Threshold
Focus

Threshold

Average
Error

from G.T.

Standard
Deviation
from G.T.

(μm) Rank (μm) Rank

(3) Absolute Gradient 16 700 0.72 1 0.80 6

(4) Squared Gradient 119 197,878 0.89 7 1.56 7

(5) Brenner Gradient 486 130,444 0.75 4 0.79 5

(20) Modified Absolute
Gradient 18 239 0.72 1 0.69 3

(21) Modified Absolute
Gradient Count 18 18 0.75 4 0.68 1

(22) Filtered Modified
Absolute Gradient 17 118 0.72 1 0.77 4

(23) Filtered Modified
Absolute Gradient Count 16 10 0.75 4 0.68 1

(6) Content 96 159,139 4.22 16 2.76 17

(8) Pixel Count 42 13,429 2.56 11 2.65 14

(7) Image Power 80 695,994,640 4.33 17 2.69 15

(9) Tenenbaum Gradient N/A 517,555,008 1.50 10 2.13 8

(10) Energy Laplace N/A 393,364,455 1.17 8 2.23 10

(11) Variance N/A 948 2.86 12 2.63 13

(12) Normal Variance N/A 89,505 2.97 13 2.51 12

(13) Autocorrelation N/A 6,027,949 1.44 9 2.15 9

(14) Standard Deviation
Based Autocorrelation N/A 758,447,304 4.50 18 2.69 16

(15) Range N/A 180 3.31 15 2.95 18

(16) Entropy N/A 6.8484 3.00 14 2.44 11
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Table 3

Automated Focus Determination, Test Set #1.

Eq. Function
Contrast

Threshold
Focus

Threshold

Average
Error

from G.T.

Standard
Deviation
from G.T.

(μm) Rank (μm) Rank

(3) Absolute Gradient 16 700 0.63 4 0.42 2

(4) Squared Gradient 119 197,239 0.69 6 0.53 7

(5) Brenner Gradient 486 130,341 0.78 8 0.48 6

(20) Modified Absolute
Gradient 18 230 0.66 5 0.41 1

(21) Modified Absolute
Gradient Count 18 18 0.56 1 0.43 3

(22) Filtered Modified
Absolute Gradient 17 118 0.59 3 0.43 3

(23) Filtered Modified
Absolute Gradient Count 16 20 0.56 1 0.43 3
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Table 4

Automated Focus Determination Test Set #2.

Eq. Function
Contrast

Threshold
Focus

Threshold

Average
Error

from G.T.

Standard
Deviation
from G.T.

(μm) Rank (μm) Rank

(3) Absolute Gradient 16 700 0.42 2 0.71 6

(4) Squared Gradient 119 197,239 1.00 7 0.71 6

(5) Brenner Gradient 486 130,341 0.53 6 0.68 5

(20) Modified Absolute
Gradient

18 230 0.47 4 0.65 1

(21) Modified Absolute
Gradient Count

18 18 0.39 1 0.65 1

(22) Filtered Modified
Absolute Gradient

17 118 0.47 4 0.65 1

(23) Filtered Modified
Absolute Gradient Count

16 20 0.44 3 0.67 4
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Table 5

Automated Tissue Thickness Determination for Test Sets #1 and #2 Combined

Eq. Function
Contrast

Threshold
Focus

Threshold

Average
Error

from G.T.

Standard
Deviation
from G.T.

(μm) Rank (μm) Rank

(3) Absolute Gradient 16 700 0.85 3 1.13 6

(4) Squared Gradient 119 197,239 1.41 7 1.13 6

(5) Brenner Gradient 486 130,341 0.94 5 1.04 5

(20) Modified Absolute
Gradient 18 230 0.94 5 0.98 2

(21) Modified Absolute
Gradient Count 18 18 0.76 1 1.00 4

(22) Filtered Modified
Absolute Gradient 17 118 0.88 4 0.96 1

(23) Filtered Modified
Absolute Gradient Count 16 20 0.82 2 0.99 3
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Table 6

McNemar Chi Squared Test Measuring Statistical Significance

McNemar Chi Squared Test (with 1 Degree of Freedom) with Likelihood [confidence
interval (CI, %)] that Modified Absolute Gradient count (Equation 21) is statistically
different from other focus functions with regard to accurate location of tissue
surfaces.

Eq. Function
Training Test Set1 Test Set2 Thickness

Test Set

X2 CI X2 CI X2 CI X2 CI

(3) Absolute Gradient 0.25 38 NSD* 0 NSD* 0 0.25 38

(4) Squared Gradient 0.13 28 0.56 55 6.04 99 2.52 23

(5) Brenner Gradient 0.25 38 0.56 55 NSD* 0 0.06 20

(20) Modified Absolute
Gradient NSD* 0 0.28 40 0.25 38 2.08 85

(22) Filtered Modified
Absolute Gradient NSD* 0 0.28 40 0.25 38 0.08 23

(23)
Filtered Modified
Absolute Gradient

Count
NSD* 0 NSD* 0 0.25 38 0.13 28

(6) Content 22.23 100 24.01 100

(8) Image Power 25.01 100 24.01 100

(7) Pixel Count 25.01 100 19.01 100

(9) Tenenbaum
Gradient 1.23 73 8.03 100

(10) Energy Laplace 0.56 55 1.13 71 19.01 100 8.22 100

(11) Variance 13.35 100 22.01 100

(12) Normal Variance 17.28 100 22.01 100

(13) Autocorrelation 0.28 40 4.69 97

(14) St Dev
Autocorrelation 23.22 100 24.01 100

(15) Range 14.33 100 22.01 100

(16) Entropy 15.31 100 20.01 100

*
NSD = No statistical difference
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Table 7

Paired t-Test Measuring Statistical Significance

Paired t-Test with Likelihood [confidence interval (CI, %)] that modified Absolute
Gradient count (Equation 21) is statistically different than other thresholded
gradient functions with regard to accurate location of tissue surfaces.

Eq. Algorithm

Training Test Set 1 Test Set 2 Thickness
Test Set

t
(35 df) CI t

31 df CI t
(35 df) CI t (33 df) CI

(3) Absolute Gradient 2.02 97 2.10 98 2.38 99 3.02 100

(4) Squared Gradient 3.02 100 4.00 100 7.32 100 8.07 100

(5) Brenner Gradient 2.71 99 4.61 100 3.42 100 4.31 100

(20) Modified Absolute
Gradient 1.43 92 1.44 92 2.09 98 2.66 99

(22) Filtered Modified
Absolute Gradient 1.00 84 1.79 96 1.78 96 2.66 99

(23)
Filtered Modified
Absolute Gradient
Count

1.78 96 1.79 96 2.38 99 3.19 100

df = degrees of freedom
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Table 8

Distribution of Deviation on Training Set

Distribution of Deviation of
Automated Surface Location from Manual Surface Location

Training Set of 18 Z-stacks (36 Surfaces Located)

Eq. Function

0 μm 1 μm 2 μm >2 μm

Count % Count % Count % Count %

(3) Absolute Gradient 17 47 13 36 5 14 1 3

(4) Squared Gradient 17 47 14 39 3 8 2 6

(5) Brenner Gradient 16 44 14 39 5 14 1 3

(20) Modified Absolute
Gradient 15 42 16 44 5 14 0 0

(21) Modified Absolute
Gradient Count 14 39 17 47 5 14 0 0

(22) Filtered Modified
Absolute Gradient 16 44 15 42 4 11 1 3

(23)
Filtered Modified
Absolute Gradient
Count

14 39 17 47 5 14 0 0
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Table 9

Distribution of Deviation on Test Set #1

Distribution of Deviation of
Automated Surface Location from Manual Surface Location

Test Set #1: 16 Z-stacks (32 Surfaces Located)

Eq. Function

0 μm 1 μm 2 μm >2 μm

Count % Count % Count % Count %

(3) Absolute Gradient 15 47 14 44 3 9 0 0

(4) Squared Gradient 15 47 12 38 5 16 0 0

(5) Brenner Gradient 12 38 15 47 5 16 0 0

(20) Modified Absolute
Gradient 14 44 15 47 3 9 0 0

(21) Modified Absolute
Gradient Count 17 53 12 38 3 9 0 0

(22) Filtered Modified
Absolute Gradient 16 50 13 41 3 9 0 0

(23)
Filtered Modified
Absolute Gradient
Count

17 53 12 38 3 9 0 0
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Table 10

Distribution of Deviation on Test Set #2

Distribution of Deviation of
Automated Surface Location from Manual Surface Location

Test Set #2: 18 Z-stacks (36 Surfaces Located)

Eq. Function

0 μm 1 μm 2 μm >2 μm

Count % Count % Count % Count %

(3) Absolute Gradient 23 64 12 33 0 0 1 3

(4) Squared Gradient 9 25 19 53 7 19 1 3

(5) Brenner Gradient 19 53 16 44 0 0 1 3

(20) Modified Absolute
Gradient 21 58 13 36 2 6 0 0

(21) Modified Absolute
Gradient Count 23 64 12 33 1 3 0 0

(22) Filtered Modified
Absolute Gradient 21 58 13 36 2 6 0 0

(23)
Filtered Modified
Absolute Gradient
Count

22 61 12 33 2 6 0 0
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Table 11

Distribution of Deviation on Combined Test Sets

Distribution of Deviation of Automated Tissue Thickness Determination
from Manual Thickness Determination

Combined Test Sets #1 and #2: 34 Z-stacks

Eq. Function

0 μm 1 μm 2 μm >2 μm

Count % Count % Count % Count %

(3) Absolute Gradient 16 47 11 32 4 12 3 9

(4) Squared Gradient 5 15 17 50 7 21 5 15

(5) Brenner Gradient 12 35 16 47 3 9 3 9

(20) Modified Absolute
Gradient 13 38 12 35 7 21 2 6

(21) Modified Absolute
Gradient Count 16 47 12 35 4 12 2 6

(22) Filtered Modified
Absolute Gradient 13 38 14 41 5 15 2 6

(23)
Filtered Modified
Absolute Gradient
Count

14 41 14 41 4 12 2 6
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