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Abstract

All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, 

and within insect cells. The insect microbiota is generally different from microorganisms in the 

external environment, including ingested food. Specifically, certain microbial taxa are favored by 

the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by 

specific mechanisms for their transmission. The resident microorganisms can promote insect 

fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, 

for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, 

parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune 

system. Priorities for future research include elucidation of microbial contributions to 

detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to 

pathogens; as well as their role in among-insect communication; and the potential value of 

manipulation of the microbiota to control insect pests.
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Introduction

Insects are chronically colonized by microorganisms that are not overtly pathogenic and are 

often beneficial or even required by the insect host. Most of the cells in a healthy insect are 

microbial, and the microbiota accounts for up to 1–10% of the insect's biomass. As a result, 

an insect is fundamentally a multiorganismal entity.

The microbiology of healthy insects has become the focus of intense research interest in 

recent years. This heightened activity can be attributed to two linked developments: 

dramatic technical advances in sequencing technologies, enabling microorganisms to be 

identified and investigated in situ, and large consortial initiatives [e.g., Human Microbiome 

Project (commonfund.nih.gov/hmp/index), MetaHIT (metahit.eu)] that have successfully 
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applied these technologies to study the resident microorganisms in humans (24) and raised 

awareness among biologists of the wider importance of animal-associated microbiota. 

Despite great interest, the study of insect-microbial interactions is still widely regarded as 

crossing traditional disciplinary boundaries, with the consequence that the literature is 

scattered among journals of microbiology, ecology, evolution, and molecular biology and 

physiology, as well as entomology. The purpose of this review is to synthesize this diffuse 

literature to provide an overview of interactions between insects and their resident 

microbiota.

Insect Habitats

An insect comprises multiple habitats for microorganisms. The most accessible habitats for 

microbial colonists are the external cuticle and the gut. Microorganisms that can breach the 

exoskeleton or gut wall can gain access to the hemocoel and a further set of habitats 

provided by insect cells.

Cuticle

Although the insect exoskeleton is correctly recognized as a vitally important physical 

barrier against microbial infections (116), it is also a substrate that can be colonized by 

various microorganisms. Up to 1,000 culturable bacterial cells are associated with the body 

surface of Drosophila melanogaster, two orders of magnitude fewer than are borne 

internally by flies of the same age (92). Factors limiting microbial populations on the insect 

cuticle can include physical disturbance (e.g., ecdysis and grooming behavior) as well as 

antimicrobial secretions (e.g., from the meta-pleural glands of ants, Hymenoptera) (122). 

The extent to which cuticle-associated bacteria can proliferate and form stable communities, 

as occurs on human skin (46), is largely unknown.

Cuticular structures that promote colonization by specific microorganisms have evolved in 

many insects. In particular, the mycangia, i.e., cuticular invaginations housing fungi in adult 

insects, can be considered as culture vessels in which fungi required by the insect's offspring 

are stored and protected against abiotic factors and contamination by other microorganisms. 

The defining feature of mycangia—that they house fungi—is somewhat artificial because at 

least some mycangia additionally bear bacteria (56, 101). Some cuticular modifications 

house bacteria exclusively. For example, solitary digger wasps of the tribe Philanthini retain 

Streptomyces spp. in cuticle-lined glandular reservoirs, in each of 5–6 antennal segments 

(61) (Figure 1a); and attine ants house actinobacteria of the genus Pseudonocardia in similar 

glandular invaginations, known as crypts or foveae, on the thorax, legs, or other locations of 

the body, varying with ant species (26).

Gut

Some attributes of the insect gut are favorable for colonization by microorganisms, 

including ease of access for food-associated microbial cells, availability of nutrients, and 

protection from various stresses of the external environment (e.g., desiccation, ultraviolet 

radiation). Nevertheless, the insect gut poses multiple challenges for microorganisms 

ingested with the food, including unfavorable physicochemical conditions (e.g., oxygen 
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content, pH, redox potential) in the gut lumen, secreted digestive enzymes and immune-

related compounds, physical disturbance caused by peristalsis of gut contents, and loss of 

habitat at insect molts and metamorphosis. The conditions, resources, and hazards of the gut 

habitat for microorganisms vary among insect groups and with the life stage of the insect 

and region within the gut, reflecting the great variation in insect gut anatomy and 

physiology.

In many insects, the hindgut is the gut region bearing the largest microbial populations 

(Figure 1b,c). In particular, the ileum (the region between the proximal pylorus and distal 

rectum) is a relatively benign environment, in that it lacks the digestive enzymes of the 

midgut and, for many terrestrial insects, the desiccation stress of the distal hindgut, where 

water is actively resorbed from the lumen into insect tissues. Microbial function and growth 

may also be favored by the ions and metabolites delivered to the hindgut in the filtrate from 

the Malpighian tubules. In many insects, the ileum displays no evident morphological or 

physiological adaptations to maintain microorganisms, but the ileum of some insects (e.g., 

termites, scarab beetles) is expanded to form an anoxic fermentation chamber in which the 

microbiota degrade complex plant polysaccharides into products utilizable by aerobic 

metabolism of the insect (14, 54). In many insect taxa, the cuticle of the hindgut is thrown 

into spines and plates, and microorganisms can preferentially adhere to these structures (14).

The midgut tends to be a hostile environment for microorganisms. The midgut epithelium 

secretes an arsenal of enzymes and is immunologically very active. For example, the D. 

melanogaster midgut produces various antimicrobial peptides (70); a suite of digestive 

enzymes, including lysozymes (29, 102); and a dual oxidase (DUOX: NADPH oxidase) 

enzyme that generates microbicidal reactive oxygen species (ROS) (49). It also includes a 

region of pH < 3 that likely kills many microbial cells (102). However, the strongly acidic 

region of the midgut in D. melanogaster and other cyclorraphous dipterans is unusual 

among insects and may be a specific adaptation to bactivory; i.e., utilizing ingested bacteria 

as food (70). The midgut pH of many insects is mildly acidic to neutral (i.e., 6–7 units), 

which is suitable for a wide range of microorganisms, but the alkaline midgut (pH 8–12 

units) of some insects, including larval lepidopterans, is likely inimical to many 

microorganisms (51). Compounding the various chemical barriers to the microbial 

colonization of the insect midgut is the physical barrier posed by the peritrophic matrix 

(PM), which separates the food bolus from the midgut epithelium. Many ingested 

microorganisms do not penetrate the PM and transit passively through the midgut with the 

bulk flow of food. Passage of certain microorganisms across the PM can be facilitated by 

chitinases of microbial or insect origin (34, 114), and some insects bear apparently benign 

bacterial communities in the ectoperitrophic space (between the PM and epithelial cells) 

(14).

For some insects, the dominant foregut habitat for microorganisms is provided by the crop, 

which can contain microorganisms at densities comparable to, or even exceeding, more 

distal gut regions (67, 100). However, the crop most commonly functions in the temporary 

storage of food and is evacuated regularly, raising the possibility that microorganisms may 

reside in this location for a relatively short period. Unusually, the dipteran olive fly 

Bactrocera oleae has an esophageal evagination, known as the cephalic bulb, which houses 
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a dense culture of a single bacterium, “Candidatus Erwinia dacicola” (18). In insect vectors 

of plant or animal pathogens, other regions of the foregut have been identified as sites for 

microbial adhesion; e.g., the precibarium of the leafhopper Graphocephala atropunctata for 

the plant pathogen Xylella fastidiosa (85).

Cells

Intracellular microorganisms are widespread or universal in certain insect groups and 

restricted to cells whose sole function appears to be to maintain and house microorganisms 

(35). These insect cells are known as bacteriocytes, containing bacteria (Figure 1d), or 

mycetocytes, containing yeasts. The developmental origin of these insect cells is largely 

obscure, but the bacteriocytes of the aphid Acyrthosiphon pisum, although morphologically 

uniform, comprise two populations that differentiate at different stages in embryonic 

development (10). The dominant bacteria in bacteriocytes (primary symbionts) have no 

access to the external environment and are transmitted vertically (Table 1), usually by 

transfer to the ovaries of the female and, thence, to the cytoplasm of the egg. In this way, the 

host maintains very precise control over the location and abundance of the microorganisms 

in transit from bacteriocytes to offspring. Many insects with primary symbionts additionally 

bear other bacteria, known as secondary symbionts, which are associated with the 

bacteriocytes and are vertically transmitted but differ from primary symbionts in several 

important traits (Table 1).

Insect-Associated Microorganisms

Taxonomic Diversity

The microbial inhabitants of insects comprise bacterial, archaeal, and eukaryotic (fungi and 

various unicellular eukaryotes) microorganisms. Viruses are not considered in this article. 

Although all insects are colonized by microorganisms, most microorganisms are not 

associated with insects (96). Four phyla of Bacteria (Actinobacteria, Bacteroidetes, 

Firmicutes, and Proteobacteria) are particularly strongly represented, but other phyla 

dominate certain insect groups; e.g., Spirochaetae, Fibrobacteres, and candidate phylum 

TG3 in the hindgut of the wood-feeding termites (Nasu-titermes spp.) (67, 120). Archaea 

generally are not associated with animals (48), although representatives of the 

Methanoarchaeota (methanogens) and the nonmethanogenic Thermoplasmatales and 

Halobacteriales are known in insects and are prevalent in the hindgut of cockroaches (order 

Blattodea), termites (infraorder Isoptera), and larval scarab beetles (family Scarabaeidae) (5, 

15). Most of the eukaryotic microorganisms described in insects are fungi, especially 

ascomycetes (e.g., Clavicipitaceae, Saccharomycetes). Also well studied are the flagellate 

protists, apparently restricted to wood roaches and lower termites, and comprising members 

of the phylum Metamonada (the order Oxymonadida, and trichomonads and 

hypermastigotes within the class Parabasalia). Anaerobic ciliates of the order 

Clevelandellida (including Nyctotherus species) are also found in cockroaches and termites 

(100), and hemipterans, hymenopterans, and dipterans are often infected with 

trypanosomatids, which are generally benign but can be opportunistic pathogens (20, 74).

Douglas Page 4

Annu Rev Entomol. Author manuscript; available in PMC 2016 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Evolutionary History and Ecological Status of Insect-Associated Microorganisms

The duration of relationships between many insects and their associated microorganisms 

varies across taxa. At one end of the spectrum, some insect-associated microbial taxa 

maintain substantial free-living populations or are closely allied to free-living 

microorganisms. In particular, Pantoea spp. (Gammaproteobacteria) are readily isolated 

from both environmental samples (e.g., water, soil, plant material) and insects, including 

mosquitoes (Diptera), thrips (Thysanoptera), bees (Hymenoptera), and hemipterans (115); 

and the Acetobacteraceae (Alphaproteobacteria), found in fruits and fermented foods and 

beverages, are also found in the guts of insects feeding on sugar-rich diets; e.g., bees, 

drosophilid fruit flies, and mosquitoes (25). At least some of these microbial populations 

may transfer regularly between the insect and the external environment, utilizing the insect 

as a route for dispersal. Other clades of microorganisms are widely distributed across insects 

and other animals but are unknown or rarely reported in the free-living condition; e.g., some 

lineages of Rikenellaceae and Porphyromonadaceae (Bacteroidetes), and Clostridiaceae 

and Ruminococcaceae (Firmi-cutes) (100, 111). At the other end of the scale are insect-

specific species of bacteria, including some gut microorganisms [e.g., Snodgrassella alvi 

(Betaproteobacteria) and Gilliamella apicola (Gammaproteobacteria) in honey bees (Apis 

mellifera) (42, 69, 73)] and the primary and secondary symbionts associated with insect 

bacteriocytes (16, 35) (Table 1).

Assembly of Insect-Microbial Associations

The processes shaping the composition of insect microbial communities differ substantially 

between open associations (i.e., subject to invasion by external microorganisms) and closed 

associations (isolated by location and host factors from incoming microorganisms). 

Microbial communities on the cuticle and in the gut are generally open, whereas 

intracellular symbioses are predominantly closed.

Open Associations

The patterns of assembly of open associations in insects have been studied in gut symbioses, 

focusing particularly on the variation in the microbial communities with location within the 

gut. Generally, the microbiota varies longitudinally in the insect gut. For example, the 

density of microorganisms in the hindgut of the cockroach Shelfordella lateralis is 1–2 × 

1010 cells/g, an order of magnitude greater than in the crop, ceca, and midgut (100); 

members of the bacterial phylum Firmicutes are abundant in the termite Nasutitermes 

corniger, but the dominant representatives of this phylum vary with gut region 

(Lactobacillales in the crop, Lachnospiraceae in the midgut, and Ruminococcaceae in the 

distal hindgut) (67); and the gut microbiota of larval Spodoptera littoralis (Lepidoptera) is 

dominated by Clostridium species in the midregion of the midgut but by Enterococcus spp. 

in more proximal and distal gut regions (110). The microbiota can also vary radially, with 

marked differences between the communities associated with the gut wall and the gut 

lumen. The gut wall community may dominate some aspects of the interactions with the host 

because it is persistent (not voided with bulk flow of the food). It can also define metabolite 

flux across the gut wall and affect the physicochemical conditions in the gut lumen (15, 67).
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Diet plays a major role in structuring the gut microbial community. Effects on the 

microbiota have been observed in comparisons between artificial diets and natural foods, as 

well as between diets in which the major nutritional classes (protein, lipid, sugar, fiber) are 

varied (33, 64, 68, 97, 110). These studies raise important and largely unanswered questions 

about the processes determining the scale and direction of microbial responses to diet. In 

principle, diet can influence the gut microbiota directly and indirectly. With respect to direct 

effects, food-associated microorganisms ingested by the insect may vary with the 

composition of the food, and the microorganisms favored in the gut environment likely 

include those taxa that can best utilize food-derived nutrients in the gut lumen, including 

compounds intractable to host digestive enzymes. Indirect effects are mediated through the 

impact of food on gut anatomy, digestive function, and immunity and may be significant in 

the many insects where the microbiota in the gut and the food overlap weakly (5, 107, 110). 

The difference between the microbiota in the gut and that in the food can be exaggerated by 

behavioral adaptations that further promote the dominant gut microbial taxa, including 

coprophagy, trophallaxis (transfer of gut fluids by anus-to-mouth or mouth-to-mouth 

feeding), and maternal smearing of gut microorganisms on the eggshell, which is 

subsequently consumed by the offspring (11, 14).

The among-individual variation in the composition of the microbiota is substantial for the 

gut microbiota in some insects. Some of this variation may be driven by intraspecific genetic 

variation of the host, although the importance of host genotype in these interactions remains 

to be investigated systematically. Evidence for nongenetic sources of variation come from 

striking differences in the gut microbiota of single D. melanogaster strains reared on the 

same food (21, 121), suggesting that the microbiota may not be shaped exclusively by 

deterministic factors (e.g., gut pH, oxygen tensions). Stochastic processes, including the 

microorganisms that happen to be ingested, proximity between competing or mutualistic 

microbial cells in the gut environment, and the gut wall microsite where an individual 

microbial cell adheres may influence the composition of the gut community and persistence 

of individual taxa in the gut. Determining the relative contribution of deterministic (niche-

based) and stochastic (neutral) processes in the assembly of the gut microbiota is an 

important challenge for future research.

Closed Associations

The bacteriocyte symbioses (Table 1) are predominantly closed systems, raising this 

question: How is the bacteriocyte protected from colonization by other microorganisms in 

the insect body while maintaining an intracellular environment that is suitable for the 

actively dividing primary symbionts? The immunological status of the bacteriocyte may be 

important, as is suggested by research on antimicrobial peptides (AMPs) in bacteriocytes of 

the weevil Sitophilus zeamais. AMPs are produced by the insect immune deficiency (IMD) 

signaling pathway, in response to the bacterial cell wall peptidoglycan (PGN) fragments, but 

the activity of this pathway is reduced in S. zeamais bacteriocytes by the high expression of 

an IMD-dependent PGN amidase, PGRP-LB, that degrades the immunogenic PGN 

fragments (6). Despite this generalized immunological suppression, one AMP 

(coleoptericin-A) is strongly expressed in the bacteriocytes, and when this AMP is reduced 

experimentally by RNAi, the symbionts overgrow the bacteriocytes and invade the insect 
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body cavity (71). Downregulation of IMD signaling by PGRP-LB has also been 

demonstrated in the bacteriocytes of tsetse flies, Glossina spp. (119). However, this 

mechanism cannot explain the persistence of primary symbionts in all insects. For example, 

the aphid immune system lacks PGRPs, an intact IMD pathway, and recognizable AMPs 

expressed in bacteriocytes (47). Other candidate immune effectors may include lysozyme 

and small, cysteine-rich proteins, both of which are enriched in the transcriptome of aphid 

bacteriocytes (80, 105).

Phylogenetic analyses of intracellular symbioses in various insects reveal that many of these 

systems are not perfectly closed. Ancestral symbionts have been displaced by bacteria or 

yeasts; for example, in dryophthorid weevils (23), cerataphidine aphids (117), and 

philaenine spittlebugs (65).

Interactions Among Microbial Partners

The field of microbial ecology is replete with examples of interspecific interactions among 

microorganisms, including multiple mechanisms by which microbes compete for resources 

or enter into mutualistic consortia that can exploit resources unavailable to consortium 

members in isolation. This raises the possibility that interactions among microorganisms can 

affect the composition of the microbiota associated with insects. These interactions have not 

yet received extensive study but have been demonstrated in several associations.

In the D. melanogaster gut, the prevalence of the various bacteria is generally negatively 

related (121), suggestive of antagonistic interactions (although the alternative explanation 

that different individual insects meet the habitat requirements of different bacteria cannot be 

excluded). However, experimental colonization studies reveal great complexity, with both 

positive and negative relationships between the abundance of different Acetobacter and 

Lactobacillus species in the D. melanogaster gut (84). In the gut of the mosquito Aedes 

albopictus, the prevalence of Asaia and Acinetobacter spp. is positively related (78), but in 

the desert locust Schistocerca gregaria the abundance of Serratia marcescens is negatively 

correlated with the abundance of other bacteria (33).

The role of interactions among microorganisms in shaping microbial communities is also 

evident from the relationship between fungal associates of some insects and antibiotic 

production by actinobacteria borne on the insect exoskeleton. The dominant fungus partner 

of the bark beetle Dendroctonus frontalis are Entomocorticium spp., which line the galleries 

constructed by the insect in the phloem vessels of host trees, but this association is 

susceptible to invasion by a related fungus, Opisthosoma minus, which supports poor beetle 

growth. Protection against the antagonistic O. minus is provided by actinobacteria of the 

genus Streptomyces, which secrete a polyene peroxide antimicrobial that selectively inhibits 

the growth of O. minus (101). Similarly, antibiotics produced by actinomycete symbionts 

protect the fungal symbiont of attine ants against the fungal parasites of the genus 

Escovopsis (27, 28).
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Microbial Impacts on Insect Phenotype

Nutrition

Many insect-associated microorganisms promote insect capacity to utilize diets of low or 

unbalanced nutritional content by providing specific nutrients that the insect cannot 

synthesize, including essential amino acids and B vitamins and sterols and, for insects 

feeding on diets rich in plant fiber, by degrading complex plant polysaccharides.

The role of microorganisms in provisioning essential amino acids has been demonstrated 

most conclusively in hemipteran insects feeding on plant phloem sap. The principal sources 

of nitrogen in phloem sap are the free amino acids of unbalanced composition, with <20% 

essential amino acids (the 9/10 of 20 amino acids that contribute to protein that cannot be 

synthesized by animals) (36). The key evidence that the primary symbiont, Buchnera 

aphidicola, in aphids synthesizes and releases essential amino acids is threefold: (a) Aphids 

have no dietary requirement for essential amino acids (unlike most animals) and can 

synthesize essential amino acids de novo, but they lose these capabilities when the Buchnera 

bacteria are eliminated by antibiotic treatment (39, 44); (b) isolated Buchnera bacteria 

release essential amino acids at linear rates for an hour or more (93); and (c) the Buchnera 

genome has retained the genetic capacity for essential amino acid synthesis, despite massive 

genome reduction (106). Microbial involvement in essential amino acid provisioning in 

other plant sap–feeding insects is indicated by the apparently universal incidence of 

symbioses in these insects (16) and by the retention of essential amino acid biosynthesis 

genes in all symbionts tested (76). Microbial symbionts have also been implicated in 

essential amino acid provisioning in ants (45), cockroaches (95), and some wood roaches 

(113).

Microorganisms associated with insects can gain access to nitrogenous precursors from 

dietary nitrogen, insect waste nitrogen, and nitrogen fixation. Insect nitrogenous waste is 

recycled to essential amino acids in the ant-Blochmannia symbiosis, in planthopper 

(Nilaparvata lugens)-yeast associations, and in cockroaches and termites (45, 90, 95, 98) but 

apparently not in the aphid-Buchnera symbiosis (72). Persuasive evidence for nitrogen 

fixation by insect-associated bacteria has been obtained for some termites (87). The 

microbiota in various other insects includes taxa with the genetic capacity to fix nitrogen 

and, in some instances, with demonstrable nitrogen fixation or acetylene reduction (which is 

a valid proxy for nitrogen fixation) (3, 7, 79, 82, 94), but the quantitative contribution of this 

capability to the nitrogen economy of the insects is largely unexplored.

B vitamins have been inferred to be provided by resident microorganisms, especially in 

insects feeding throughout the life cycle on vertebrate blood (e.g., the tsetse flies and other 

Diptera Pupipara, Cimicidae bed bugs, anopluran lice) and some phytophagous and 

xylophagous insects, including plant sap–feeding hemipterans, and various Coleoptera spp. 

of the families Anobiidae and Curculionidae (4, 16, 35, 75, 106). Contributions of 

microbiota to insect sterol nutrition relate exclusively to eukaryotic, particularly yeast, 

symbionts, because bacteria lack the capacity for sterol synthesis. A fungal source of insect 

sterols is indicated by the fungal sterol ergosterol and related compounds in the sterol profile 

of anobiid beetles (Coleoptera, Anobiidae) and planthoppers with yeast symbionts (83, 86). 
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However, sterol analysis of the wood wasp Sirex noctilio suggests that this xylophage 

derives its sterols from the diet and not the fungal symbiont (112).

Microorganisms make a critical contribution to the degradation of plant cell wall material in 

insects that feed on sound wood and other plant products with a high lignocellulose content 

(e.g., termites, wood roaches, scarab beetle larvae). The microorganisms are located in a 

hindgut fermentation chamber, where they mediate the slow enzymatic degradation of the 

cellulose and hemicellulose components of the diet to sugars, which are then fermented to 

short-chain fatty acids and made available to the insect (17). Insects that feed on living plant 

material are largely independent of microbially mediated degradation of plant cell wall 

material because they subsist on the soluble carbohydrates and proteins in the plant cell 

contents and produce midgut glucosyl hydrolases capable of degrading plant cellulose and 

other plant cell wall polysaccharides (8, 17).

Protection Against Natural Enemies

Resident microorganisms can protect their insect hosts against pathogens and other natural 

enemies by multiple mechanisms that are not mutually exclusive, including competition for 

nutrients or space, production of toxins active against the invader, and activation of insect 

immune system functions that are more deleterious to the invader than the resident. Some of 

these mechanisms are equivalent to traits of environmental microorganisms that protect a 

resource patch, for example in soil or the water column, with the implication that protective 

traits of insect-associated microorganisms are not necessarily specific adaptations to the 

insect habitat. Microorganisms may defend their insect habitat against competing 

microorganisms that happen to include insect pathogens. Nevertheless, many protective 

functions of insect microbiota likely involve adaptations specific to the insect habitat, such 

as novel microbial chemistries against parasitoids. Coevolutionary interactions between 

insects and their microbiota are also expected and would lead to selection for reduced 

toxicity of the microbial agents against the host and coordination of the timing and 

magnitude of microbial toxin production to optimize protection of particularly vulnerable 

insect life stages or tissues.

There is now persuasive evidence that resident microorganisms can dictate the outcome of 

insect interactions with natural enemies, but understanding of the underlying mechanisms is 

fragmentary. The secondary symbiont Hamiltonella defensa confers pea aphid resistance to 

the parasitoid Aphidius ervi (88), but not all Hamiltonella spp. are protective. Function has 

been correlated with a bacteriophage in the Hamiltonella spp., and specifically with phage-

encoded genes for toxins, such as Shiga-like toxin, cytolethal distending toxin, and YD-

repeat toxins (31). A different group of toxins, polyketides, has been implicated in the 

Pseudomonas-mediated protection of Paederus rove beetles against predators (89) and in an 

undefined protective role of Profftella armatura, localized in the bacteriocytes of Asian 

citrus psyllid Diaphorina citri (81). ROS produced in the insect gut by either 

microorganisms or the insect gut epithelium can have strong antimicrobial effects. ROS 

production by prevalent gut bacteria Enterobacter spp. in anopheline mosquitoes inhibits the 

development of Plasmodium ookinetes into oocysts (22), and Leishmania parasites are 
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sensitive to ROS induced by some members of the gut microbiota in their phlebotomine 

sand fly vector (Lutzomyia longipalpis) (32).

Antimicrobial compounds are of particular importance to insects living in enclosed, humid 

environments, where opportunistic fungal or bacterial infections can develop rapidly. Adult 

females of the solitary digger wasp Philanthus triangulum smear the ceiling of each 

subterranean brood cell with an antennal secretion containing antibiotic-producing 

Streptomyces spp. (Figure 1a); and the larva subsequently transfers the secretion to the 

surface of the cocoon. Survival is reduced from 80% to 10% if the Streptomyces bacteria are 

removed (60). Similarly, adults of the spruce bark beetle Dendroctonus rufipennis smear 

oral secretions containing bacteria onto the gallery walls of the trees they infest, likely 

conferring protection against antagonistic fungi, such as Aspergillus spp. (19).

From an evolutionary perspective, these beneficial effects of resident microorganisms in 

insects challenged by natural enemies can be attributed to strong selective overlap between 

the micro-biota and their insect host: Persistence of the insect habitat is advantageous to the 

microbiota. Some microbial partners may, however, respond to pathogen/parasitoid-

mediated reduction in insect fitness by increased proliferation and dissemination from the 

failing insect. These microbial residents of insects are opportunistic pathogens. One possible 

instance of this response comes from the reduced virulence of baculovirus infecting 

Spodoptera exigua treated with antibiotic to eliminate the gut microbiota, relative to 

untreated caterpillars (59).

Detoxification of Toxins: Plant Allelochemicals and Insecticides

Most described instances of detoxification in insects are intrinsic. They are mediated by 

capabilities encoded by the insect genome, including cytochrome P450 monooxygenases, 

glutathione S-transferases, and esterases. Resident microorganisms have, however, been 

implicated in a few systems. Elimination of the yeast-like symbiont Symbiotaphrina kochi 

from Lasioderma serricorne beetles depresses larval development on diets containing 

allelochemicals that cultured S. kochi can degrade (40, 104). The capacity of the mountain 

pine beetle Dendroctonus ponderosae to utilize terpene-rich trees may be facilitated by 

species of Pseudomonas, Rahnella, and other resident gut bacteria that have the genetic 

capacity to degrade terpenes (1). A laccase enzyme produced by the fungal symbiont of 

attine ants also mediates the detoxification of plant material brought to the nest by the 

worker ants (30).

Resident microorganisms have repeatedly been proposed as a source of insecticide 

resistance, but most claims lack proper validation. Exceptionally, the resistance of the alydid 

stink bug Riptortus pedestris to the organophosphate fenitrothion is mediated by 

fenitrothion-degrading Burkholderia bacteria that are acquired from the soil by the insects 

(63). Further research is required to establish whether other insects benefit from 

microorganisms that can utilize both the insect habitat and the wider environment in this 

way.
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A Source of Cues and Signals

Microorganisms associated with insects have been invoked as the source of chemicals that 

alter the behavior of conspecifics or other organisms (43), to the benefit or disadvantage of 

the insect host. To illustrate: The phenolic guaiacol in the aggregation pheromone of the 

desert locust Schistocerca gregaria is synthesized by Pantoea agglomerans and other 

Enterobacteriaceae in the insect gut (33); Drosophila prefer to mate with conspecifics that 

have a similar gut microbiota, and this preference is probably linked to microbiota-

dependent variation in the cuticle hydrocarbon profile (103); and parasitic wasps of the bark 

beetle Dendroctonus ponderosae are attracted to logs containing the fungal partners 

(Grosmannia clavigera and Ophiostoma montium) of the beetle, suggesting that these para-

sitoids use fungal volatiles as cues to locate beetle larvae and pupae (2). Most experimental 

studies, however, lack definitive evidence (38), and establishing precisely the role of the 

microorganisms in the synthesis of insect semiochemicals is a priority for future research in 

insect chemical ecology.

Resident Microorganisms in Economically Important Insects

The resident microbiota offers great potential for improved methods to manage 

economically important insects. Three primary opportunities are to predict the traits of insect 

pests, and hence efficacy of control strategies, from the composition of the microbiota, to 

target the microbiota for insect pest control, and to manipulate the microbiota to depress the 

vector competence of insects.

Predictor of Insect Pest Traits

Traits crucial to the management of certain insect pests are dictated by their possession of 

particular microorganisms. Examples include the secondary symbionts that determine the 

resistance of aphids to parasitoids and fungal pathogens used as biological control agents 

(88, 99); the pesticide-resistant Burkholderia strains that confer pesticide resistance to 

Riptortus pedestris (63); and bacteria that enable Megacopta stink bugs to utilize soybean 

crops (53). In these systems, the prevalence of the critical microorganisms in insect 

populations can be used to monitor the pest status and identify preferred control strategies. 

Regular monitoring would be required because the micro-biota in insect populations can 

change rapidly (52, 58). Monitoring may be particularly valuable for exotic insect species, 

whose invasiveness can depend on interactions with microorganisms in the introduced 

range. For example, the US turpentine beetle Dendroctonus valens (Scolytinae) is a minor 

forestry pest in its native range, but it has been causing high mortality to Chinese pines since 

its introduction to China in the 1980s (108), partly because of its acquisition of fungi from 

local Chinese Scolytinae (109). By contrast, Megacopta cribraria, introduced from eastern 

Asia to the eastern United States in 2009, appears to have retained the ancestral Ishikawaella 

symbiont; and its rapid transfer to soybean crops in the United States is not linked to 

symbiont switching (12).

A Target of Novel Insect-Pest-Control Strategies

The potential of insect pest control with the microbiota as the primary target is greatest for 

insects dependent on vertically transmitted microorganisms because the insect has no 
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opportunity to acquire equivalent microorganisms from the environment. Many insects with 

vertically transmitted bacteriocyte symbioses (Table 1) are agricultural or medically 

important pests: aphids (super-family Aphidoidea), whiteflies (family Aleyrodidae), 

planthoppers (infraorder Fulgoroidea), and sharpshooters (tribe Proconiini of the family 

Cicadellidae)feeding on plant sap; anopluran lice (suborder Anoplura), bed bugs (family 

Cimicidae), and tsetse flies (family Glossinidae) feeding on vertebrate blood; pests of stored 

products and timber (e.g., various beetles of the families Curculionidae and Anobiidae); and 

cockroaches (order Blattodea). The population increase of these insects is abrogated by 

antibiotics that eliminate the microbial symbionts. The key priority is to identify alternatives 

to antibiotics that are cost-effective and specific. Recent advances in understanding the 

cellular processes underlying vertical transmission (66) and nutrient translocation between 

the insect and microbial partners (91, 93) are providing candidate molecular targets for 

disruption of these symbioses.

Microbially Mediated Manipulation of Insect Traits

The insects of greatest interest for microbially mediated manipulation are vectors of disease 

agents, especially mosquitoes. The goal is to introduce microorganisms that both suppress 

vector competence and promote their own dissemination through the insect population. 

Bacteria of the genus Wolbachia have long been identified as candidate microorganisms for 

this application. Most mosquito vector species are not infected with Wolbachia naturally, 

and the stable introductions of Wolbachia from Drosophila into Aedes aegypti (77) and 

Anopheles stephensi (9) are major breakthroughs. The insects bearing Wolbachia display 

enhanced resistance to dengue and chikungunya viruses and Plasmodium parasites, probably 

through heightened immunological function (9, 55, 62, 118). Field trials are investigating 

the fate of introduced Wolbachia-infected mosquitoes, with the long-term goal to release 

these insects to reduce disease transmission.

An alternative route for microbial manipulation of insect pests is to exploit members of the 

native microbiota of the insect vector by introducing gene(s) deleterious to the disease agent 

into a bacterial symbiont. Proof of principle has been obtained for Trypanosoma cruzi, the 

agent of Chagas disease, vectored by Rhodnius prolixus; when the gut symbiont, 

Rhodococcus rhodnii, was genetically modified to express the antimicrobial peptide 

cecropin A and then introduced to R. prolixus, transmission of T. cruzi was suppressed (41). 

Furthermore, R. prolixus populations in domestic environments are readily infected when 

they feed on mock fecal pellets containing the genetically modified bacteria, a formulation 

that has been developed as Cruzigard. Analogous approaches are under development to 

suppress transmission of the Leishmania parasite by sand flies Phlebotomus argentipes (57).

In principle, multiple opportunities are available to modify the pest status of insects by 

promoting members of the insect's native microbiota that influence vector competence or 

other traits of interest (e.g., plant range of crop pests, capacity for dispersal, mate choice, 

oviposition preference). Effective manipulation of native microbiota in pest management, 

however, depends on a detailed understanding of the function of insect-associated 

microorganisms and the interplay of factors that shape their abundance within an insect and 

dissemination through insect populations.
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Perspectives and Future Directions

Microorganisms are ubiquitous in insects and have pervasive impacts on multiple aspects of 

insect biology. Consequently, microorganisms should be included as candidate factors 

affecting virtually any aspect of insect biology. Fortunately, the tools to study these 

associations are increasingly available, including methods to identify and quantify 

microorganisms and their functions, to manipulate the composition of the microbiota, and to 

investigate their interactions with the nutrition, immunity, and other physiological systems 

of the insect.

Some aspects of insect-microbe interactions now have a firm experimental foundation, but 

others remain contentious. Of particular interest for future research are the mechanisms by 

which resident microorganisms influence insect susceptibility to pathogens, insect capacity 

to degrade phytotoxins, and insect capacity to vector plant viruses and medically important 

disease agents. Careful experimental analyses are required to assess the generality of 

microorganisms as determinants of insect communication (38), plant range (50), resistance 

to insecticides (63), and insect speciation events (13).
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Summary Points

1. An insect represents multiple habitats, including the exoskeleton, gut lumen, and 

cells, that are colonized by microorganisms.

2. The composition and abundance of insect-associated microorganisms are shaped 

by the physicochemical conditions in the insect habitat, insect immune function, 

interactions among microorganisms, and transmission mechanisms of the insect.

3. Some microorganisms contribute to insect nutrition, by providing nutrients or 

degrading plant material intractable to insect digestion.

4. Resident microorganisms protect their insect hosts against natural enemies, 

including viruses, bacteria, and parasitoids, by synthesizing toxins or 

modulating the insect immune system.

5. Microorganisms have been implicated in the detoxification of dietary 

compounds and insecticides, and as the source of signals and cues important to 

insect communication, but the incidence and general significance of these 

functions are largely unexplored.

6. The resident microbiota of insects has great potential in promoting effective 

management of insect pests, as biomarkers for insect traits, as modulators of 

insect vector competence, and as targets for novel strategies to control pests and 

manipulate their traits.
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Figure 1. 
Insect habitats for microorganisms. (a) Antennal gland reservoir of the beewolf Philanthinus 

quattuordecimpunctatus, with “Candidatus Streptomyces philanthi”–specific probe SPT177-

Cy3, the general eubacterial probe EUB784-FAM, and DAPI (blue) counterstain. “Ca. S. 

philanthi” binds both SPT177 and EUB784 probes, generating yellow fluorescence (note red 

autofluorescence of chitin at right) (micrograph of M. Kaltenpoth). (b) Dissected gut of 

Drosophila putrida [Py, pylorus; Rv, rectal valve; Car, cardia from a natural population in 

Rochester, NY, USA (micrograph by V. Martinson)]. (c) Expanded image of ileum in (b) 

showing bacteria, false color white fluorescence emission from general bacterial probe 

EUB338-Cy3 (micrograph by V. Martinson). (d) Section through embryo of black bean 

aphid Aphis fabae, showing Buchnera symbionts with general eubacterial probe EUB338-

FITC (green) in bacteriocytes, and DAPI (blue) counterstain (micrograph by S. Chandler).
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Table 1
Characteristics of primary and secondary symbionts: bacteria associated with 

bacteriocytes of insectsa

Primary symbionts Secondary symbionts

Restricted to bacteriocytes May be located in bacteriocytes, sheath cells bounding bacteriocytes, and hemolymph

Present in all individual insects Intermediate prevalence

Vertical transmission only Vertical and horizontal transmission

Required by the insect Can confer ecologically important traits (e.g., thermal tolerance, resistance to parasitoids or fungi); may 
reduce or promote insect fitness under laboratory conditions

a
Bacteriocytes are universal or widely distributed in some insect orders (e.g., Blattodea, Phthiraptera, Hemiptera, Coleoptera) and present in a few 

species of Hymenoptera and Diptera, but they are absent from most other insects (35, 37).
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