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Abstract

Nanotechnology has the potential to increase the selectivity and potency of chemical, physical, 

and biological approaches for eliciting cancer cell death while minimizing collateral toxicity to 

nonmalignant cells. Materials on the nanoscale are increasingly being targeted to cancer cells with 

great specificity through both active and passive targeting. In this review, we summarize recent 

literature that has broken new ground in the use of nanotechnology for cancer treatment with an 

emphasis on targeted drug delivery.
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1 Introduction

The need for an advanced technology to play an important role for cancer treatment is 

clearly evident in the statistics indicating that cancer incidence, prevalence, and mortality 

remain at exceedingly high levels [1]. Cancer is one of the leading causes of deaths 

worldwide with an estimated 7.6 million individuals lost each year and accounting for 13% 

of all deaths. Cancer-related mortality is expected to rise to 13.1 million by 2030. Cancer is 

not a single disease but a multitude of diseases with each organ or system developing a 

distinct set of diseases. Many instances of cancer could be avoided, with some estimates 

indicating that about 30% of cancer deaths are associated with smoking or other lifestyle 

factors or dietary practices that could potentially be avoided by changes in human behavior 

[2–4]. Nonetheless, the majority of cancers cannot be avoided by simple behavioral changes 

and require technological innovation to improve outcomes. The developed world has had 

notable success in limiting cancer caused by viral infections [e.g., human papilloma virus 

(HPV)] [5–7]. This success could be further enhanced by more widespread implementation 

of existing vaccine technologies and also by using nanotechnology as well as other 

technologies to improve vaccination efficiency [5–8]. Nanotechnology may also be able to 

increase the percentage of cancers that are diagnosed early through improved imaging and 

this, in conjunction with more aggressive implementation of existing screening technologies, 

will lead to improved outcomes for cancer patients [9, 10]. Still, for many cancer types, new 
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approaches for treating established disease are required. To address these therapeutic 

requirements, nano-sized molecular tools capable of distinguishing between malignant and 

nonmalignant cells as well as delivering a lethal payload should be developed. This review 

summarizes several of the most innovative technologies that have been reported in recent 

years and that hold promise for improving outcomes for cancer patients.

2 Tumor targeting

One of the potential fundamental advantages of nanotechnology for cancer treatment is 

tumor targeting (Figure 1). The ability to differentiate malignant cells from nonmalignant 

and to selectively eradicate malignant cells is central to the mission of nanotechnology as it 

relates to cancer treatment. Two fundamental processes are involved in differentiating 

malignant and nonmalignant cells: passive and active targeting. Passive targeting takes 

advantage of the enhanced permeability and retention (EPR) effect [11, 12] to increase the 

concentration of nanoparticles (NPs) in the tumor. Active targeting [13] may involve 

selective molecular recognition of antigens, frequently proteins, that are expressed on the 

surfaces of cancer cells in order to localize NPs to malignant cells or, alternatively, exploits 

biochemical properties associated with malignancy such as matrix metalloproteinase 

secretion [14]. Passive and active targeting may be deployed independently, or the two 

approaches may be combined. Both strategies benefit from surface modifications of NPs that 

minimize uptake by the macrophage phagocytic system (MPS) [15], thus, maximizing time 

in circulation.

2.1 Passive targeting via the EPR

It is well known that the tumor vasculature is leaky relative to the hierarchical structure of 

normal vasculature, in part, because malignant cells are not responsive to cell signaling 

required for orderly vasculogenesis [16, 17]. Macromolecules may enter the tumor through 

leaky vasculature and persist, in part, because of reduced lymph clearance [18] in tumors by 

a phenomenon referred to as the enhanced permeability and retention effect (EPR) [19]. The 

efficiency of the EPR depends on tumor size, tumor type, and tumor heterogeneity, among 

other factors. The efficiency of the EPR is also critically dependent on the size of the 

therapeutic being targeted. As described by Maeda, localization of substances via the EPR is 

functionally operational over the MW range 40 kDa–800 kDa, which for globular proteins 

corresponds to minimal radii from 2.3 to 6.1 nm [20]. The preferred dimensions for the 

localization of proteins in tumor tissue via the EPR surprisingly revealed a minimum at 25 

kDa with enhanced uptake for proteins larger or smaller – although smaller peptides 

required active targeting for retention. In contrast, liposomes did not benefit from active 

targeting [20, 21]. A variety of NPs have been shown to localize in tumor tissue via the EPR 

including multiwalled carbon nanotube (MWNT), single-walled carbon nanotube (SWNT) 

[22, 23], and liposomes [24], as well as viral NPs [25]. NPs may differ considerably in 

density, and other features from globular proteins and NPs several hundred nanometers in a 

single dimension have been reported to localize to tumor tissue via the EPR. To our 

knowledge, the relative efficiency of tumor localization via the EPR for various NPs has not 

been systematically investigated in any tumor model. An interesting variant of passive 

targeting via the EPR was recently described in which gold nanorods were delivered to 
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tumor tissue via the EPR and used to heat the tumor upon laser irradiation. The procedure 

was followed by delivery of the anticancer agent ADHGM to cancer cells through 

recognition of GRP78 that was upregulated on prostate cancer cells in response to the 

increased temperature [26].

2.2 Active targeting

In principle, any ligand that displays preferential binding toward malignant relative to 

nonmalignant cells or that results in selective activation proximal to malignant cells [27, 28] 

can be used to actively target malignant cells. In this regard, growth factor receptors such as 

epidermal growth factor receptor (EGFR) [29], transferrin [30–33], death receptor (DR) 

complexes (e.g., DR5 [34, 35]), and folate ligand [36–40] as well as tumor-specific antigens 

(e.g., PSMA [41, 42]) have all been utilized to localize NPs to malignant cells via active 

targeting. A variety of chemical and biological molecules have been used to direct NPs to 

malignant cells expressing the molecular target receptor including monoclonal antibodies 

[43], small molecules, and nucleic acid aptamers [44, 45]. Factors that contribute to one type 

of targeting molecule being preferentially utilized include molecular weight (MW), targeting 

affinity, valency, and biocompatibility. Although active targeting is conceptually 

straightforward, this type of targeting does not uniformly enhance tumor localization. For 

example, monoclonal antibody (mAb) targeting was found in some instances not to enhance 

tumor localization [46]. Further, active targeting may impact other variables, such as time in 

circulation, and these indirect effects may confound the effects of direct targeting. Using 

variable amounts of targeting ligand, it was shown that active targeting of NPs affects 

cellular uptake within a tumor, but not the targeting to the tumor itself [30]. Thus, active 

targeting remains an important strategy for NP localization; however, caution must be 

exercised in attributing the biological effects observed to active targeting.

2.3 Minimizing MPS uptake

The accumulation of NPs in tumor tissues requires prolonged time in circulation and 

avoidance of clearance through uptake by the reticuloendothelial system (RES) (a.k.a. MPS 

[47]). Coating of NPs with polyethylene glycol (PEG) or other amphipathic agents reduces 

the affinity of proteins involved in the opsonization of NPs and, thus, reduces MPS uptake 

[48]. PEGylation reduced MPS uptake of quantum dots (QDs) up to ninefold, while peptide 

derivatization had a lesser effect [49]. Dai and coworkers showed that using 90 kDa 

amphiphilic poly(maleic anhydride-alt-1-octadecene)-methoxy poly(ethylene glycol) [C18-

PMH-mPEG], they were able to get 30% of the administered dose of modified SWNT 

localized in tumor tissue [22, 23]. A recent study evaluated the effects of surface 

modification of gold nanoparticles (GNPs) on the interaction with blood components 

including NP biodistribution [50]. GNPs are internalized by monocytes regardless of surface 

modification. Enhanced tumor accumulation correlated with enhanced circulation and was 

found to be surface-dependent with fresh, rather than lyophilized PEG, enhancing time in 

circulation. The effects of surface charge on cell uptake and biodistribution of PEG- 

oligocholic acid micelles were systematically evaluated [51]. A slight negative charge was 

found to maximize tumor uptake and minimize uptake by MPS cells of the liver. Surface 

modification to reduce MPS uptake continues to be an important strategy for developing 

NPs with improved therapeutic activity. For example, low MW chitosan has been developed 
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as an alternative to PEGylation that may allow for retention of specific molecular 

interactions that are masked by PEG [52].

3 NP-mediated cancer imaging

NPs may be highly useful for imaging applications [53] because of the high surface area-to-

volume ratio (relative to larger particles) as well as having the potential for numerous sites 

for chemical modification that may be used to amplify imaging sensitivity [53]. While the 

avoidance of macrophage uptake is important for NP-mediated effects in many instances, 

the propensity of NPs to undergo macrophage-mediated phagocytosis may be beneficial for 

imaging applications. Superparamagnetic iron oxide NPs (IONPs) have been used for MR 

imaging of lymph nodes following macrophage uptake, which may be beneficial for 

detecting metastatic disease [54, 55]. The poor lymphatic drainage of tumors that contributes 

to accumulation of NPs for drug-delivery applications may also be used to image tumors 

with IONPs [56]. IONPs have also been conjugated to the amino-terminal fragment of 

urokinase plasminogen activator to specifically image breast cancer [57], while conjugation 

with an antibody to EGFR was used for imaging brain tumors [58]. Generalized chemical 

methods for developing surface-modified IONP for cancer imaging are being developed 

[59]. Recently, a new approach for in vivo assembly of NPs with imaging agents was 

described [60].

Several different types of NP have been conjugated with chelates of paramagnetic Gd3+ to 

enhance MR contrast including dendrimers, micelles, and cNTs [61]. In principle, highly 

specific imaging of small numbers of malignant cells could be achieved by conjugating a 

targeting agent, such as a mAb, with Gd3+-chelates to affect MR relaxivity or conjugating 

with other imaging probes. In practice, sensitivity is a problematic issue of imaging 

research. One potential approach is to amplify the signal in the area of interest by delivering 

a suitable enzyme. For example, horseradish peroxidase has been delivered to xenograft 

tumors via conjugation to a tumor-specific mAb, and this has been used to oligomerize MR-

specific ligands to achieve an enhanced signal for tumor detection and imaging [62]. GNPs 

have also been used for enhancing contrast in X-ray images providing advantages relative to 

triiodobenzene [63]. In addition to enhancing contrast for improved imaging, GNPs affect 

X-ray scatter and can be used to localize radiation and improve treatment outcomes [64, 65].

In principle, NPs can be used for both imaging and treatment applications [66]. For example, 

TiO2 NPs may be used both to enhance CT (computed tomography) image contrast and as 

sensitizers for photodynamic therapy [67]. Magnetic NPs can be used for both improved MR 

imaging and hyperthermia applications for advanced cancer treatment [68]. The αvβ3 

integrin-specific peptide motif RGD may be used to direct IONPs to malignant cells for both 

enhancing contrast as well as hyperthermia-based therapy [69]. IONPs can be conjugated 

with methotrexate [70], paclitaxel (PTX) [71], or other anticancer drugs [72] for theranostic 

(therapeutic+diagnostic) applications. Gold NPs, quantum dots, and cNTs have also been 

modified and utilized for potential theranostic applications [69].
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4 NP-mediated cancer treatment

NPs that are being used for, or developed for, cancer treatment are generally not inherently 

cytotoxic. Thus, NPs must alter the chemical and/or physical environment specifically in the 

region proximal to the cancer cell in order to exert cytotoxicity. As mentioned in the 

preceding sections, NPs are targeted to malignant cells specifically via passive targeting via 

the EPR and/or active targeting, frequently based upon specific molecular recognition events 

such as EGF/EGFR interactions. Once localized to the tumor, NPs evoke a cytotoxic 

response in cancer cells generally using one of three modalities: (1) drug release [73], (2) 

hyperthermia or thermal ablation [74], and (3) reactive oxygen species (ROS)-mediated 

killing [75]. These modalities can be applied independently or may be utilized together in a 

multimodality approach for cancer treatment. The advantages relative to non-NP-mediated 

approaches for ablation are that NPs may mediate extremely localized effects that are based 

on molecular recognition events at a cellular level. Thus, by directing NPs to specific cells 

(e.g., malignant cells), one can enhance eradication of neoplastic tissue while limiting 

damage to proximal or even adjacent normal cells. This sort of approach is particularly 

valuable for highly infiltrative malignancies, such as glioblastoma multiforme (GBM), 

where malignant cells cannot be positionally distinguished from nonmalignant cells.

4.1 NP-mediated drug release

NP-mediated drug delivery is based upon the premise that it is, for the most part, no more 

difficult to kill a cancer cell than any other nonmalignant cells. Conventional cytotoxic 

agents, such as doxorubicin (DOX), are highly cytotoxic to cancer cells but are, 

unfortunately, highly cytotoxic to nonmalignant cells as well – particularly rapidly dividing 

cells in the gastrointestinal tract and bone marrow. NP-mediated delivery of conventional 

cytotoxic drugs allows for control over drug cytotoxicity based upon the biodistribution 

profile for the NP rather than for the free drug [76, 77]. NP-mediated drug delivery also 

reduces the excretion rate for low MW cytotoxic drugs providing an increased opportunity 

to remain in the circulation and accumulate in the targeted region. A successful example of 

nanotechnology-mediated drug delivery is the liposome-mediated delivery of DOX (e.g., 

Doxil) [78] that has substantially reduced cardiotoxicity [79] relative to free DOX. The 

albumin-conjugated PTX NP (Abraxane) demonstrated promising efficacy in breast cancer 

as well as ovarian cancer and is approved by the FDA [80, 81]. The platform of 

nanotechnology addressed the hydrophobicity-related issue of PTX and helped to prepare a 

toxic solvent (cremphor)-free formulation reducing the overall toxicity of the therapeutic 

[80]. A number of recent studies have also proposed novel approaches for improved drug-

delivery using NPs. Our laboratory has shown that creating a nano-sized DNA polymer 

results in enhanced antileukemic activity relative to low MW drugs [82].

4.2 Controlling NP-mediated drug release

The use of NPs for drug delivery requires release of drug at the tumor site or into malignant 

cells upon internalization. Thus, strategies to enhance drug release at the tumor site are an 

important component of NP design strategies for theranostic applications. One of the 

potential problems with current drug delivery methods is that drug is only slowly released 

from the NP following localization to tumor tissue via the EPR. This slow release may result 
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in lower free-drug levels that are insufficient to exert a biological, e.g., cytotoxic response 

[73]. Thermally labile liposomes were developed that expedite drug delivery following 

tumor localization via the EPR, a strategy that is moving forward into clinical trials [73].

4.3 Clinical candidates for NP-mediated drug delivery

The fundamental features important for successful implementation of NPs as therapeutic 

agents including passive and active targeting and MPS avoidance have been developed to 

the extent that NP-based therapeutic candidates beyond liposomes are entering clinical trials 

and displaying drug release and toxicity profiles demonstrating significant improvements 

relative to conventional chemotherapy. A particular instance of a NP that combines passive 

targeting via the EPR with active targeting as well as with evasion of immune cells is 

BIND-014, which recently entered clinical trials [41]. BIND-014 uses the RNA aptamer 

A10-03 to localize the NP to prostate cancer cells and releases docetaxel chemotherapy. 

PEG is used to minimize the uptake of NP by the MPS. Besides use of NP for drug delivery, 

imaging-based NPs are also entering clinical trials such as [18F]-FAC family of PET-

imaging agents that are being tested for estimation of chemotherapies such as gemcitabine, 

cytarabine, and fludarabine uptake [83, 84]. Another significantly promising example are 

NPs containing magnetic resonance imaging (MRI) contrast agents targeted to the αvβ3-

intregrin found on the surface of the newly developing blood vessels associated with early 

tumor development [85, 86]. A viral nanoparticle (VPN) has been developed for gene 

therapy against leukemia [87]. Cyclodextrin-based NP that safely encapsulates a small-

interfering RNA (siRNA) agent capable of shutting down a key enzyme in cancer cells is 

also under clinical trials [88–90]. Cyclodextrin-conjugated camptothecin polymeric NP is in 

currently under clinical trial [91]. In a collaborative study between Harvard Medical School 

and MIT, a clinical study is under process to determine the potential of a novel class of 

superparamagnetic NPs to identify circulating premetastatic cells [92].

4.4 Thermal ablative approaches to cancer treatment

Locally ablative approaches [93] including radiofrequency ablation (RFA) [94, 95], laser-

induced thermotherapy (LITT) [96], and microwave ablation [97] are widely used for 

treatment of metastatic disease [98], chiefly to the lung [99] and liver [100] that originate 

from diverse primary tumors. These currently implemented thermal ablative approaches do 

not utilize NPs, and thus, implementation is based on macroscopic detection of metastatic 

lesions rather than on specific molecular recognition as is becoming increasingly possible 

using NP-mediated ablative approaches. Radiologic guidance can improve tumor specificity 

[101, 102] increasing the efficacy of cancer therapy. It is important to note that 

micrometastatic disease, particularly at sites distant from the primary tumor, is an extremely 

poor prognostic indicator (Figure 2). Thus, the application of nanotechnology approaches for 

eradicating micrometastatic disease represents one of the most important objectives for 

using nanotechnology for cancer treatment. Although not yet specific on a molecular level, 

current thermal-ablative approaches do have a high demonstrated success rate with up to 

97% positive response using RFA and 98% using LITT for treatment of breast metastases 

[103] and colorectal cancer metastases [104]. Cryoablation alternatively uses localized low 

temperatures to freeze and kill neoplastic tissue [105]. Our laboratory demonstrated that 

DNA-encased MWNTs had the capacity to thermally eradicate prostate cancer xenografts 
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[74] in nude mice model upon near-infrared(NIR) radiation, without causing significant 

damage to the adjacent tissue. DNA enhanced the dispersion of the MWNTs, which as with 

other NTs, are excited by tissue-penetrating NIR radiation. The use of double-strand DNA 

(dsDNA)-complexed SWNTs with conjugation to a mAb for selective delivery and localized 

thermal ablation was recently described [106, 107] as potential cancer therapeutics. Focal 

ablative therapy is being explored as an alternative to surgery and radiation therapy for the 

treatment of localized prostate cancer [108]. It is important to note that in addition to any 

direct thermal ablative effect mediated by NPs, ablative therapies also modulate the immune 

response, and this will affect the overall antitumor response [109].

4.5 Nanotechnology and photodynamic therapy

The cytotoxic effects of photosensitizing porphyrins in conjunction with light exposure are 

well documented, and photodynamic therapy (PDT) is widely used for treating bladder 

cancer [110], esophageal cancer [111], as well as for other malignancies and other neoplastic 

conditions such as macular degeneration [112]. NP-mediated delivery of photosensitizing 

porphyrins [113] would be expected to confer several of the same advantages that are 

associated with NP-mediated delivery of cytotoxic drugs including increased local 

intratumoral concentrations resulting from the enhanced permeability and retention (EPR) 

effect [12] and reduced systemic toxicities and, in the case of photoactive compounds, 

reduced light sensitivity [114]. Alternatively, locally administered NPs composed, in part, of 

photosensitizing porphyrins would be expected to be retained in the targeted tissue allowing 

multiple exposures to light with a single administered dose.

4.6 Nanoparticle-mediated gene therapy

Although it has been known for decades that DNA is the molecular basis of life that carries 

information from generation to generation, until nanotechnology started using DNA for the 

detection of macromolecules or to produce biochips, other potentials of this biomolecule has 

not been realized. The cellular role of DNA is relatively limited, perhaps, because of the 

restrictions imposed by structure and bonding between complementary strands. Apart from 

these cellular roles, nanotechnology is now discovering many more hidden potentials of 

DNA. By exploiting its amphipathic property, single-stranded DNA (ssDNA) sequences 

could be used to solubilize hydrophobic NPs like carbon nanotubes (cNTs) to make it 

suitable for in vivo use. DNA sequences have the ability to process information in 

biochemical assays. Its structure and self-assembling property made it an ideal scaffolding 

material to arrange NPs in biochip and biosensor production.

Antisense gene therapy is a potentially powerful tool for both biomedical researches as well 

as for clinical treatments of various ailments, including cancer. Although the potential of 

antisense gene therapy was recognized decades ago, their development into viable 

therapeutics has faced challenges with regard to low transfection efficiency, DNAse 

degradation, entry into diverse cell types, and toxicity of the transfecting agents. In the last 

few years, several researchers demonstrated the potential of augmenting gene therapy with 

the help of nanotechnology [87, 88, 90, 115, 116] addressing a majority of these issues and 

successfully translated into clinical trials.
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4.7 Multimodality NPs for cancer treatment

Tumors are heterogeneous in nature, consisting of multiple cell types and with complex 

interplay between the cellular components contributing to make treatment challenging. One 

of the potential advantages of nanotechnology is the capacity to deliver and/or utilize more 

than a single therapeutic modality for treatment. Our laboratory is investigating a novel 

multimodality NP that displayed strong antitumor activity through light-mediated ROS 

generation with release of DNA (Ghosh et al., in preparation). An example of a nanomaterial 

that had been used for multimodality applications, including drug-delivery and thermal 

ablation, are cNTs [117]. Heat alone is unlikely to be an ideal modality for inducing tumor 

cell death as heat can be dissipated by blood vessels. Heat can also enhance 

chemotherapeutic efficacy (hyperthermia), and heat-mediated chemotherapy release may 

augment or enhance direct thermal ablation. Nutritional deprivation, hypoxia, and acidic pH 

have all been demonstrated to sensitize tumor cells to hyperthermia [118, 119].

Chemosensitization resulting from hyperthermia can enhance therapeutic efficacy of 

chemotherapy, and multi-modality NPs can be used for both drug delivery as well as 

stimulation of hyperthermia. A portion of the hormone FGF was used to direct gold NPs to 

U2OS cancer cells that had been transfected with the fibroblast growth factor receptor 

(FGFR), and it was demonstrated that cell death could be induced upon exposure to NIR 

irradiation [120]. Gold nanospheres were recently loaded with DOX and targeted to EphB4-

expressing tumors using a peptide identified using phage display [121]. Hyperthermia was 

stimulated by NIR irradiation; however, other approaches including use of alternating 

magnetic fields in conjunction with IONPs [122] are being evaluated in preclinical as well 

as clinical studies, and the use of high-intensity focused ultrasound (HIFU) for hyperthermia 

in conjunction with thermo-sensitive liposomes (TSL) was recently described [123]. 

Temperature-triggered release of the drug from liposomes is expected to enhance local drug 

concentrations in the tumor-enhancing treatment efficacy without increasing systemic 

toxicity. While temperatures above 42°C may shut down blood flow, temperatures in the 

41–42°C range can markedly enhance the effects of chemo therapy and radiation treatment. 

For example, approximately 30% less radiation is required to kill cells heated to 42°C 

relative to physiological temperature [124], although it is technically difficult to maintain 

tissue temperatures in a controlled fashion above physiological temperature. MR is valuable 

in temperature mapping, and MR-HIFU systems can be used to locally control temperatures.

5 NP-related toxicity

One of the potential risks of using nanomaterials for cancer therapy as well as for human 

health, in general, is the potential for toxicity [68, 75, 125]. Nanomaterials are diverse in 

chemical composition, charge, and even to some degree size, and thus, general statements 

concerning toxicity are likely not possible. Some of the major concerns are that NPs may be 

carcinogenic by, for example, causing increased ROS production and leading to DNA 

mutations. NP exposure is also associated with asthma, bronchitis, Alzheimer’s disease, and 

Parkinson’s disease. A variety of vascular-related events such as blood clots are associated 

with NPs that enter the circulatory system. Further research is required to delineate real risks 
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associated with NP use and determining to what extent potential benefits outweigh these 

risks.

6 Summary and future perspective

Nanotechnology is playing an increasingly important role in cancer diagnosis and treatment. 

The size regime of NPs is small compared to cells and cellular organelles permitting NPs to 

interact with specific features of cells and allowing for tumor cell localization through active 

targeting [76, 126]. The size regime of NPs is also appropriate for passive targeting to tumor 

tissue via the EPR [77]. Thus, nano-sized materials have particular advantages for cancer 

treatment with distinct features relative to low molecular weight drugs. These properties are 

being effectively exploited for improved delivery of chemotherapeutic drugs [78] resulting 

in both enhanced anticancer activity and reduced systemic toxicity.

The chemical diversity of NPs allows for interactions with magnetic fields [127], NIR 

irradiation [128], and other external fields to provide a conduit for highly specific 

interactions between external fields with tumor tissue and potentially with individual 

malignant cells in vivo. The diverse material composition of NPs also permits perturbation 

of external fields providing enhanced contrast for imaging applications [129]. The 

unparalleled specificity of coupling between external fields and malignant cells in the 

context of normal tissue provided by appropriate NPs is expected to lead to more accurate 

and earlier diagnoses and improved treatment outcomes. One concern potentially limiting 

the applicability of some NPs for cancer treatment is the toxicity [79] of nanomaterials that 

requires further investigation. Nonetheless, improved cancer treatments using 

nanotechnology will continue to be developed and result in improved treatment outcomes.
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Abbreviations

cNT carbon nanotube

CT computed tomography

DOX doxorubicin

DR death receptor

dsDNA double-strand DNA

EGFR epidermal growth factor receptor

EPR enhanced permeability and retention effect

FGFR fibroblast growth factor receptor

GBM glioblastoma multiforme

GNP gold nanoparticle
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HIFU high-intensity focused ultrasound

HPV human papilloma virus

IONP iron oxide nanoparticle

i.v. intravenous

LITT laser-induced thermo-therapy

mAb monoclonal antibody

MPS macrophage phagocytic system

MR magnetic resonance

MW molecular weight

MWNT multi-walled carbon nanotube

NIR near infrared

NP nanoparticle

PEG polyethylene glycol

PL phospholipid

PTX paclitaxel

RES reticuloendothelial system

RF radiofrequency

RFA radiofrequency ablation

ROS reactive oxygen species

ssDNA single-stranded DNA

SWNT single-walled carbon nanotube

TSL thermosensitive liposome
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Figure 1. 
Depiction of NP targeting of malignant cells through both active and passive targeting. NPs 

(green stars) accumulate in tumor tissue via the EPR – a form of passive targeting. Inset – 

shape-specific interaction of the NPs with cell-surface receptors is indicated by “Y-star” 

interactions that represent active targeting of NPs to cancer cells based upon specific 

molecular interactions.
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Figure 2. 
Comparison of short- and long-term effects of treatment with conventional agents (top 

panels) and NPs that use both active and passive targeting of malignant cells (bottom 

panels). Conventional approaches are equally effective in the short term; however, micro-

metastases remain and repopulate the tumor in the long term. Targeted NPs destroy 

micrometastases resulting in long-term therapeutic benefit.
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