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Abstract

We consider the problem of learning the structure of a pairwise graphical model over continuous 

and discrete variables. We present a new pairwise model for graphical models with both 

continuous and discrete variables that is amenable to structure learning. In previous work, authors 

have considered structure learning of Gaussian graphical models and structure learning of discrete 

models. Our approach is a natural generalization of these two lines of work to the mixed case. The 

penalization scheme involves a novel symmetric use of the group-lasso norm and follows naturally 

from a particular parametrization of the model. Supplementary materials for this paper are 

available online.

1 Introduction

Many authors have considered the problem of learning the edge structure and parameters of 

sparse undirected graphical models. We will focus on using the l1 regularizer to promote 

sparsity. This line of work has taken two separate paths: one for learning continuous valued 

data and one for learning discrete valued data. However, typical data sources contain both 

continuous and discrete variables: population survey data, genomics data, url-click pairs etc. 

For genomics data, in addition to the gene expression values, we have attributes attached to 

each sample such as gender, age, ethniticy etc. In this work, we consider learning mixed 

models with both continuous Gaussian variables and discrete categorical variables.

For only continuous variables, previous work assumes a multivariate Gaussian (Gaussian 

graphical) model with mean 0 and inverse covariance Θ. Θ is then estimated via the 

graphical lasso by minimizing the regularized negative log-likelihood l(Θ) + λ ||Θ||1. Several 

e cient methods for solving this can be found in Friedman et al. (2008a); Banerjee et al. 

(2008). Because the graphical lasso problem is computationally challenging, several authors 

considered methods related to the pseudolikelihood (PL) and nodewise regression 

(Meinshausen and Bühlmann, 2006; Friedman et al., 2010; Peng et al., 2009). For discrete 
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models, previous work focuses on estimating a pairwise Markov random field of the form 

, where ϕrj are pairwise potentials. The maximum likelihood 

problem is intractable for models with a moderate to large number of variables (high-

dimensional) because it requires evaluating the partition function and its derivatives. Again 

previous work has focused on the pseudolikelihood approach (Guo et al., 2010; Schmidt, 

2010; Schmidt et al., 2008; Höfling and Tibshirani, 2009; Jalali et al., 2011; Lee et al., 2006; 

Ravikumar et al., 2010).

Our main contribution here is to propose a model that connects the discrete and continuous 

models previously discussed. The conditional distributions of this model are two widely 

adopted and well understood models: multiclass logistic regression and Gaussian linear 

regression. In addition, in the case of only discrete variables, our model is a pairwise 

Markov random field; in the case of only continuous variables, it is a Gaussian graphical 

model. Our proposed model leads to a natural scheme for structure learning that generalizes 

the graphical Lasso. Here the parameters occur as singletons, vectors or blocks, which we 

penalize using group-lasso norms, in a way that respects the symmetry in the model. Since 

each parameter block is of different size, we also derive a calibrated weighting scheme to 

penalize each edge fairly. We also discuss a conditional model (conditional random field) 

that allows the output variables to be mixed, which can be viewed as a multivariate response 

regression with mixed output variables. Similar ideas have been used to learn the covariance 

structure in multivariate response regression with continuous output variables Witten and 

Tibshirani (2009); Kim et al. (2009); Rothman et al. (2010).

In Section 2, we introduce our new mixed graphical model and discuss previous approaches 

to modeling mixed data. Section 3 discusses the pseudolikelihood approach to parameter 

estimation and connections to generalized linear models. Section 4 discusses a natural 

method to perform structure learning in the mixed model. Section 5 presents the calibrated 

regularization scheme, Section 6 discusses the consistency of the estimation procedures, and 

Section 7 discusses two methods for solving the optimization problem. Finally, Section 8 

discusses a conditional random field extension and Section 9 presents empirical results on a 

census population survey dataset and synthetic experiments.

2 Mixed Graphical Model

We propose a pairwise graphical model on continuous and discrete variables. The model is a 

pairwise Markov random field with density p(x, y; Θ) proportional to

(1)

Here xs denotes the sth of p continuous variables, and yj the jth of q discrete variables. The 

joint model is parametrized by Θ = [{βst}, {αs}, {ρsj}, {ϕrj}]. The discrete yr takes on Lr 

states. The model parameters are βst continuous-continuous edge potential, αs continuous 

node potential, ρsj(yj) continuous-discrete edge potential, and ϕrj(yr, yj) discrete-discrete 

edge potential. ρsj(yj) is a function taking Lj values ρsj(1), . . . , ρsj(Lj). Similarly, ϕrj(yr, yj) is 
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a bivariate function taking on Lr × Lj values. Later, we will think of ρsj(yj) as a vector of 

length Lj and ϕrj(yr, yj) as a matrix of size Lr × Lj.

The two most important features of this model are:

1. the conditional distributions are given by Gaussian linear regression and multiclass 

logistic regressions;

2. the model simplifies to a multivariate Gaussian in the case of only continuous 

variables and simplifies to the usual discrete pairwise Markov random field in the 

case of only discrete variables.

The conditional distributions of a graphical model are of critical importance. The absence of 

an edge corresponds to two variables being conditionally independent. The conditional 

independence can be read o from the conditional distribution of a variable on all others. For 

example in the multivariate Gaussian model, xs is conditionally independent of xt i the 

partial correlation coefficient is 0. The partial correlation coefficient is also the regression 

coefficient of xt in the linear regression of xs on all other variables. Thus the conditional 

independence structure is captured by the conditional distributions via the regression 

coefficient of a variable on all others. Our mixed model has the desirable property that the 

two type of conditional distributions are simple Gaussian linear regressions and multiclass 

logistic regressions. This follows from the pairwise property in the joint distribution. In 

more detail:

1. The conditional distribution of yr given the rest is multinomial, with probabilities 

defined by a multiclass logistic regression where the covariates are the other 

variables xs and y\r (denoted collectively by z in the right-hand side):

(2)

Here we use a simplified notation, which we make explicit in Section 3.1. The 

discrete variables are represented as dummy variables for each state, e.g. 

, and for continuous variables zs = xs.

2. The conditional distribution of xs given the rest is Gaussian, with a mean function 

defined by a linear regression with predictors x\s and yr.

(3)

As before, the discrete variables are represented as dummy variables for each state 

 and for continuous variables zs = xs.

The exact form of the conditional distributions (2) and (3) are given in (11) and (10) in 

Section 3.1, where the regression parameters wj are defined in terms of the parameters Θ.
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The second important aspect of the mixed model is the two special cases of only continuous 

and only discrete variables.

1. Continuous variables only. The pairwise mixed model reduces to the familiar 

multivariate Gaussian parametrized by the symmetric positive-definite inverse 

covariance matrix B = {βst and mean μ = B−1α,

2. Discrete variables only. The pairwise mixed model reduces to a pairwise discrete 

(second-order interaction) Markov random field,

Although these are the most important aspects, we can characterize the joint distribution 

further. The conditional distribution of the continuous variables given the discrete follow a 

multivariate Gaussian distribution, . Each of these Gaussian 

distributions share the same inverse covariance matrix B but differ in the mean parameter, 

since all the parameters are pairwise. By standard multivariate Gaussian calculations,

(4)

(5)

(6)

Thus we see that the continuous variables conditioned on the discrete are multivariate 

Gaussian with common covariance, but with means that depend on the value of the discrete 

variables. The means depend additively on the values of the discrete variables since 

. The marginal p(y) has a known form, so for models with few 

number of discrete variables we can sample efficiently.

2.1 Related work on mixed graphical models

Lauritzen (1996) proposed a type of mixed graphical model, with the property that 

conditioned on discrete variables, . The homogeneous mixed 

graphical model enforces common covariance, Σ(y) ≡ Σ. Thus our proposed model is a 

special case of Lauritzen's mixed model with the following assumptions: common 

covariance, additive mean assumptions and the marginal p(y) factorizes as a pairwise 
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discrete Markov random field. With these three assumptions, the full model simplifies to the 

mixed pairwise model presented. Although the full model is more general, the number of 

parameters scales exponentially with the number of discrete variables, and the conditional 

distributions are not as convenient. For each state of the discrete variables there is a mean 

and covariance. Consider an example with q binary variables and p continuous variables; the 

full model requires estimates of 2q mean vectors and covariance matrices in p dimensions. 

Even if the homogeneous constraint is imposed on Lauritzen's model, there are still 2q mean 

vectors for the case of binary discrete variables. The full mixed model is very complex and 

cannot be easily estimated from data without some additional assumptions. In comparison, 

the mixed pairwise model has number of parameters O((p + q)2) and allows for a natural 

regularization scheme which makes it appropriate for high dimensional data.

An alternative to the regularization approach that we take in this paper, is the limited-order 

correlation hypothesis testing method Tur and Castelo (2012). The authors develop a 

hypothesis test via likelihood ratios for conditional independence. However, they restrict to 

the case where the discrete variables are marginally independent so the maximum likelihood 

estimates are well-defined for p > n.

There is a line of work regarding parameter estimation in undirected mixed models that are 

decomposable: any path between two discrete variables cannot contain only continuous 

variables. These models allow for fast exact maximum likelihood estimation through node-

wise regressions, but are only applicable when the structure is known and n > p (Edwards, 

2000). There is also related work on parameter learning in directed mixed graphical models. 

Since our primary goal is to learn the graph structure, we forgo exact parameter estimation 

and use the pseudolikelihood. Similar to the exact maximum likelihood in decomposable 

models, the pseudolikelihood can be interpreted as node-wise regressions that enforce 

symmetry.

After we proposed our model1, the independent work of Cheng et al. (2013) appeared, 

which considers a more complicated mixed graphical model. Their model includes higher 

order interaction terms by allowing the covariance of the continuous variables to be a 

function of the categorical variables y, which results in a larger model similar to Lauritzen's 

model. This results in a model with O(p2q+q2) parameters, as opposed to O(p2+q2) in our 

proposed pairwise model. We believe that in the high-dimensional setting where data 

sparsity is an issue a simpler model is an advantage.

To our knowledge, this work is the first to consider convex optimization procedures for 

learning the edge structure in mixed graphical models.

3 Parameter Estimation: Maximum Likelihood and Pseudolikelihood

Given samples , we want to find the maximum likelihood estimate of Θ. This can 

be done by minimizing the negative log-likelihood of the samples:

1Cheng et al. (2013), http://arxiv.org/abs/1304.2810, appeared on arXiv 11 months after our original paper was put on arXiv, http://
arxiv.org/abs/1205.5012.
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(7)

(8)

The negative log-likelihood is convex, so standard gradient-descent algorithms can be used 

for computing the maximum likelihood estimates. The major obstacle here is Z(Θ), which 

involves a high-dimensional integral. Since the pairwise mixed model includes both the 

discrete and continuous models as special cases, maximum likelihood estimation is at least 

as difficult as the two special cases, the first of which is a well-known computationally 

intractable problem. We defer the discussion of maximum likelihood estimation to the 

supplementary material.

3.1 Pseudolikelihood

The pseudolikelihood method Besag (1975) is a computationally efficient and consistent 

estimator formed by products of all the conditional distributions:

(9)

The conditional distributions p(xs|x\s, y; θ) and p(yr = k|y\r,, x; θ) take on the familiar form of 

linear Gaussian and (multiclass) logistic regression, as we pointed out in (2) and (3). Here 

are the details:

• The conditional distribution of a continuous variable xs is Gaussian with a linear 

regression model for the mean, and unknown variance.

(10)

• The conditional distribution of a discrete variable yr with Lr states is a multinomial 

distribution, as used in (multiclass) logistic regression. Whenever a discrete 

variable is a predictor, each of its levels contribute an additive effect; continuous 

variables contribute linear effects.

(11)

Taking the negative log of both gives us
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(12)

(13)

A generic parameter block, θuv, corresponding to an edge (u, v) appears twice in the 

pseudolikelihood, once for each of the conditional distributions p(zu|zv) and p(zv|zu).

Proposition 1. The negative log pseudolikelihood in (9) is jointly convex in all the 

parameters {βss, βst, αs, ϕrj, ρsj} over the region βss > 0.

We prove Proposition 1 in the Supplementary Materials.

3.2 Separate node-wise regression

A simple approach to parameter estimation is via separate node-wise regressions; a 

generalized linear model is used to estimate p(zs|z\s) for each s. Separate regressions were 

used in Meinshausen and Bühlmann (2006) for the Gaussian graphical model and 

Ravikumar et al. (2010) for the Ising model. The method can be thought of as an asymmetric 

form of the pseudolikelihood since the pseudolikelihood enforces that the parameters are 

shared across the conditionals. Thus the number of parameters estimated in the separate 

regression is approximately double that of the pseudolikelihood, so we expect that the 

pseudolikelihood outperforms at low sample sizes and low regularization regimes. The 

node-wise regression was used as our baseline method since it is straightforward to extend it 

to the mixed model. As we predicted, the pseudolikelihood or joint procedure outperforms 

separate regressions; see top left box of Figures 5 and 6. Liu and Ihler (2012, 2011) confirm 

that the separate regressions are outperformed by pseudolikelihood in numerous synthetic 

settings.

Concurrent work of Yang et al. (2012, 2013) extend the separate node-wise regression 

model from the special cases of Gaussian and categorical regressions to generalized linear 

models, where the univariate conditional distribution of each node p(xs|x\s) is specified by a 

generalized linear model (e.g. Poisson, categorical, Gaussian). By specifying the conditional 

distributions, Besag (1974) show that the joint distribution is also specified. Thus another 

way to justify our mixed model is to define the conditionals of a continuous variable as 

Gaussian linear regression and the conditionals of a categorical variable as multiple logistic 

regression and use the results in Besag (1974) to arrive at the joint distribution in (1). 

However, the neighborhood selection algorithm in Yang et al. (2012, 2013) is restricted to 

models of the form p(x) ∝ exp(Σs θsxs + Σs,t θstxsxt + Σs C(xs)). In particular, this procedure 

cannot be applied to edge selection in our pairwise mixed model in (1) or the categorical 

model in (2) with greater than 2 states. Our baseline method of separate regressions is 

closely related to the neighborhood selection algorithm they proposed; the baseline can be 

considered as a generalization of Yang et al. (2012, 2013) to allow for more general pairwise 
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interactions with the appropriate regularization to select edges. Unfortunately, the theoretical 

results in Yang et al. (2012, 2013) do not apply to the baseline nodewise regression method, 

nor the joint pseudolikelihood.

4 Conditional Independence and Penalty Terms

In this section, we show how to incorporate edge selection into the maximum likelihood or 

pseudolikelihood procedures. In the graphical representation of probability distributions, the 

absence of an edge e = (u, v) corresponds to a conditional independency statement that 

variables xu and xv are conditionally independent given all other variables (Koller and 

Friedman, 2009). We would like to maximize the likelihood subject to a penalization on the 

number of edges since this results in a sparse graphical model. In the pairwise mixed model, 

there are 3 type of edges

1. βst is a scalar that corresponds to an edge from xs to xt. βst = 0 implies xs and xt are 

conditionally independent given all other variables. This parameter is in two 

conditional distributions, corresponding to either xs or xt is the response variable, 

p(xs|x\s, y; Θ) and p(xt|x\t, y; Θ).

2. ρsj is a vector of length Lj. If ρsj(yj) = 0 for all values of yj, then yj and xs are 

conditionally independent given all other variables. This parameter is in two 

conditional distributions, corresponding to either xs or yj being the response 

variable: p(xs|x\s, y; Θ) and p(yj|x, y\j; Θ).

3. ϕrj is a matrix of size Lr × Lj. If ϕrj(yr, yj) = 0 for all values of yr and yj, then yr and 

yj are conditionally independent given all other variables. This parameter is in two 

conditional distributions, corresponding to either yr or yj being the response 

variable, p(yr|x, y\r; Θ) and p(yj|x, y\j; Θ).

For conditional independencies that involve discrete variables, the absence of that edge 

requires that the entire matrix ϕrj or vector ρsj is 0.2 The form of the pairwise mixed model 

motivates the following regularized optimization problem

(14)

All parameters that correspond to the same edge are grouped in the same indicator function. 

This problem is non-convex, so we replace the l0 sparsity and group sparsity penalties with 

the appropriate convex relaxations. For scalars, we use the absolute value (l1 norm), for 

vectors we use the l2 norm, and for matrices we use the Frobenius norm. This choice 

corresponds to the standard relaxation from group l0 to group l1/l2 (group lasso) norm (Bach 

et al., 2011; Yuan and Lin, 2006),

2If ρsj(yj) = constant, then xs and yj are also conditionally independent. However, the unpenalized term will absorb the constant, so 
the estimated ρsj(yj) will never be constant for λ > 0.
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(15)

5 Calibrated regularizers

In (15) each of the group penalties are treated as equals, irrespective of the size of the group. 

We suggest a calibration or weighting scheme to balance the load in a more equitable way. 

We introduce weights for each group of parameters and show how to choose the weights 

such that each parameter set is treated equally under pF , the fully-factorized independence 

model.3

(16)

Based on the KKT conditions (Friedman et al., 2007), the parameter group θg is non-zero if

where θg and wg represents one of the parameter groups and its corresponding weight. Now 

 can be viewed as a generalized residual, and for different groups these are different 

dimensions—e.g. scalar/vector/matrix. So even under the independence model (when all 

terms should be zero), one might expect some terms  to have a better random non-zero 

of being non-zero (for example, those of bigger dimensions). Thus for all parameters to be 

on equal footing, we would like to choose the weights wg such that

(17)

where pF is the fully factorized (independence) model. We will refer to these as the exact 

weights. We do not have a closed form expression for computing them, but they can be 

easily estimated by a simple null-model simulation. We also propose an approximation that 

can be computed exactly. It is straightforward to compute  in closed form, which 

leads to approximate weights

(18)

3Under the independence model pF is fully-factorized .
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In the supplementary material, we show that for the three types of edges this leads to the 

expressions

(19)

where σs is the standard deviation of the continuous variable xs, pa = Pr(yr = a) and qb = 

Pr(yj = b). For all 3 types of parameters, the weight has the form of 

, where z represents a generic variable and cov(z) is the 

variance-covariance matrix of z.

We conducted a small simulation study to show that calibration is needed. Consider a model 

with 4 independent variables: 2 continuous with variance 10 and 1, and 2 discrete variables 

with 10 and 2 levels. There are 6 candidate edges in this model and from row 1 of Table 1 

we can see the sizes of the gradients are different. In fact, the ratio of the largest gradient to 

the smallest gradient is greater than 4. The edges ρ11 and ρ12 involving the first continuous 

variable with variance 10 have larger edge weights than the corresponding edges, ρ21 and 

ρ22 involving the second continuous variable with variance 1. Similarly, the edges involving 

the first discrete variable with 10 levels are larger than the edges involving the second 

discrete variable with 2 levels. This reflects our intuition that larger variance and longer 

vectors will have larger norm.

The approximate weights from Equation (19) are a very good approximation to ||∇l||. Since 

the weights are only defined up to a proportionality constant, the cosine similarity is an 

appropriate measure of the quality of approximation. For this simulation, the cosine 

similarity is

which is extremely close to 1.

Using the weights from Table 1, we conducted a second simulation to record which edge 

would enter first when the four variables are independent. The results are shown in Table 2. 

Both exact and approximate calibration perform much better than no calibration, but neither 

deliver the ideal 1/6th probabilities one might desire in a situation like this. Of course, 

calibrating to the expectations of the gradient does not guarantee equal entry probability, but 

it brings them much closer.

The exact weights do not have simple closed-form expressions, but they can be easily 

computed via Monte Carlo. This can be done by simulating independent Gaussians and 

multinomials with the appropriate marginal variance σs and marginal probabilities pa, then 

approximating the expectation in (17) by an average. The computational cost of this 

procedure is negligible compared to fitting the mixed model, so in practice either the exact 

or approximate weights can be used.

Lee and Hastie Page 10

J Comput Graph Stat. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6 Model Selection Consistency

In this section, we study the model selection consistency, whether the correct edge set is 

selected and the parameter estimates are close to the truth, of the pseudolikelihood and 

maximum likelihood estimators. Consistency can be established using the framework first 

developed in Ravikumar et al. (2010) and later extended to general m-estimators by Lee et 

al. (2013). Instead of stating the full results and proofs, we will illustrate the type of 

theorems that can be shown and defer the rigorous statements to the Supplementary 

Material.

First, we define some notation. Recall that Θ is the vector of parameters being estimated 

{βss, βst, αs, ϕrj, ρsj}, Θ* be the true parameters that estimated the model, and Q = ∇2l(Θ*). 

Both maximum likelihood and pseudolikelihood estimation procedures can be written as a 

convex optimization problem of the form

(20)

where l(θ) = {lML, lPL} is one of the two log-likelihoods. The regularizer

The set G indexes the edges st, ρsj, and ϕrj, and Θg is one of the three types of edges. Let A 

and I represent the active and inactive groups in Θ, so  for any g ∈ A and  for 

any g ∈ I.

Let  be the minimizer to Equation (20). Then  satisfies,

1.

2.  The exact statement of the theorem is given in the 

Supplementary Material.

7 Optimization Algorithms

In this section, we discuss two algorithms for solving (15): the proximal gradient and the 

proximal newton methods. This is a convex optimization problem that decomposes into the 

form f(x) + g(x), where f is smooth and convex and g is convex but possibly non-smooth. In 

our case f is the negative log-likelihood or negative log-pseudolikelihood and g are the 

group sparsity penalties.

Block coordinate descent is a frequently used method when the non-smooth function g is the 

l1 or group l1. It is especially easy to apply when the function f is quadratic, since each block 

coordinate update can be solved in closed form for many different non-smooth g (Friedman 

et al., 2007). The smooth f in our particular case is not quadratic, so each block update 

cannot be solved in closed form. However in certain problems (sparse inverse covariance), 
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the update can be approximately solved by using an appropriate inner optimization routine 

(Friedman et al., 2008b).

7.1 Proximal Gradient

Problems of this form are well-suited for the proximal gradient and accelerated proximal 

gradient algorithms as long as the proximal operator of g can be computed (Combettes and 

Pesquet, 2011; Beck and Teboulle, 2010)

(21)

For the sum of l2 group sparsity penalties considered, the proximal operator takes the 

familiar form of soft-thresholding and group soft-thresholding (Bach et al., 2011). Since the 

groups are non-overlapping, the proximal operator simplifies to scalar soft-thresholding for 

βst and group soft-thresholding for ρsj and ϕrj.

The class of proximal gradient and accelerated proximal gradient algorithms is directly 

applicable to our problem. These algorithms work by solving a first-order model at the 

current iterate xk

(22)

(23)

(24)

(25)

The proximal gradient iteration is given by xk+1 = proxt (xk − t∇f(xk)) where t is determined 

by line search. The theoretical convergence rates and properties of the proximal gradient 

algorithm and its accelerated variants are well-established (Beck and Teboulle, 2010). The 

accelerated proximal gradient method achieves linear convergence rate of O(ck) when the 

objective is strongly convex and the sublinear rate O(1/k2) for non-strongly convex 

problems.

The TFOCS framework (Becker et al., 2011) is a package that allows us to experiment with 

6 different variants of the accelerated proximal gradient algorithm. The TFOCS authors 

found that the Auslender-Teboulle algorithm exhibited less oscillatory behavior, and 

proximal gradient experiments in the next section were done using the Auslender-Teboulle 

implementation in TFOCS.
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7.2 Proximal Newton Algorithms

The class of proximal Newton algorithms is a 2nd order analog of the proximal gradient 

algorithms with a quadratic convergence rate (Lee et al., 2012; Schmidt, 2010; Schmidt et 

al., 2011). It attempts to incorporate 2nd order information about the smooth function f into 

the model function. At each iteration, it minimizes a quadratic model centered at xk

(26)

(27)

(28)

The Hprox operator is analogous to the proximal operator, but in the ||·||H-norm. It simplifies

Algorithm 1

Proximal Newton

repeat

    Solve subproblem pk = Hproxt(xk − tHk
−1∇ f (xk )) − xk  using TFOCS.

    Find t to satisfy Armijo line search condition with parameter α

        f (xk + t pk ) + g(xk + t pk ) ≤ f (xk ) + g(xk ) −
tα
2

pk
2

    Set xk+1 = xk + tpk

    k = k + 1

until 
xk − xk+1

xk
< tol

to the proximal operator if H = I, but in the general case of positive definite H there is no 

closed-form solution for many common non-smooth g(x) (including l1 and group l1). 

However if the proximal operator of g is available, each of these sub-problems can be solved 

efficiently with proximal gradient. In the case of separable g, coordinate descent is also 

applicable. Fast methods for solving the subproblem Hproxt(xk − tH−1∇rf(xk)) include 

coordinate descent methods, proximal gradient methods, or Barzilai-Borwein (Friedman et 

al., 2007; Combettes and Pesquet, 2011; Beck and Teboulle, 2010; Wright et al., 2009). The 

proximal Newton framework allows us to bootstrap many previously developed solvers to 

the case of arbitrary loss function f.
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Theoretical analysis in Lee et al. (2012) suggests that proximal Newton methods generally 

require fewer outer iterations (evaluations of Hprox) than first-order methods while 

providing higher accuracy because they incorporate 2nd order information. We have 

confirmed empirically that the proximal Newton methods are faster when n is very large or 

the gradient is expensive to compute (e.g. maximum likelihood estimation). Since the 

objective is quadratic, coordinate descent is also applicable to the subproblems. The hessian 

matrix H can be replaced by a quasi-newton approximation such as BFGS/L-BFGS/SR1. In 

our implementation, we use the PNOPT implementation (Lee et al., 2012).

7.3 Path Algorithm

Frequently in machine learning and statistics, the regularization parameter λ is heavily 

dependent on the dataset. λ is generally chosen via cross-validation or holdout set 

performance, so it is convenient to provide solutions over an interval of [λmin, λmax]. We 

start the algorithm at λ1 = λmax and solve, using the previous solution as warm start, for λ2 

> . . . > λmin. We find that this reduces the cost of fitting an entire path of solutions (See 

Figure 4). λmax can be chosen as the smallest value such that all parameters are 0 by using 

the KKT equations (Friedman et al., 2007).

8 Conditional Model

In addition to the variables we would like to model, there are often additional features or 

covariates that affect the dependence structure of the variables. For example in genomic 

data, in addition to expression values, we have attributes associated to each subject such as 

gender, age and ethnicity. These additional attributes affect the dependence of the 

expression values, so we can build a conditional model that uses the additional attributes as 

features. In this section, we show how to augment the pairwise mixed model with features.

Conditional models only model the conditional distribution p(z|f), as opposed to the joint 

distribution p(z, f), where z are the variables of interest to the prediction task and f are 

features. These models are frequently used in practice Lafferty et al. (2001).

In addition to observing x and y, we observe features f and we build a graphical model for 

the conditional distribution p(x, y|f). Consider a full pairwise model p(x, y, f) of the form (1). 

We then choose to only model the joint distribution over only the variables x and y to give 

us p(x, y|f) which is of the form

(29)

We can also consider a more general model where each pairwise edge potential depends on 

the features

(30)
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(29) is a special case of this where only the node potentials depend on features and the 

pairwise potentials are independent of feature values. The specific parametrized form we 

consider is ϕrj(yr, yj, f) ≡ ϕrj(yr, yj) for r ≠ j, ρsj(yj, f) ≡ ρsj(yj), and βst(f) = βst. The node 

potentials depend linearly on the feature values, , and ϕrr(yr, yr, f) 

= ϕrr(yr, yr) + Σl ηlr(yr).

9 Experimental Results

We present experimental results on synthetic data, survey data and on a conditional model.

9.1 Synthetic Experiments

In the synthetic experiment, the training points are sampled from a true model with 10 

continuous variables and 10 binary variables. The edge structure is shown in Figure 2a. λ is 

chosen proportional to  as suggested by the theoretical results in Section 6. We 

experimented with 3 values  and chose  so that the true 

edge set was recovered by the algorithm for the sample size n = 2000. We see from the 

experimental results that recovery of the correct edge set undergoes a sharp phase transition, 

as expected. With n = 1000 samples, the pseudolikelihood is recovering the correct edge set 

with probability nearly 1. The maximum likelihood was performed using an exact evaluation 

of the gradient and log-partition. The poor performance of the maximum likelihood 

estimator is explained by the maximum likelihood objective violating the irrepresentable 

condition; a similar example is discussed in (Ravikumar et al., 2010, Section 3.1.1), where 

the maximum likelihood is not irrepresentable, yet the neighborhood selection procedure is. 

The phase transition experiments were done using the proximal Newton algorithm discussed 

in Section 7.2.

We also run the proximal Newton algorithm for a sequence of instances with p = q = 10, 50, 

100, 500, 1000 and n = 500. The largest instance has 2000 variables and takes 12.5 hours to 

complete. The timing results are summarized in Figure 3.

9.2 Survey Experiments

The census survey dataset we consider consists of 11 variables, of which 2 are continuous 

and 9 are discrete: age (continuous), log-wage (continuous), year(7 states), sex(2 

states),marital status (5 states), race(4 states), education level (5 states), geographic region(9 

states), job class (2 states), health (2 states), and health insurance (2 states). The dataset was 

assembled by Steve Miller of OpenBI.com from the March 2011 Supplement to Current 

Population Survey data. All the evaluations are done using a holdout test set of size 100, 000 

for the survey experiments. The regularization parameter λ is varied over the interval [5 × 

10−5, 0.7] at 50 points equispaced on log-scale for all experiments. In practice, λ can be 

chosen to minimize the holdout log pseudolikelihood.

9.2.1 Model Selection—In Figure 4, we study the model selection performance of 

learning a graphical model over the 11 variables under different training samples sizes. We 
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see that as the sample size increases, the optimal model is increasingly dense, and less 

regularization is needed.

9.2.2 Comparing against Separate Regressions—A sensible baseline method to 

compare against is a separate regression algorithm. This algorithm fits a linear Gaussian or 

(multiclass) logistic regression of each variable conditioned on the rest. We can evaluate the 

performance of the pseudolikelihood by evaluating − log p(xs|x\s, y) for linear regression and 

− log p(yr|y\r, x) for (multiclass) logistic regression. Since regression is directly optimizing 

this loss function, it is expected to do better. The pseudolikelihood objective is similar, but 

has half the number of parameters as the separate regressions since the coefficients are 

shared between two of the conditional likelihoods. From Figures 5 and 6, we can see that the 

pseudolikelihood performs very similarly to the separate regressions and sometimes even 

outperforms regression. The benefit of the pseudolikelihood is that we have learned 

parameters of the joint distribution p(x, y) and not just of the conditionals p(xs|y, x\s). On the 

test dataset, we can compute quantities such as conditionals over arbitrary sets of variables 

p(yA, xB|yA
C, xB

C ) and marginals p(xA, yB) (Koller and Friedman, 2009). This would not be 

possible using the separate regressions.

9.2.3 Conditional Model—Using the conditional model (29), we model only the 3 

variables logwage, education(5) and jobclass(2). The other 8 variables are only used as 

features. The conditional model is then trained using the pseudolikelihood. We compare 

against the generative model that learns a joint distribution on all 11 variables. From Figure 

7, we see that the conditional model outperforms the generative model, except at small 

sample sizes. This is expected since the conditional distribution models less variables. At 

very small sample sizes and small λ, the generative model outperforms the conditional 

model. This is likely because generative models converge faster (with less samples) than 

discriminative models to its optimum.

9.2.4 Maximum Likelihood vs Pseudolikelihood—The maximum likelihood 

estimates are computable for very small models such as the conditional model previously 

studied. The pseudolikelihood was originally motivated as an approximation to the 

likelihood that is computationally tractable. We compare the maximum likelihood and 

maximum pseudolikelihood on two different evaluation criteria: the negative log likelihood 

and negative log pseudolikelihood. In Figure 8, we find that the pseudolikeli-hood 

outperforms maximum likelihood under both the negative log likelihood and negative log 

pseudolikelihood. We would expect that the pseudolikelihood trained model does better on 

the pseudolikelihood evaluation and maximum likelihood trained model does better on the 

likelihood evaluation. However, we found that the pseudolikelihood trained model 

outperformed the maximum likelihood trained model on both evaluation criteria. Although 

asymptotic theory suggests that maximum likelihood is more efficient than the pseudolikeli-

hood, this analysis is applicable because of the finite sample regime and misspecified model. 

See Liang and Jordan (2008) for asymptotic analysis of pseudolikelihood and maximum 

likelihood under a well-specified model. We also observed the pseudolikelihood slightly 

outperforming the maximum likelihood in the synthetic experiment of Figure 2b.
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10 Conclusion

This work proposes a new pairwise mixed graphical model, which combines the Gaussian 

graphical model and discrete graphical model. Due to the introduction of discrete variables, 

the maximum likelihood estimator is computationally intractable, so we investigated the 

pseudolikelihood estimator. To learn the structure of this model, we use the appropriate 

group sparsity penalties with a calibrated weighing scheme. Model selection consistency 

results are shown for the mixed model using the maximum likelihood and pseudolikelihood 

estimators. The extension to a conditonal model is discussed, since these are frequently used 

in practice.

We proposed two efficient algorithms for the purpose of estimating the parameters of this 

model, the proximal Newton and the proximal gradient algorithms. The proximal Newton 

algorithm is shown to scale to graphical models with 2000 variables on a standard desktop. 

The model is evaluated on synthetic and the current population survey data, which 

demonstrates the pseudolikelihood performs well compared to maximum likelihood and 

nodewise regression.

For future work, it would be interesting to incorporate other discrete variables such as 

poisson or binomial variables and non-Gaussian continuous variables. This would broaden 

the scope of applications that mixed models could be used for. Our work is a first step in that 

direction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Symmetric matrix represents the parameters Θ of the model. This example has p = 3, q = 2, 

L1 = 2 and L2 = 3. The red square corresponds to the continuous graphical model 

coefficients B and the solid red square is the scalar βst. The blue square corresponds to the 

coefficients ρsj and the solid blue square is a vector of parameters ρsj(·). The orange square 

corresponds to the coefficients ϕrj and the solid orange square is a matrix of parameters ϕrj(·, 

·). The matrix is symmetric, so each parameter block appears in two of the conditional 

probability regressions.

Lee and Hastie Page 20

J Comput Graph Stat. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Figure 2a shows the graph used in the synthetic experiments for p = q = 4; the experiment 

actually used p=10 and q=10. Blue nodes are continuous variables, red nodes are binary 

variables and the orange, green and dark blue lines represent the 3 types of edges. Figure 2b 

is a plot of the probability of correct edge recovery, meaning every true edge is selected and 

no non-edge is selected, at a given sample size using Maximum Likelihood and 

Pseudolikelihood. Results are averaged over 100 trials.

Lee and Hastie Page 21

J Comput Graph Stat. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Timing experiments for various instances of the graph in Figure 2a. The number of variables 

range from 20 to 2000 with n = 500.
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Figure 4. 
Model selection under different training set sizes. Circle denotes the lowest test set negative 

log pseudolikelihood and the number in parentheses is the number of edges in that model at 

the lowest test negative log pseudolikelihood. The saturated model has 55 edges.
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Figure 5. 
Separate Regression vs Pseudolikelihood n = 100. y-axis is the appropriate regression loss 

for the response variable. For low levels of regularization and at small training sizes, the 

pseudolikelihood seems to overfit less; this may be due to a global regularization effect from 

fitting the joint distribution as opposed to separate regressions.
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Figure 6. 
Separate Regression vs Pseudolikelihood n = 10, 000. y-axis is the appropriate regression 

loss for the response variable. At large sample sizes, separate regressions and 

pseudolikelihood perform very similarly. This is expected since this is nearing the 

asymptotic regime.
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Figure 7. 
Conditional Model vs Generative Model at various sample sizes. y-axis is test set 

performance is evaluated on negative log pseudolikelihood of the conditional model. The 

conditional model outperforms the full generative model at except the smallest sample size n 

= 100.
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Figure 8. 
Maximum Likelihood vs Pseudolikelihood. y-axis for top row is the negative log 

pseudolikelihood. y-axis for bottom row is the negative log likelihood. Pseudolikelihood 

outperforms maximum likelihood across all the experiments.
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Table 1

Penalty weights in a six-edge model.

∂ ℓ
∂ϕ12 F

∂ ℓ
∂ρ11 2

∂ ℓ
∂ρ21 2

∂ ℓ
∂ρ12 2

∂ ℓ
∂ρ22 2

∣ ∂ ℓ
∂β12

∣

Exact weights wg (17) 0.18 0.63 0.19 0.47 0.15 0.53

Approximate weights wg (19) 0.13 0.59 0.18 0.44 0.13 0.62

Row 1 shows the exact weights wg computed via (17) using Monte Carlo simulation. Row 2 shows the approximate weights computed via (19). 

Note that the weights are far from uniform, and the approximate weights are close to the exact weights.
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Table 2

Fraction of times an edge is the first selected by the group lasso regularizer, based on 1000 simulation runs.

ϕ 12 ρ 11 ρ 21 ρ 12 ρ 22 β 12

No Calibration wg = 1 0.000 0.487 0.000 0.163 0.000 0.350

Exact wg (17) 0.101 0.092 0.097 0.249 0.227 0.234

Approximate wg (19) 0.144 0.138 0.134 0.196 0.190 0.198

Ideally each edge should be first 1/6th of the time (0.167), with a standard error of 0.012. The group lasso with equal weights (first row) is highly 
unbalanced. Using the exact weights from (17) is quite good (second row), while the approximate weighing scheme of (19) (third row) appears to 
perform the best.
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