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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, involving a large number of 

genes, proteins and their complex interactions. Currently, no effective therapeutic agents are 

available to either stop or reverse the progression of this disease, likely due to its polygenic nature. 

The complicated pathophysiology of AD remains unresolved. Although it has been hypothesized 

that the amyloid β cascade and the hyper-phosphorylated tau protein may be primarily involved, 

other mechanisms, such as oxidative stress, deficiency of central cholinergic neurotransmitter, 

mitochondrial dysfunction and inflammation have also been implicated. The main focus of this 

review is to document current therapeutic agents in clinical trials and patented candidate 

compounds under development based on their main mechanisms of action. It also discusses the 

relationship between the recent understanding of key targets and the development of potential 

therapeutic agents for the treatment of AD.
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Alzheimer’s disease (AD), the most common form of dementia, is a progressive 

neurodegenerative disease and a complex multi-factorial disorder among the elderly [1]. It is 

estimated that the morbidity of AD over the age of 65 could reach up to 10–50%. AD has 

been recognized as one of the most intractable medical problems with heavy social and 
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economic costs [2]. So far, no effective medicines or treatments are available yet to stop or 

reverse the progression of the disease.

AD is characterized by progressive memory loss and cognitive impairments. The main 

neuropathological features of AD are extracellular deposits of amyloid β peptide (Aβ) in 

senile plaques (SP), and the formation of intracellular neurofibrillary tangles (NFTs) [3,4]. 

Despite extensive research in the pathogenesis of AD, the exact mechanism of AD still 

remains unknown. During the past decade, several attempts have been made to explain the 

pathogenesis of the disease. The amyloid β (Aβ) cascade [5] and the hyperphosphorylated 

tau protein [6] seem to be the primarily involved. However, other mechanisms such as 

oxidative stress [7], deficiency of central cholinergic neurotransmitter [8], mitochondrial 

dysfunction [9] and inflammation [10] have also been implicated (Figure 1).

In spite of the lack of a clear-cut understanding of the pathology of AD, significant efforts 

are being directed in developing new agents that are based on potential targets associated 

with the pathological changes seen in AD. Figure 2 identifies several such processes 

involved in the pathological changes. Based on this new information, a large number of 

patents have already been secured. This review is an effort to discuss recent understanding 

of key targets, and document patented candidate compounds under development and those 

under preclinical and clinical investigations, hoping that it would promote design of the next 

generation of therapeutic agents for the treatment of AD.

Current treatments & cholinergic drugs

Five drugs approved by the US FDA are used to treat the cognitive dysfunction of AD 

(Figure 3). These drugs are categorized into two major types: cholinergic inhibitors and N-

methyl D-aspartate (NMDA) receptor antagonist. Cholinergic inhibitors are developed 

mainly based on the cholinergic hypothesis [11]. Reduction in the activity of the cholinergic 

neurons is a well-known feature in AD, leading to the deficiency of the neurotransmitter 

acetylcholine (ACh). The loss of cholinergic function is closely related to cognitive 

dysfunction and behavioral disorder. These symptoms can be improved by 

acetylcholinesterase (AChE) inhibitors or by modulating other cholinergic receptors, such as 

muscarinic and nicotinic ACh receptors. Since 1993, there have been four AChE inhibitors 

approved by FDA for AD treatment, including tacrine (1993), donepezil (1996), 

rivastigmine (2000) and galantamine (2001). These drugs were effective in improving the 

symptoms, behavioral and cognitive abilities in early-to-moderate stages of AD [12]. 

Among them, only donepezil is approved for treatment of advanced AD dementia [13]. 

Recent studies indicated that donepezil, rivastigmine and galantamine can decrease Aβ 

production and Aβ-induced toxicity, suggesting the cholinergic system may play a role in 

Aβ generation and aggregation [14]. Apart from the AChE inhibitors approved, Memantine 

is a novel NMDA receptor antagonist. It acts on the glutamatergic system by blocking 

NMDA receptors and inhibiting their overstimulation by glutamate. Memantine has been 

shown to be efficacious in the treatment of moderate-to-severe AD [15].

Besides the drugs approved by FDA, there has still been progress in development of 

cholinergic drugs in clinical trials as well as patented lead compounds (Figure 4 & Table 1).

Liu et al. Page 2

Pharm Pat Anal. Author manuscript; available in PMC 2015 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ZT-1, as pro-drug of huperzine A from natural product, is a potent and selective AChE 

inhibitor. The results from the Phase I clinical trials showed that ZT-1 has an admirable 

pharmacokinetic with a rapid absorption and a wide distribution in human [24]. In a 

subsequent Phase IIa study, daily administration of oral ZT-1 delayed cognitive decline for 

AD patients [25]. Currently, it is undergoing Phase IIb clinical development for the 

treatment of AD. The (-)-phenserine, a derivative of physostigmine, is also an AChE 

inhibitor that shows the effects on improving cognition in vivo [26]. In addition to inhibiting 

AChE, it can significantly reduce Aβ precursor protein (APP) and Aβ concentrations by 

reducing the translation of APP [26], suggesting (-)-phenserine may be a promising 

multitarget drug of AD.

Memogain (Gln-1062) developed by Galantos Pharma is an inactive pro-drug of 

galantamine approved for the treatment of AD. Memogain has more hydrophobic 

characteristics than galantamine, and therefore has more than 15-fold higher bioavailability 

in the brain than the same dosage of galantamine. As a cholinergic enhancer, it possibly 

represents a valuable drug with much lesser gastrointestinal side effects and higher potency 

in enhancing cognition for AD treatment [27].

Bis(aralkyl)amino-and(hetero)aryl derivatives were designed and patented by Universidad 

Autonoma de Madrid (UAM). These compounds can increase levels of the neurotransmitter 

ACh by binding to the catalytic active center of AChE. Furthermore, it possesses the potent 

neuroprotective activity against mitochondrial oxidative stress. Compound 1a has the 

significant effect on inhibition of AChE with IC50 level of 900 nM [19], which is a potential 

lead compound for the treatment of AD.

In addition, ladostigil is a novel multitarget neuroprotective drug with a dual ACh-

butyrylcholinesterase and monoamine oxidase A and B inhibitor. It was shown to alleviate 

scopolamine-induced impairment in spatial memory, and increase in rat brain cholinergic 

activity. Moreover, it possesses potent neuroprotective and anti-apoptotic activities. These 

neuroprotective activities are attributed to the regulation of APP processing, activation of 

protein kinase C and mitogen-activated protein kinase signaling pathways. Currently, the 

Phase II study of the drug has been completed, and the results have not been published yet 

[28].

Enhancement of cholinergic transmission with muscarinic receptor agonist and nicotinic 

receptor agonist has also been investigated. NGX267 (AF267B), as a selective cholinergic 

M1 muscarinic receptor agonist, can reduce cognitive deficits [29]. In particular, it also 

decreased Aβ1-42 and tau pathologies in the cortex and hippocampus in transgenic AD mice, 

suggesting its potential for therapy in AD [30].

EVP-6124 is an α7 nicotinic ACh receptor (nAChR) agonist with highly CNS-penetrant. It 

can improve memory performance by potentiating the ACh response of α7 nAChRs. The 

compound has currently successfully completed Phase II trials, supporting a new therapeutic 

strategy for the treatment of cognitive impairment [31]. Additionally, GTS-21 is selectively 

agonist of the α7 nicotinic receptor with good safety and tolerability. This drug has 

displayed promising characteristics during Phase II clinical trial [32].
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Amyloid-targeted therapies

The development of AD drugs has been facilitated by the amyloid hypothesis [33,34]. Aβ 

peptides are derived from amyloid precursor protein (APP) which is an integral glycoprotein 

expressed in the brain [35]. APP can be processed by amyloidogenic and nonamyloidogenic 

pathways which lead to different outcomes. In general, APP is cleaved by α-secretase and 

then γ-secretase, which is nonamyloidogenic. However, in amyloidogenic pathway, APP is 

initially performed by β-secretase to release the soluble fragment into extracellular region. 

The remaining section is then processed by γ-secretase, generating amyloidogenic peptides 

such as Aβ1-40 and Aβ1-42 (Figure 1) [35]. Many evidences have indicated that Aβ is a 

neurotoxin, and the accumulation of Aβ1-42 in particular induces the formation of toxic Aβ 

oligomers and fibrils [36], which cause the impairment of synapses and neurons [37]. Based 

on the amyloid hypothesis, drugs that can reduce the generation of Aβ, prevent the 

aggregation of Aβ, and promote its clearance are thought to be promising therapeutics for 

AD.

Decreasing Aβ generation

Since β- and γ-secretases are responsible for the generation of Aβ from the release of the 

intracellular domain of APP, great efforts have been focused on the inhibition or modulation 

of activities of β- and γ-secretases, which are recognized as important drug targets of AD.

β-secretase inhibitors

LY2811376 developed by Eli Lilly and Co. is the first orally available nonpeptidic β-

secretase inhibitor identified by fragment-based screening. It can reduce Aβ levels in animal 

models in dose-dependent manner [38]. LY2811376 can also produce long-lasting 

reductions of Aβ levels in healthy volunteers with safety and good tolerability. However, 

due to the off-target-based toxicology, it prevented the compound from progressing to 

clinical development. Another compound LY2886721 is a selective β-secretase inhibitor 

with agreeable drug properties. The compound lowered cerebral spinal fluid (CSF) Aβ40, 

Aβ42 and sAPP-β concentrations without safety concerns in Phase I clinical trial [39]. 

Unfortunately, it also did not undergo subsequent trials due to abnormal liver biochemical 

tests.

MK-8931 is a β-secretase 1 (BACE1) inhibitor being tested for the treatment of Alzheimer’s 

type dementia in Phase II clinical trial. Results of Phase I clinical studies demonstrated that 

MK-8931 resulted in a dose-dependent and sustained reduction in CSF Aβ levels by greater 

than 90% in healthy volunteers without dose-limiting side effects [40]. Based on these 

results, global, multicenter Phase II/III clinical trials are conducted to evaluate the safety and 

efficacy of MK-8931 versus placebo in patients with mild-to-moderate AD.

Several novel lead compounds targeting β-secretase are under development. Lactams 

derivatives, as β-secretase inhibitors, were patented by Pfizer, Inc. The compound 2a 

possesses enhanced brain penetration and improved cardiovascular properties. It is a high 

selective β-secretase inhibitor with IC50 of 32 nM on neuroglioma cell line H4 cells [41]. In 

addition, Pfizer, Inc. designed the hexahydropyrano [3,4-d] [1,3] thiazin-2-amine 
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compounds that are β-secretase inhibitors with the novel scaffold. The compound 3a showed 

the strong inhibition effect on β-secretase with IC50 of 23.1 nM with H4 human neuroglioma 

cells expressing APP695 in vitro [42]. Another novel tricyclic compounds such as compound 

4a displayed a stronger inhibition effect with IC50 of 1.1 nM in vitro [43]. These patented 

compounds could be as a potential candidate drug in the treatment and prevention of AD. 

Figure 5 & Table 2 list the main β-secretase inhibitors for AD therapies.

Currently, numerous small molecules are designed to target BACE1. Whereas, the pace of 

research and development on BACE1 as the therapeutic target has been slow. Several 

concerns have been stated about the potential side effects of BACE1 inhibitors, because 

BACE1 also cleaves a selection of substrates involved in myelination, neuronal circuits, 

retinal homeostasis and synaptic function [57]. Inhibition of the enzyme could have toxic 

consequences. Therefore, the selective BACE1 inhibitors without side effect are expected to 

design for further evaluation in AD treatment.

γ-secretase inhibitors & modulators

γ-secretase is an intramembrane multisubunit protease complex that is responsible for 

cleavage of the APP to produce neurotoxic Aβ peptides in the final step. It is also critical in 

the related processing of several other type of membrane proteins, such as Notch receptor, 

N-cadherin and ErbB4 [58]. Several γ-secretase inhibitors and modulators have been 

developed as potential treatments of AD to reduce the formation of Aβ.

Semagacestat (LY-450139) is a γ-secretase inhibitor under development by Eli Lilly and Co. 

as a treatment for AD. It can reduce Aβ concentrations in the plasma and Aβ production in 

the CNS. However, the Phase III trial was terminated owing to a high occurrence of adverse 

effects. Furthermore, patients with AD receiving the drug showed a worsening of cognition 

function than the placebo group [59]. A possible reason for the highlight of adverse events 

associated with semagacestat is that inhibiting γ-secretase possibly interferes with the 

receptor-related nuclear signaling of Notch [60]. Therefore, the developments of γ-secretase 

inhibitors with severe Notch-related side effects have been discontinued.

The second-generation γ-secretase inhibitors with Notch-sparing effect have been 

developed. Avagacestat (BMS-708163) is a potent, selective γ-secretase inhibitor of Aβ42 

with IC50 of 0.27 nM, demonstrating a 193-fold selectivity against Notch [61]. Phase I 

clinical trial studies showed that BMS-708163 significantly decreased the level of CSF Aβ40 

and Aβ42 approximately 30% with a daily dose of 100 mg in humans [62]. Nevertheless, 

results from Phase II trials in mild-to-moderate AD showed that the compound did not 

display obvious efficacy to drive the advancement of Phase III trials [63].

NIC5-15 is a natural product found in soy and several fruits. It can act as a Notch-sparing γ-

secretase inhibitor and an insulin sensitizer. This compound modulates γ-secretase to reduce 

Aβ production, and improves cognitive function and memory deficits in preclinical models 

of AD [64]. The results from Phase IIa trial in 15 patients with mild-to-moderate AD showed 

that NIC5-15 is safe and has good tolerability [65]. Additionally, Begacestat (GSI-953) is 

also a novel γ-secretase inhibitor that selectively inhibits cleavage of APP over Notch. It 
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inhibits Aβ production in a dose-dependent reduction with EC50 value of 7.3 nM [66]. The 

compound is being tested in Phase I clinical trial.

PF-3084014 is a highly selective γ-secretase inhibitor that reduces Aβ with IC50 of 1.2 nM 

in vitro. This compound showed dose-dependent reduction in brain, CSF and plasma Aβ in 

Tg2576 mice. PF-3084014 is currently under clinical development [67]. In addition, 

BMS-299897 is also a γ-secretase inhibitor. It is shown to be orally available, readily cross 

blood–brain barrier and effectively suppress plasma and brain Aβ level in human APP-

bearing transgenic mice in a time- and dose-dependent manner with ED50 values of 30 

mg/kg in vivo, suggesting its potential for therapy in AD [68].

γ-secretase modulators selectively blocking APP proteolysis without Notch-related side 

effects could offer a more promising strategy [69]. CHF5074, a novel γ-secretase modulator, 

reduces brain Aβ burden, and attenuates spatial memory deficit in a transgenic mice model 

of AD [70]. The data from Phase II clinical trial in 96 patients with mild-to-moderate AD 

showed that CHF5074 is safe and has good efficacy [71]. E2012, a novel compound 

discovered by Eisai, is also a γ-secretase modulator that inhibits the production of Aβ 

without affecting Notch cleavage. E2012 significantly decreased the levels of Aβ40 and Aβ42 

in rat CSF, brain and plasma in a dose-dependent manner in vivo [72], suggesting the novel 

γ-secretase modulator could be a promising therapeutic agent for AD.

Besides the drugs in clinical trials, some novel γ-secretase modulators are also under 

development. Bicyclic pyridinone derivatives patented by Pfizer, Inc. are a novel γ-secretase 

modulator [55]. Among them, the compound 5a showed a stronger inhibition effect on Aβ42 

with IC50 of 4.2 nM in vitro. In addition, tetrasubstituted benzenes compounds designed by 

Envivo Pharmaceuticals, Inc. are also γ-secretase modulator. The compound 6a can 

significantly reduce Aβ42 with EC50 of 69 nM in vitro (HEK 293 cell line). The distinct 

effects on lowering Aβ were also observed in Tg2576 transgenic mice [56]. Figure 6 & 

Table 2 list the main γ-secretase inhibitors and modulators for AD therapies.

Preventing Aβ aggregation

Evidence shows that Aβ aggregations induce the formation of toxic Aβ oligomers and 

fibrils, and cause the impairment of synapses and neurons [73]. Based on this point, some 

anti-aggregation drugs have been investigated to prevent Aβ fragments from aggregating 

(Figure 7). The strategy can be implemented by either binding to Aβ monomers to avoid the 

oligomerisation, or reacting with Aβ oligomers to alleviate toxicity and promoting their 

clearance.

Tramiprosate (3APS) is an orally-administered compound binding to the soluble Aβ and 

reduces Aβ aggregation. Tramiprosate possesses neuroprotection against Aβ-induced 

neurotoxicity in vitro, and produces dose-dependent reductions of Aβ in the brain of 

transgenic mice [74]. Clinical Phase II studies showed that it was safe and tolerable. 

However, the further Phase III test has been terminated due to its poor clinical efficacy and 

low CNS bioavailability for mild-to-moderate AD patients [75].
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Scyllo-inositol, as a natural product, is another anti-oligomerization compound. It stabilized 

a small conformer of Aβ42 and neutralized cell-derived Aβ oligomers in vitro, and promoted 

the generation of low molecular weight Aβ species in vivo. Furthermore, the compound 

decreased neuronal toxicity and alleviated the cognitive deficits in multiple mouse models of 

AD [76]. A Phase II clinical trial evaluating efficacy and safety is currently ongoing. 

Another well-known natural product from green tea, epigallo-catechin-3-gallate (EGCG) 

also has shown multiple neuroprotective effects. It can prevent the aggregation of Aβ 

peptides to form toxic oligomers through the direct binding to the unfolded peptide [77]. It is 

currently being tested in Phase II/III clinical trials for patients with early AD.

PBT1 is a novel metal chelator that inhibits Aβ aggregation by interfering with interactions 

between Aβ and metal ions. Evidence from Phase II clinical trials suggested that PBT1 

could halt cognitive decline in AD [78]. Unfortunately, further Phase II/III studies were 

halted owing to manufacturing toxicity issues. Subsequently, the second-generation 

inhibitor, PBT2 was developed as a metal-protein attenuating compound that affects the 

metal-mediated toxic oligomerisation [79]. It has a better blood–brain barrier permeability 

than does PBT1. The data from animal experiments showed that PBT2 prevents Aβ 

oligomerization, reduces soluble and insoluble Aβ in the brain and promotes Aβ oligomer 

clearance [80]. The positive results from Phase II also showed that PBT2 reduced Aβ42 CSF 

concentrations and improved cognition function with quality safety and tolerance [81]. The 

novel metal chaperones could be a promising drug to the treatment of age-related cognitive 

decline.

Some attractive anti-aggregation compounds have been investigated. Apomorphine 

derivatives such as compound 7a patented by Cytokine Pharmasciences, Inc. target the 

nucleation phase of Aβ self-assembly and interfere effectively with aggregation of Aβ1-40 

into amyloid fibrils in vitro [82]. Peptidomimetic derivatives are new small molecules for 

inhibiting Aβ aggregation. Among them, compound 8a displayed distinct inhibition of the 

Aβ fibril formation with ThT assay in vitro [83]. In addition, Neuropore Therapies, Inc. 

presented heterocyclic compounds such as compound 9a that specifically target the toxic Aβ 

oligomers aggregation with a high affinity. The compound is also able to easily cross the 

blood–brain barrier at high AUC brain/blood ratios [84]. Figure 6 & Table 3 list the main 

drugs in clinical trials and patented lead compounds to prevent Aβ aggregation.

Promoting Aβ clearance

Anti-amyloid immunotherapy has shown beneficial effects on Aβ clearance in various mice 

models, which would be a valuable therapeutic strategy. Active or passive Aβ immunization 

has been developed to prevent Aβ aggregation and promote its clearance.

Active AD immunotherapy

The first active vaccine is AN-1792 using full-length Aβ1-42 tested in clinical trial. However, 

it was terminated because of severe side effect in some patients, which was attributed to 

nonspecific immune response [90]. To avoid this point, Novartis designed the second-

generation vaccine CAD106 that comprises Aβ1–6 sequence. It can reduce Aβ accumulation 

and induce a substantial anti-Aβ immune response with quality toleration and safety in 
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Phase II trials [91]. However, no significant changes in Aβ levels were detected in CSF with 

treatment of CAD106, and some adverse effects on nasopharyngitis and erythema in 

injection sites were also observed [91].

Subsequently, ACI-24 and UB-311 were designed based on Aβ1–15 and Aβ1–14, 

respectively. During pre-clinical development, ACI-24 has shown high efficacy on memory 

restoration and plaque reduction in transgenic mice [92]. The combined Phase I/II clinical 

trials are currently ongoing for determining its efficacy and tolerability. UB-311 is a novel 

immunotherapy with the UBITh helper T-cell technology and a particular site-specific 

epitope to target the Aβ peptide. It has successfully completed clinical Phase I study, 

demonstrating safety and tolerability [93].

Other on-going active immunization trials include ACC-001 and V-950 as well. ACC-001 

was developed by Janssen according to the N-terminal Aβ fragment attached to a carrier 

protein. It is currently being tested in a Phase II trial. Additionally, Merck designed V-950, 

as a multivalent Aβ vaccine [94], and just finished the Phase I study in AD patients.

Passive AD immunotherapy

Passive immunotherapy refers to the direct administration of anti-Aβ antibodies, obviating 

the need for patients to mount an antibody response. Passive immunotherapy is based on 

specifically designed monoclonal antibodies targeting Aβ to promote its clearance. As an 

alternative therapy, passive immunization was considered safer and more controllable than 

active immunization [95].

AAB-001 (Bapineuzumab) is a humanized monoclonal antibody targeting the N-terminal 

region of Aβ. The antibody was shown to bind to Aβ plaques, lower plaque burden and 

improve performance on mouse behavioral assays [96]. However, its Phase III trials were 

halted after completion of two trials owing to a failure to meet primary outcome measures of 

cognition and activities of daily living [97]. LY-2062430 (Solanezumab) is a monoclonal 

antibody developed by Eli Lilly. It can bind to the soluble Aβ and lower amyloid pathology 

in mouse models. The major mechanism of action is thought to be via peripheral Aβ 

sequestration and a peripheral sink [98]. Nevertheless, the LY-2062430 also failed to meet 

its primary cognitive and functional end points in Phase III in two clinical trials after 

AAB-001.

PF-04360365 (Ponezumab) is a humanized IgG2δA monoclonal antibody that binds the free 

C-terminal amino acids 33–40 of the Aβ1-40 peptide. The results from Phase I trials showed 

acceptable safety without findings of antibody-induced side effects [99]. Two Phase 2 trials 

of multiple doses are ongoing.

In addition, GSK-933776, R-1450 and MABT-5102A, which are monoclonal antibodies 

targeting Aβ, have been entered in the clinical trials. GSK-933776 is a humanized IgG1 

monoclonal antibody directed against the N-terminal of Aβ. It can clear the soluble amyloid 

from the brain, reduce its neurotoxic effect and improve cognition in transgenic mice [100]. 

GSK-933776 is being tested in Phase II trials for AD. In addition, R-1450 designed by 

Roche is a novel human anti-Aβ antibody that recognizes the N-terminal and the central 
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region within Aβ. Several preclinical results show that g R-1450 preferentially interacts with 

aggregated Aβ in the brain and lowers amyloid-β by eliciting effector cell-mediated 

clearance [101]. MABT5102A was derived by immunization with modified Aβ1–15, 

possessing a human IgG4 backbone. It is thought to target multiple conformational 

protofibrillar epitopes of Aβ, including oligomeric forms for inhibiting Aβ aggregation and 

promoting its disaggregation [102]. A Phase I clinical trial proved its safety and Phase II of 

MABT5102A is ongoing. Table 4 lists the active and passive immunotherapies for AD.

Although some clinical trials are still ongoing, the effects of the AD immunotherapy 

targeting Aβ in pre-clinical studies do not seem to correspond with those observed in clinical 

trials. The AD immunotherapies failed in clinical trials suggested that even elimination of 

the Aβ plaques still cannot improve cognition and stop the disease progression in AD 

patients.

Drugs to target tau protein

Tau pathology is another important hallmark of AD and perhaps the most promising target. 

Tau is highly enriched within neurons of the central nervous system, in which it appears to 

play an important role in the formation and stabilization of microtubules (MTs) [114]. In 

AD, hyperphosphorylated tau protein results in the intracellular NFTs and further disrupts 

MTs-mediated axonal transport, leading to dysfunction, degeneration and subsequent death 

for neurons [115]. Several evidences suggest that tau pathology closely correlates with the 

progressive neuronal loss and cognitive decline in AD patients [116].

Two main therapeutic approaches focused on tau protein can be used to either modulate 

phosphorylation of tau by inhibitors of tau-phosphorylating kinases, or inhibit the tau 

aggregation and promote its degradation [117]. Phosphorylation of tau is controlled through 

different kinases and phosphatases. Among them, the glycogen synthase kinase 3 β (GSK3β) 

is a key target that regulates tau phosphorylation, which is also involved in amyloid 

processing and gene transcription [118].

Several GSK3β inhibitors are under development. Tideglusib (NP-031112), as a non-ATP-

competitive GSK-3 inhibitor, is a small molecule belonging to the tiadiazolidindiones 

family. It can decrease tau hyper-phosphorylation, lower brain amyloid plaque levels, 

improve learning and memory and prevent neuronal loss in a variety of animal models 

[119]. The results from Phase IIa study demonstrated its valuable safety and efficacy in AD 

patients [120]. This drug is currently being confirmed in a larger clinical trial. In addition, 

the indole derivatives designed by Noscira, SA, such as compounds 10a [121], 11a [122] 

display micro-molar inhibition against GSK3β in vitro. Furthermore, maleimide derivatives 

inhibit the GSK3β in the micro- and nano-molar ranges. Among them, compound 12a [123] 

shows higher selective GSK3β inhibiting activity with IC50 of 5.0 nM, suggesting its 

potential for therapy in AD.

Preventing tau interaction and neurofibrillary tangle accumulation could be a promising 

treatment for AD. Leuco-methylthioninium (LMTX, TRx0237) is a first-in-class tau 

aggregation inhibitor. It acts by preventing the formation and spread of NFTs, which 

comprise abnormal tau protein clusters causing neuronal cell toxicity and death in the brain 
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of AD patients. Additionally, Leuco-methylthioninium has a role in inhibiting Aβ 

aggregation [124]. It is intended for the treatment of mild-to-moderate AD with a higher 

bioavailability, and also in Phase III clinical trials for its safety and clinical efficacy. In 

addition, quinolones derivatives, as potential blockers, prevent the tau aggregation before 

the formation of NFTs. Compound 13a patented by Universidad De Chile displayed high-

binding affinity for tau protein with Kd level of 186 nM [125]. Furthermore, pyrazole 

derivatives are also novel tau aggregation inhibitors. Among them, compound 14a showed 

high inhibition against tau aggregation with IC50 of 1.49 μM, and also inhibited β-secretase 

with IC50 of 2.85 [126]. Myricanol derivatives, such as compound 15a, potently reduces tau 

protein levels upon treatment of HeLa cells (IC50 <10 μg/ml) [127]. Figure 8 & Table 5 list 

the main drugs and compounds to target tau protein.

Other potential therapeutic strategies in AD

Targeting mitochondrial dysfunction

A large body of evidence suggests that mitochondrial dysfunction and oxidative damage 

have a significant role in the early development of AD. Mitochondrial dysfunction leads to 

impaired calcium buffering and generation of reactive oxygen species, promoting synaptic 

damage and apoptosis [130]. Thus, strategies targeting basic mitochondrial processes, such 

as energy metabolism or free-radical generation possess great promise in AD treatment.

Latrepirdine, known as Dimebon, is a small-molecule compound developed by Medivation, 

Inc. and Pfizer for the treatment of AD. Previous research showed that the mechanism of its 

action was focused on AChE inhibition and NMDA antagonism [131]. While the recent 

study indicated that the potent neuroprotective effect of latrepirdine is attributed to the 

enhancement of mitochondrial function under stress conditions [132]. Moreover, it can 

protect neuronal mitochondria against Aβ-induced toxicity and improve mitochondrial 

membrane potential and ATP production [133], suggesting the potential for the treatment of 

neurodegenerative diseases [134].

In addition, several lead compounds to enhance mitochondrial function are under 

development. Indole and indoline derivatives designed by Bar Ilan University can reduce the 

production of oxidative stress, and excessive release of NO and pro-inflammatory cytokines. 

Compound 16a shows significant radical scavenging effect with IC50 of 70 nM, and 

protection against apoptosis induced by H2O2 with IC50 of 10 nM. Additionally, chroman 

derivatives such as Compound 17a also prevent damage to neuronal cells caused by 

mitochondrial dysfunction, oxidative stress in vitro with IC50 around 10 μM, and reduce the 

MPTP-induced deficit at the doses of 10 mg/kg/day in animal experimental models of 

mitochondrial dysfunction in vivo. Furthermore, both 4-(p-quinolyl)-2-hydroxybutanamide 

derivatives (Compound 18a) and catechol derivatives (Compound 19a) patented by Edison 

Pharmaceuticals, Inc. exhibit protection against oxidative damage in vitro with EC50 of less 

than 500 nM. Figure 9 & Table 6 list the main compounds to target mitochondrial 

dysfunction.
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Neurotrophins

Neurotrophins are dimeric peptide hormones. The first member of the neurotrophin family 

to be discovered was nerve growth factor (NGF), which plays an important role in 

development and maintenance of the nervous system, as well as neuronal cell survival and 

differentiation [144]. Recently, an increasing number of studies have called attention to the 

correlation between the decreased NGF and AD [145]. Thus, neurotrophins have been acted 

as an attractive target for treatment of AD.

Paliroden (SR57667) developed by Sanofi-Aventis is a nonpeptide compound that activates 

the synthesis of endogenous neurotrophins [146]. A Phase II study is ongoing to evaluate its 

safety and tolerability in patients with mild-to-moderate AD. Subsequently, Sanofi also 

designed several novel compounds with high affinity for the p75NTR receptor of 

neurotrophins. The p75NTR receptor overexpressed in AD plays a predominant role in 

mechanisms leading to neuronal death via postischemic apoptosis. Among them, compound 

20a shows high inhibitory activity on p75NTR with IC50 of 0.08 nM, suggesting a potential 

candidate drug for the treatment of AD.

FK962 designed by Astellas Pharma, Inc. is a neurite formation promoter. It can ameliorate 

cognitive impairment in rats by activation of the somatostatinergic nervous system in the 

hippocampus [147], and also promote neurite elongation and regeneration of cultured rat 

trigeminal ganglion cells [148]. However, the Phase II trial has been terminated due to its 

poor clinical efficacy for mild-to-moderate AD patients.

T-817MA, a neuroprotective agent, prevents Aβ-induced granule cell loss in the dentate 

gyrus of the hippocampus [149], and improves the motor and cognitive impairments owing 

to inhibiting neuronal degeneration in P301L tau transgenic mice [150]. The Phase II trial 

has been completed for its evaluations on safety and tolerability. Figure 10 & Table 6 list the 

main neurotrophins promoters.

Conclusion & future perspective

So far, the development of AD drugs has achieved some success in aspects of symptomatic 

improvement, whereas it also had several failures in aspects of disease modifying. Although 

many clinical and drug design research studies are undergoing, we have to recognize that it 

is quite difficult to successfully cure AD by a single treatment, which attributes to the 

complicated pathophysiology of AD. It is thought to be the cause not by defects in single 

gene, but rather by variations in a large number of genes, proteins and their complex 

interactions, ultimately leading to this disease [151].

Multitarget drug discovery could be a more promising strategy for AD treatment [152]. It 

could overcome the deficiency of poor efficacy for one-target-one-compound development. 

Several multitarget compounds already have been designed, such as dual binding AChE and 

BACE1 inhibitors [153], AChE inhibitors and antioxidants [154], which provide better 

therapeutic effects on both symptomatic and disease modifying in AD. In this point, natural 

products with polypharmacology may serve as good prototypes to design multitarget drugs 

for AD treatment [155,156]. Of course, it is a challenge to apply such multidrug remedies 

Liu et al. Page 11

Pharm Pat Anal. Author manuscript; available in PMC 2015 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for AD treatment with clinical rationale. Thus, new approaches such as quantitative system 

pharmacology with computational system polypharmacology algorithms [157,158] and 

chemogenomics knowledgebases [159,160] will open up a broad and promising avenue to 

advance the discovery and development of new-generation drugs for AD in the future.
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Refer to Web version on PubMed Central for supplementary material.
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Executive summary

Background

• Current situation and pathological features of Alzheimer’s disease (AD).

• Advance in research on AD.

Current treatments & cholinergic drugs

• Current treatment: five approved drugs for AD treatments.

• Cholinergic drugs: cholinergic hypothesis and main drugs in clinical trials and 

patented lead compounds.

Amyloid-targeted therapies

• Decreasing Aβ generation.

• The mechanism of Aβ generation.

• The main β-secretase inhibitors in clinical trials and patented compounds.

• The main γ-secretase inhibitors and modulators in clinical trials and patented 

compounds.

• Preventing Aβ aggregation.

• Drugs in clinical trials and patented lead compounds to prevent Aβ aggregation.

• Promoting Aβ clearance.

• Active AD immunotherapy and passive AD immunotherapy.

Drugs to target tau protein

• The mechanism of tau pathology.

• Tau-phosphorylating kinases inhibitors (GSK3β inhibitors).

• Inhibit the tau aggregation and promote its degradation (tau aggregation 

inhibitors).

Other potential therapeutic strategies in AD

• Targeting mitochondrial dysfunction.

• Neurotrophins.

Future perspective

• Multitarget drug design and discovery: a more promising strategy for AD 

treatment.
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Figure 1. The complicated pathway and promising therapeutics in Alzheimer’s disease
Aβ peptides are derived from APP. APP can be processed by amyloidogenic and 

nonamyloidogenic pathways which lead to different outcomes. In a nonamyloidogenic 

pathway, APP is initially cleaved by α-secretase to release sAPP-α and the left fragment is 

further processed by γ-secretase complex. In the amyloid pathway, APP is cleaved by β-

secretase followed by γ-secretase complex to produce Aβ40/42, sAPP-β and AICD. Aβ42 has 

a high potential to aggregate to form toxic Aβ oligomers which cause the impairment of 

synapses and neurons. The Aβ oligomers increase the influx of Ca2+ and other different ions 

resulting in membrane depolarization. These results affect the function of different receptors 

and channels such as NAMDR, AMPAR and VDCC. In addition, the elevated Ca2+ can 

affect the modulation of tau-phosphorylating kinases such as GSK3β and CDK5, and result 

in the hyperphosphorylation of tau and the subsequent NFTs. Aβ also cause ER stress and 

mitochondria dysfunction by increase of ROS and Ca2+ dysregulation, which finally lead to 

dysfunction, degeneration and death of neurons. Based on the mechanisms and underlying 

targets associated with AD, some promising therapeutics designated by medicine bottles are 

under development, such as cholinergic drugs, amyloid-targeted therapies as well as drugs to 

target tau protein, mitochondrial function and neurotrophins.

Aβ: Amyloid β; AD: Alzheimer’s disease; AICD: Amyloid intracellular domain; AMPAR: 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; APP: Amyloid precursor 

protein; CDK5: Cell division protein kinase 5; ER: Endoplasmic reticulum; GSK3β: 

Glycogen synthase 3β; NAMDR: N-methyl D-aspartate receptors; NFTs: Neurofibrillary 

tangles; ROS: Reactive oxygen species; sAPP-α: Soluble APP fragment α; sAPP-β: Soluble 

APP-β; VDCC: Voltage-dependent calcium channels.
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Figure 2. Advance in research publication reported for Alzheimer’s disease over the past decade
The green and blue columns represent patents and scientific literature annually published 

related to AD, respectively.

AD: Alzheimer’s disease.

For color images please see http://www.future-science.com/doi/full/10.4155/ppa.14.22.
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Figure 3. Five medicines approved by the US FDA for treatment in Alzheimer’s disease
AChE: Acetylcholinesterase; NMDA: N-methyl D-aspartate.
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Figure 4. Cholinergic inhibitors in clinical trials and patented lead compounds
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Figure 5. β-secretase inhibitors in clinical trials and patented lead compounds
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Figure 6. γ-secretase inhibitors and modulators in clinical trials and patented lead compounds
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Figure 7. Drugs in clinical trials and patented lead compounds to prevent Aβ aggregation
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Figure 8. Drugs in clinical trials and patented lead compounds to target tau protein
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Figure 9. Drugs to target mitochondrial dysfunction

Liu et al. Page 28

Pharm Pat Anal. Author manuscript; available in PMC 2015 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. Neurotrophins promoters
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