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Abstract

Despite the lack of clinical research, marijuana and synthetic cannabinoids have been approved to 

treat posttraumatic stress disorder (PTSD) in several states in the United States. This review 

critically examines preclinical research on the endocannabinoid system (ECS) in order to evaluate 

three key questions that are relevant to PTSD: (1) Does ECS dysfunction impact fear extinction? 

(2) Can stress-related symptoms be prevented by ECS modulation? (3) Is the ECS a potential 

target for enhancing PTSD treatment? Disruption of the ECS impaired fear extinction in rodents, 

and ECS abnormalities have been observed in PTSD. Targeting fear memories via the ECS had 

mixed results in rodents, whereas augmented cannabinoid receptor activation typically facilitated 

extinction. However, the translational value of these findings is limited by the paucity and 

inconsistency of human research. Further investigation is necessary to determine whether 

incorporating cannabinoids in treatment would benefit individuals with PTSD, with cautious 

attention to risks.
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1. Introduction

Beginning with California in 1996, twenty-three states in the United States have legalized 

marijuana for medicinal purposes. Seven of these states have listed posttraumatic stress 

disorder (PTSD) as an approved condition for treatment with the drug (National Council of 
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State Legislatures, http://www.ncsl.org/research/health/state-medical-marijuana-laws.aspx), 

but unlike other medical conditions for which cannabis is prescribed, there have been no 

clinical trials testing the efficacy of treating PTSD with cannabis. Moreover, recreational use 

of cannabis has been associated with a range of poor psychosocial outcomes (Hall, 2014) as 

well as symptoms of mood, anxiety, and psychotic disorders (Crippa et al., 2009; Moore et 

al., 2007), suggesting complex effects that require careful assessment of risk alongside any 

examination of potential benefits. Symptoms of PTSD, including exaggerated reactivity to 

trauma-related reminders, anxiety, hyperarousal, and avoidant behaviors (American 

Psychiatric Association, 2013) can undermine functioning for years (Neria et al., 2013), 

therefore developing novel treatments is crucial, and drawing from research on the 

behavioral and neurobiological components of PTSD is the best approach for evaluating the 

therapeutic potential of cannabis.

Several laboratory models have expanded the understanding of PTSD-like symptoms across 

key levels of analysis (Sullivan, Debiec, Bush, Lyons, & Ledoux, 2009), providing 

important tools for the rigorous experimentation of potential treatments. Classical fear 

conditioning (Pavlov, 1927) has been examined at the genetic (Hettema, Annas, Neale, 

Kendler, & Fredrikson, 2003; Jovanovic & Ressler, 2010), synaptic (Amano, Unal, & Paré, 

2010; Myers & Davis, 2007), neurocircuitry (Rauch, Shin, & Phelps, 2006; Shin & 

Liberzon, 2010), and behavioral (Delamater, 2004) levels, and extensively studied in the 

context of anxiety in humans (Bitterman & Holtzman, 1952; Lissek et al., 2005; Milad & 

Quirk, 2012). Inhibitory avoidance and fear-potentiated startle paradigms also model 

behavioral and physiological disturbances relevant to PTSD (Grillon, 2002; Grillon & 

Morgan III, 1999). In all these models, extinction is the learning process during which a 

conditioned response attenuates after repeated exposure to the conditioned stimulus in the 

absence of the aversive, unconditioned stimulus (Delamater, 2004; Myers & Davis, 2002).

Several findings point to the applicability of these models in the study of PTSD. 

Heterogeneous patterns of fear extinction learning have been observed in rats, with rates of 

rapid, slow, and failed extinction that mirror human trajectories of PTSD symptoms after 

trauma (Galatzer-Levy, Bonanno, Bush, & LeDoux, 2013). More than with any other 

psychiatric condition, research has linked PTSD to dysfunctional fear extinction in 

laboratory paradigms, coupled with impairments in brain regions that are part of the fear 

circuitry (Fani et al., 2012; Garfinkel et al., 2014; Inslicht et al., 2013; Milad, Orr, Lasko, 

Chang, Rauch, & Pitman, 2008; Milad et al., 2009; Norrholm, Jovanovic, Olin, Sands, 

Bradley, & Ressler, 2011; Orr, Milad, Metzger, Lasko, Gilbertson, & Pitman, 2006; 

Rougemont-Bücking et al., 2011; Shvil et al., 2014; Sripada, Garfinkel, & Liberzon, 2013). 

Extinction deficits may be premorbid risk factors for the development of PTSD (Guthrie & 

Bryant, 2006). Moreover, impaired ability to extinguish fearful associations to trauma-

related cues may interfere with treatment response.

In fact, the core mechanism of prolonged exposure therapy (Foa, Hembree, & Rothbaum, 

2007), a first-line PTSD treatment (Powers, Halpern, Ferenschak, Gillihan, & Foa, 2010), is 

extinction learning through behavioral and cognitive techniques (Bouton, Mineka, & 

Barlow, 2001; Hofmann, 2008; Rothbaum & Davis, 2003). Patients recount their trauma 

multiple times within sessions (i.e., imaginal exposure) and complete assignments during 
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which avoided situations are repeatedly confronted in a gradual manner (i.e., in vivo 

exposure). However, some patients who benefit from this empirically-validated treatment 

experience the relapse of symptoms (Vervliet, Craske, & Hermans, 2013), which is 

consistent with the phenomenon of spontaneous recovery of conditioned fear in 

experimental models relevant to PTSD (Bouton, García-Gutiérrez, Zilski, & Moody, 2006; 

Rescorla, 2004). This has led to the consideration of adjunctive pharmacologic approaches 

for enhancing extinction learning retention during exposure therapy (Kaplan & Moore, 

2011).

A potential pharmacological target for enhancing extinction learning and retention is the 

endogenous cannabinoid system (ECS), which includes cannabinoid receptors, 

endocannabinoid neurotransmitters such as anandamide, and enzymes responsible for the 

breakdown and reuptake of endocannabinoids (Di Marzo, Bifulco, & De Petrocellis, 2004). 

High densities of endocannabinoid receptors are present in the hippocampus, amygdala, and 

prefrontal cortex (Glass, Dragunow, & Faull, 1997)—brain regions with key roles in fear 

acquisition and extinction (Quirk & Mueller, 2008) that have exhibited structural and 

functional impairments in patients with PTSD (Admon, Milad, & Hendler, 2013; Garfinkel 

& Liberzon, 2009). Approaches to understanding the role of the ECS on the acquisition, 

consolidation, and extinction of fear responses have included the use of transgenic mice 

lacking cannabinoid type 1 (CB1) receptors, and pharmacological methods including 

administration of exogenous CB1 antagonists and agonists, and inhibitors of enzymes 

involved in the breakdown and reuptake of endocannabinoids.

Several reviews have examined the role of the ECS in fear-related processes, highlighting 

the neurobiological mechanisms derived from animal research (Akirav, 2011; Gunduz-

Cinar, Hill, McEwen, & Holmes, 2013; Lutz, 2007; Ruehle, Rey, Remmers, & Lutz, 2012), 

offering concise summaries of cannabinoid research within general expositions of several 

potential extinction enhancers (de Bitencourt, Pamplona, & Takahashi, 2013; Fitzgerald, 

Seemann, & Maren, 2014), or examining broad therapeutic potential across mood and 

anxiety disorders (Hill & Patel, 2013; Micale, Di Marzo, Sulcova, Wotjak, & Drago, 2013; 

Neumeister, 2013; Rabinak & Phan, 2014) or schizophrenia (Kucerova, Tabiova, Drago, & 

Micale, 2014). The present review is focused on the potential role of the ECS in several 

distinct processes (i.e., fear expression, memory consolidation and reconsolidation, fear 

extinction, and extinction retention) each with potential implications for risk, early 

intervention, and treatment of PTSD.

Although the ECS may play a role in processes relevant to several psychiatric disorders, this 

review focuses on PTSD for several reasons. First, the inclusion of PTSD as one of the 

approved conditions for treatment with cannabis in several regions of the United States is 

unique among psychiatric diagnoses, necessitating a careful review of the available 

scientific evidence. Second, the PTSD diagnosis is unique in DSM nosology in that an 

etiological stressor (i.e., traumatic event) is one of the diagnostic requirements. The relative 

unpredictability of human trauma exposure is one of the greatest challenges of experimental 

research on PTSD, making the use of laboratory paradigms that model stressful events in a 

controlled environment particularly useful for elucidating pathophysiological mechanisms of 
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PTSD-like symptoms, which include exaggerated reactivity to innocuous cues, avoidance 

behavior, emotional numbing, and hyperarousal of physiological states.

No laboratory model can fully capture the complex human response to traumatic 

experiences; however, work with animals and humans has linked several experimental 

paradigms to PTSD—a necessary step in the evaluation of the translatability of ECS 

manipulations of these paradigms. Toward this aim, data from animal models and preclinical 

studies with humans are synthesized in a critical examination of results with cautious 

attention to inconsistencies, potential risks, and translational value of findings to clinical 

application. The reviewed research is organized into three sections covering: (1) evidence of 

the impact of ECS dysfunction on fear-related processes; (2) the feasibility of decreasing the 

risk of PTSD-like symptoms by modulating endocannabinoid neuro-transmission shortly 

after stress exposure and; (3) the potential to augment existing treatments with a 

pharmacologic adjunct targeting the ECS.

2. Methods and materials

A systematic search of the peer-reviewed literature was conducted on PsycINFO, PubMed, 

and Google Scholar utilizing the key words ‘endocannabinoid’, ‘cannabinoid’, ‘cannabis’, 

‘marijuana’, and ‘CB1’ in combination with ‘fear conditioning’, ‘fear extinction’, ‘memory 

consolidation’, ‘reconsolidation’, ‘PTSD’, ‘inhibitory avoidance’, ‘fear-potentiated startle’, 

and ‘stress’. Articles from 2002 (year of first experiment in this area) to 2014 were selected 

that involved manipulation of the ECS in experimental models chosen on the basis of their 

relevance to PTSD symptoms (Siegmund & Wotjak, 2006; Yehuda & Antelman, 1993). In 

delay (cue) conditioning paradigms, a neutral, conditioned stimulus (CS+; e.g., a tone) is 

followed by an aversive, unconditioned stimulus (US; e.g., shock) such that subsequent 

exposure to the CS+ alone elicits a fear response (e.g., freezing). In contextual conditioning, 

the context itself (e.g., conditioning box in which a shock was delivered) evokes the fear 

response upon subsequent exposure. Similar brain structures in animals and humans are 

involved—both delay and contextual fear conditioning rely on the amygdala (LeDoux, 

2001), but only contextual fear responses rely on the hippocampus (Marschner, Kalisch, 

Vervliet, Vansteenwegen, & Buchel, 2008; Phillips & LeDoux, 1992). In inhibitory 

avoidance paradigms, animals avoid an area of the conditioning box (e.g., dark side) where 

they have previously received a painful shock. Extinction of this avoidance behavior is 

hippocampal dependent (Quirk & Gehlert, 2003; Vianna, Coitinho, & Izquierdo, 2004). In 

fear-potentiated startle paradigms, startle probes (e.g., noise bursts) are presented alone or 

in conjunction with a CS+ previously paired with an aversive US. Exaggerated startle on 

trials that pair probes with the CS+ suggests hyperpotentiation of this basic reflex by fear 

conditioning (Davis, 2006); extinction of this response is amygdala dependent (Falls, 

Miserendino, & Davis, 1992; Lu, Walker, & Davis, 2001).

3. Results

3.1. Does ECS dysfunction impact fear extinction?

3.1.1. Animal research—There is strong evidence that disruption of the ECS impairs 

extinction (Table 1). Genetically altered mice lacking CB1 receptors (i.e., CB1 knockout 
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mice) have consistently demonstrated normal acquisition of conditioned freezing behavior 

to cues, but a significant impairment in both within-session extinction learning, and 

subsequent extinction retention, suggesting a critical role of CB1 receptors specific to the 

extinction of fear (Cannich, Wotjak, Kamprath, Hermann, Lutz, & Marsicano, 2004; 

Dubreucq et al., 2012; Kamprath et al., 2006; Marsicano et al., 2002). These deficiencies 

were exhibited by animals that began extinction training one (Cannich et al., 2004; 

Dubreucq et al., 2012; Kamprath et al., 2006; Marsicano et al., 2002), three (Dubreucq et al., 

2012), or six (Cannich et al., 2004; Kamprath et al., 2006; Marsicano et al., 2002) days after 

fear acquisition. Moreover, impairments in extinction memory retention were sustained as 

far as 11 days after acquisition, suggesting a long-term effect of CB1 receptor ablation 

during extinction (Marsicano et al., 2002). However, when subjected to several extinction 

sessions CB1 knockout mice only exhibited deficient within- but not between-session 

extinction (Plendl & Wotjak, 2010).

Additional testing indicated that the effects on extinction were not due to sensory-motor 

dysfunction in the CB1-knockout mice, as they displayed no differences in sensitivity to 

shock intensity, unconditioned freezing, sensitization to the tone, locomotion in an open 

field test, or anxiety-related behavior on the elevated plus maze (Marsicano et al., 2002). 

However, in two experiments employing extended CS presentations during extinction 

(consistent with the method of prolonged exposure therapy for PTSD), both extinction after 

fear conditioning to a tone paired with shock, and habituation to tone-only presentations 

after sensitization with shock, were impaired in the CB1 knockout mice, suggesting a role 

for the ECS that may extend beyond associative learning processes (Kamprath et al., 2006). 

Impaired fear adaptation after single inescapable footshock was also observed in mice with 

CB1 receptors knocked out in principle forebrain or cortical glutamatergic neurons 

(Kamprath et al., 2009).

In a contextual fear conditioning paradigm, CB1 knockout mice only exhibited deficient 

extinction of freezing when they were conditioned with a higher intensity (1.5 vs. 0.70 mA) 

footshock (Jacob, Marsch, Marsicano, Lutz, & Wotjak, 2012). However, in an experiment 

that also applied the lower 0.70 mA footshock, mice whose CB1 receptors were 

conditionally knocked out in dopamine-1 receptor expressing neurons exhibited higher 

levels of both auditory and contextually conditioned fear, as well as poorer within-session 

extinction (Terzian, Drago, Wotjak, & Micale, 2011). This suggests the impact of CB1 

ablation varies by site.

An important limitation of research with CB1 knockout mice is that the consequences of 

absent CB1 signaling during acquisition and extinction cannot be separated from the 

developmental impact of life-long CB1 system deficiency on these processes. Moreover, 

manipulation of CB1 signaling cannot be isolated to a specific stage in the procedure, or 

localized to brain regions. Accordingly, CB1 receptor antagonists have been utilized to 

examine the impact of acute pharmacological blockade of CB1 receptors during different 

stages of fear conditioning paradigms. In one case, contextual fear memory was enhanced 

(i.e., increased freezing 1 day after conditioning) when mice were treated with a CB1 

antagonist during acquisition (Lin et al., 2011); however, extinction was not assessed. 

Studies employing mice and several rat strains have consistently demonstrated impairments 
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in extinction of conditioned responses to cues (Bowers & Ressler, 2014; Dubreucq et al., 

2012; Kamprath et al., 2006; Marsicano et al., 2002; Plendl & Wotjak, 2010) and contexts 

(Pamplona, Prediger, Pandolfo, & Takahashi, 2006; Pamplona, Bitencourt, & Takahashi, 

2008; Reich, Mohammadi, & Alger, 2008; Suzuki, Josselyn, Frankland, Masushige, Silva, & 

Kida, 2004), of inhibitory avoidance (Niyuhire, Varvel, Thorpe, Stokes, Wiley, & Lichtman, 

2007), and of fear-potentiated startle (Chhatwal, Davis, Maguschak, & Ressler, 2005; 

Chhatwal et al., 2009) when CB1 antagonists were administered systemically prior to 

extinction learning. In some cases, these impairments were dose-dependent (Chhatwal et al., 

2005; Suzuki et al., 2004) and often sustained in drug-free extinction retention tests 

(Chhatwal et al., 2005; Marsicano et al., 2002; Suzuki et al., 2004). However, these deficits 

were not present in animals that received treatment prior to fear acquisition but not during 

extinction (Marsicano et al., 2002; Reich et al., 2008; Suzuki et al., 2004), suggesting that 

only blockade of CB1 receptors specifically during extinction training impaired extinction 

learning and its retention.

Although the majority of experiments administered the CB1 receptor antagonist treatment 

intraperitoneally (i.e., systemic), specific brain regions that are part of the fear circuitry have 

also been directly targeted. Pre-extinction intracerebral infusion of CB1 antagonist into the 

CA1 hippocampal subregion (Abush & Akirav, 2010; de Oliveira Alvares, Genro, Diehl, 

Molina, & Quillfeldt, 2008a), and the infralimbic—homologous to the human vmPFC, (Lin, 

Mao, Su, & Gean, 2009) or medial prefrontal cortex (mPFC; Kuhnert, Meyer, & Koch, 

2013) had impairing effects on extinction of conditioned freezing, fear-potentiated startle, 

and inhibitory avoidance. However, pre-extinction CB1 antagonist infusion in the 

basolateral amygdala (BLA) had inconsistent effects, impairing extinction of inhibitory 

avoidance (Ganon-Elazar & Akirav, 2009) but not of fear-potentiated startle (Kuhnert et al., 

2013), highlighting a potential divergence in how the amygdala modulates these two types 

of responses. Together, this body of rodent research employing a variety of paradigms and 

measures of fearful responding, provide strong evidence of the ECS’s central role in fear 

extinction. Dysfunction of the ECS—whether by genetic or pharmacological manipulation

—consistently disrupted extinction learning and retention in translational animal models 

relevant to PTSD symptoms that involve conditioned reactivity, avoidance behavior, and 

exaggerated startle.

3.1.2. Human research—To date, the effect of CB1 receptor blockade on extinction 

learning in humans has not been directly examined. However, meta-analyses of clinical 

trials of the CB1 antagonist rimonabant for the treatment of obesity found an increased risk 

of adverse psychiatric outcomes, including suicidal ideation (Christensen, Kristensen, 

Bartels, Bliddal, & Astrup, 2007; Rucker, Padwal, Li, Curioni, & Lau, 2007), which may 

indicate a pharmacologic effect of CB1 antagonism on mood. Moreover, healthy human 

carriers of a genetic polymorphism associated with reduced CB1 receptor expression 

exhibited impaired fear extinction in a virtual reality environment (Heitland, Klumpers, 

Oosting, Evers, Leon Kenemans, & Baas, 2012).

Among individuals with PTSD, there is emerging evidence of dysfunctional 

endocannabinoid signaling. A positron-emission tomography study (Neumeister et al., 2013) 

found that individuals with PTSD had 20% elevation in CB1 receptor availability, and over 
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50% reduction in peripheral concentration of the endocannabinoid neurotransmitter 

anandamide. The authors suggested that the upregulation of endocannabinoid receptors, 

which they found in the amygdala–hippocampal–cortico–striatal circuitry, was likely a 

secondary consequence of low anandamide levels. However, a small pilot study detected 

higher plasma concentrations of anandamide in PTSD patients that were positively 

correlated with the severity of their symptoms (Hauer et al., 2013). Although these results 

are contradictory, they provide evidence of dysregulated endocannabinoid signaling in 

humans with PTSD relative to healthy controls with or without trauma histories. Further 

research is needed in order to better characterize the dysfunction, and to determine whether 

it is a pre-existing trait or a sequela of PTSD development.

3.2. Can stress-related symptoms be prevented by ECS modulation?

3.2.1. Animal research—Memory consolidation is the neurobiological process through 

which new experiences are stored as stable long-term memories (McGaugh, 2000). 

Targeting memory consolidation has unique implications for PTSD; if exaggerated fearful 

memories can be attenuated shortly after trauma, it may help prevent the development of 

PTSD symptoms. In contextual and cued fear conditioning with rodents, memory 

consolidation can be disrupted by inhibition of protein synthesis (Schafe, Nadel, Sullivan, 

Harris, & LeDoux, 1999). However, this method is not safe for humans, leading researchers 

to seek other consolidation blockers. In experiments targeting consolidation of fear 

memories (Table 2), animals were typically treated after acquisition training and 

subsequently tested for cued recall of fear memory (Fig. 1). Systemic, post-acquisition 

enhancement of endocannabinoid neurotransmission via inhibition of the catabolic enzyme 

fatty acid amide hydrolase (FAAH) had no effect on memory consolidation of conditioned 

freezing responses to cues (Gunduz-Cinar, MacPherson, et al. 2013) or of inhibitory 

avoidance (Mazzola et al., 2009). In several experiments, consolidation of contextual fear in 

rats was reduced by systemic CB1 agonist before (Lin et al., 2011) or after (Maćkowiak, 

Chocyk, Dudys, & Wedzony, 2009) conditioning, but in other cases neither agonists nor 

antagonists had an effect (Pamplona et al., 2008; Reich et al., 2008). In the inhibitory 

avoidance paradigm, memory consolidation was blocked by THC administered immediately 

after training, but not 10 min after highlighting the time-dependent nature of effects on 

memory (Mishima et al., 2001). However, a subsequent study applying a similar technique 

found no effect of THC on memory consolidation even when it was administered 

immediately after training (Mazzola et al., 2009).

Targeting specific brain regions to block memory consolidation has also yielded inconsistent 

results (Table 2). Consolidation in hippocampal-dependent paradigms (i.e., inhibitory 

avoidance and contextual fear conditioning) was typically weakened via intra-CA1 FAAH 

inhibition prior to (Lin et al., 2011) or CB1 agonist treatment immediately after conditioning 

(Atsak et al., 2012; Jamali-Raeufy, Nasehi, & Zarrindast, 2011; Moshfegh, Babaei, Oryan, 

Soltani, & Zarrindast, 2011; Nasehi, Sahebgharani, Haeri-Rohani, & Zarrindast, 2009; Piri 

& Zarrindast, 2011) but opposite effects have also been observed with anandamide, which 

may be due to its binding to several receptors in addition to CB1 (de Oliveira Alvares, 

Genro, Diehl, & Quillfeldt, 2008). Moreover, post-acquisition antagonist treatment in the 

CA1 also weakened consolidation of inhibitory avoidance (de Oliveira Alvares et al., 2005; 

Papini et al. Page 7

Biol Psychol. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



de Oliveira Alvares, Genro, Diehl, & Quillfeldt, 2008), suggesting that both over- and 

under-activation of hippocampal CB1 receptors can have an amnesic effect. Targeting the 

rat amygdala after stress exposure with a CB1 agonist blocked (Segev & Akirav, 2011; 

Zarrindast, Babapoor-Farrokhran, Babapoor-Farrokhran, & Rezayof, 2008) or dose-

dependently enhanced (Campolongo et al., 2009) memory consolidation depending on the 

specific subregion (i.e., basolateral or central) and paradigm (i.e., avoidance or contextual 

conditioning), whereas intra-BLA antagonism reduced fear consolidation across both 

paradigms (Bucherelli, Baldi, Mariottini, Passani, & Blandina, 2006; Campolongo et al., 

2009). In one experiment, memory consolidation of fear-potentiated startle was blocked with 

either direct agonist infusion in the BLA, but not mPFC, (Kuhnert et al., 2013) or with 

antagonist infusion in the mPFC, but not BLA (Kuhnert et al., 2013). These reciprocal 

effects in the BLA and mPFC highlight the complexity of memory consolidation processes 

and point to a challenge for human applications, where treatments targeting specific brain 

regions are not available.

When a memory is reactivated by a cue or context, it is subsequently restored through a 

time-limited, protein-synthesis dependent process termed reconsolidation (Nader & Hardt, 

2009; Nader, Schafe, & Le Doux, 2000; Tronson & Taylor, 2007). In contrast to extinction, 

which involves extended or repeated presentations of the CS+, reconsolidation of a fear 

memory is prompted by reactivation through a single or brief presentation of the CS+. 

Extinction results in a new memory that competes with the conditioned fear memory 

whereas reactivation opens the window of reconsolidation during which the original 

memory enters a labile state, subject to modification (Lee, Milton, & Everitt, 2006; Monfils, 

Cowansage, Klann, & LeDoux, 2009; Pedreira & Maldonado, 2003; Suzuki et al., 2004). 

Thus, targeting reconsolidation of distressing memories in the days or weeks after traumatic 

exposure may have potential as either an early intervention implemented prior to the 

development of symptoms, or as a treatment target once PTSD has been diagnosed.

Animal researchers have examined whether reconsolidation can be disrupted by 

manipulation of the ECS. The effect of CB1 antagonist administration after memory 

reactivation depended on the site: systemic administration had no effect on reconsolidation 

of contextual fear memory (Suzuki et al., 2004), infusion into the rat CA1 hippocampal 

subregion strengthened fear reconsolidation, resulting in greater recall of the fear response 

for up to 7 days (de Oliveira Alvares, Genro, Diehl, Molina, et al., 2008), and infusion into 

the rat BLA blocked reconsolidation for up to 8 days (Ratano, Everitt, & Milton, 2014). 

Conversely, post-reactivation CB1 agonism in the BLA (Lin, Mao, & Gean, 2006), 

infralimbic (Lin et al., 2009), or CA1 (de Oliveira Alvares, Genro, Diehl, Molina, et al., 

2008) all blocked reconsolidation of fear responses. In contrast to the relative inefficacy of 

targeting fear consolidation, these results with rodents are more consistent in demonstrating 

that fear memory reconsolidation may be weakened with CB1 agonists. However, FAAH 

inhibition after reactivation enhanced only short term fear reconsolidation, with rats 

exhibiting increased freezing 1 but not 8 days after reactivation (Ratano et al., 2014). 

Moreover, situational reminders in the days after shock exposure exacerbated PTSD-like 

symptoms in rats, including impaired extinction of avoidance behavior and enhanced startle, 
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but these effects were blocked in the group of rats that received CB1 agonist two hours after 

shock (Korem & Akirav, 2014).

The need for preventive interventions is also underscored by research indicating that 

individuals who have recovered from the effects of a previous trauma exposure are at higher 

risk of developing PTSD if they experience additional traumatic events (Breslau, 2009). 

Similarly, animals exposed to stress subsequently exhibit enhanced conditionability 

(Cordero, Venero, Kruyt, & Sandi, 2003) and impaired extinction of fear responses 

(Izquierdo, Wellman, & Holmes, 2006). These two types of effects were blocked in rats by 

systemic (Ganon-Elazar & Akirav, 2012), intra-BLA, or intra-hippocampal—but not intra-

infralimbic—(Ganon-Elazar & Akirav, 2013) infusions of a CB1 agonist. Infusions were 

effective when administered immediately after the stressful event and up to 24 but not 48 

hours later, suggesting a limited window of intervention. Similar results occurred when 

intra-BLA infusions of the CB1 agonist were administered prior to the prolonged stress 

(Ganon-Elazar & Akirav, 2009), suggesting a possible avenue of preventive action when the 

occurrence of severe, stressful experiences can be predicted (e.g., combat, first responder 

activities). Pre-extinction inhibition of FAAH also reversed the impairing effect of 

adolescent trauma on extinction in adulthood in male rats (Moore, Gauchan, & Genovese, 

2014).

3.3. Is the ECS a potential target for enhancing PTSD treatment?

3.3.1. Animal research—Drawing from strong evidence that CB1 antagonists impair 

extinction, animal researchers have examined whether CB1 agonists can improve extinction 

(Fig. 1), which may have implications for exposure-based PTSD treatments (Table 3). In 

rats, systemic pre-extinction administration of CB1 agonists had no effect on extinction of 

fear-potentiated startle (Chhatwal et al., 2005). In contextual fear conditioning paradigms, a 

low systemic dose of the CB1 agonist WIN (0.25 mg/kg) prior to extinction training 

enhanced both extinction learning (Pamplona et al., 2008, 2006) and long-term retention of 

extinction memory in a drug-free state (Pamplona et al., 2008). However, when 

administered at higher doses of 1.25 or 2.5 mg/kg, WIN had either no effect or it impaired 

extinction of contextual fear, respectively (Pamplona et al., 2006), indicating dose-

dependent reversals in effect.

Key regions of the fear circuitry have also been targeted to improve extinction in rats. 

Enhanced extinction was achieved through intra-infralimbic pre-extinction infusions of 

cannabidiol (a cannabinoid without psychoactive properties that is a weak CB1 antagonist) 

and sustained through three days of treatment and in a drug-free state (Do Monte, Souza, 

Bitencourt, Kroon, & Takahashi, 2013). However, intra-infralimbic, pre-extinction CB1 

agonism that enhanced extinction did not prevent reinstatement of fear after the presentation 

of unsignaled shocks, highlighting the transient nature of extinction memories in the face of 

renewed aversive experiences (Lin et al., 2009). Extinction of inhibitory avoidance was 

enhanced by pre-extinction CB1 agonist infusion in the CA1 (Abush & Akirav, 2010) but 

not the BLA (Ganon-Elazar & Akirav, 2009). In one case, CB1 agonist infusion in the CA1 

hippocampal subregion subsequent to extinction training facilitated retention of contextual 

fear extinction, suggesting improved consolidation of extinction memory (de Oliveira 
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Alvares, Genro, Diehl, Molina, et al., 2008). Pre-extinction local infusion of CB1 agonists in 

the BLA or mPFC had no effect on extinction of fear potentiated startle (Kuhnert et al., 

2013).

These results, measuring a variety of fear responses in rats, indicate that it may be possible 

to facilitate extinction with several types of CB1 agonists. Some of the findings point to the 

risks of this method of intervention: high systemic doses were either ineffective or led to 

impairment of extinction (Chhatwal et al., 2005; Pamplona et al., 2006), and chronic 

administration not only impaired extinction in a drug free state but also blocked any 

enhancement that otherwise resulted from acute CB1 agonism (Lin, Mao, Chen, & Gean, 

2008).

3.3.2. Human research—Drawing from the animal literature on cannabinoid-enhanced 

extinction, similar experiments with human participants have been carried out that 

capitalized on the availability of synthetic, FDA-approved cannabinoids. Klumpers et al. 

(2012) were the first to examine the translational value of converging animal research 

supporting cannabinoid-enhanced fear extinction. In a fear-potentiated startle paradigm, 

cannabis-naïve healthy humans orally ingested synthetic THC (10 mg, dronabinol) or 

placebo 2 hours prior to the onset of extinction procedures so that THC availability peaked 

during extinction. Although there were no significant differences between groups in fear-

potentiated startle, there was evidence of improved within-session extinction of skin 

conductance response (SCR) in the THC group. However, extinction memory retention was 

not improved.

In a similar study (Rabinak, Angstadt, Lyons, et al., 2013), healthy participants with fewer 

than 10 lifetime instances of cannabis use took a smaller dose of dronabinol (7.5 mg) or 

placebo 2 h before extinction. In this case, THC did not improve within-session extinction of 

SCR, but it enhanced extinction retention on the third day relative to placebo, despite 

similarities in shock expectancy ratings between the two groups. In contrast, cannabidiol 

administered pre-or post-extinction (32 mg, inhaled), resulted in trend-level reductions of 

SCRs after reinstatement, and participants who took the drug post-extinction reported lower 

shock expectancy ratings (Das et al., 2013).

To study neural correlates of THC augmentation, Rabinak, Angstadt, Sripada, et al. (2013) 

administered their extinction paradigm in an fMRI environment. While their prior findings 

(i.e., lower mean SCR in THC group during extinction retention test) were not replicated, 

participants with limited or no prior cannabis use who received 7.5 mg of dronabinol 2 h 

prior to extinction exhibited reduced amygdala reactivity to the CS+ during early extinction 

training, and increased activity in the vmPFC and hippocampus to the extinguished CS+ 

during the extinction retention test. Together, these findings suggest effects on extinction in 

humans vary depending on the types and dosages of cannabinoids (THC vs. CBD), the stage 

of administration (pre- vs. post-extinction), and the type of response being measured 

(subjective reporting, SCR, startle, blood-oxygen-level dependent signal in specific brain 

regions). Although evidence from these human studies is promising, the paucity and 

inconsistency of results warrants further investigation.

Papini et al. Page 10

Biol Psychol. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3.3. Alternative approaches—A compelling alternative to direct CB1 receptor 

agonism is the augmentation of endocannabinoid signaling via inhibition of fatty acid amide 

hydrolase (FAAH) and other proteins involved in the catabolism and reuptake of 

endocannabinoid neurotransmitters such as anandamide. Instead of globally increasing 

endocannabinoid receptor activation, this method increases the availability of 

endocannabinoid neurotransmitters in the specific regions where they have been released. In 

rodents, FAAH inhibition prior to extinction training has enhanced extinction learning or 

retention in cue (Bowers & Ressler, 2014; Gunduz-Cinar, MacPherson, et al., 2013) and 

context (Laricchiuta, Centonze, & Petrosini, 2013; Pamplona et al., 2008) conditioning, and 

blocked reinstatement of fear-potentiated startle (Chhatwal et al., 2005). Similar results were 

achieved by pre-extinction intracerebroventricular infusions (Bitencourt, Pamplona, & 

Takahashi, 2008) and with targeted injections of FAAH inhibitors in the infralimbic mPFC 

(Lin et al., 2009), BLA (Ganon-Elazar & Akirav, 2009; Gunduz-Cinar, MacPherson, et al., 

2013), and dorsal CA1 (Abush & Akirav, 2010).

In contrast to the inconsistent effects of treatment with exogenous cannabinoid receptor 

agonists, these results suggest that augmenting the action of an animal’s endogenous, 

synaptically released cannabinoid neurotransmitters by inhibiting their breakdown during 

extinction training may be more effective in strengthening extinction memory. Although this 

approach has yet to be extended to humans, healthy participants with a low-expressing 

variant of the FAAH gene (implying augmented endocannabinoid transmitter levels) scored 

lower on measures of stress-reactivity, and displayed significantly faster rate of decrease in 

amygdala activation to threatening faces, suggesting a role for endocannabinoid transmitters 

in habituation to threat cues, which may be impaired in PTSD (Gunduz-Cinar, MacPherson, 

et al., 2013).

4. Discussion

Although PTSD research has predominantly focused on those who have already developed 

the disorder, the use of conditioning and extinction paradigms with animals and, more 

recently, humans, has made it possible to examine neurobiological factors involved before, 

during, and after exposure to stress. At every stage of the process (see Fig. 1), emerging data 

suggest the ECS plays a key role.

First, the reviewed literature provides compelling evidence that disruption of CB1 signaling 

in rodents impairs fear extinction. In healthy humans, genetic variability in CB1 receptor 

availability is associated with the degree of fear extinction. There is emerging evidence of 

abnormal CB1 receptor density in individuals with PTSD; however, the findings with 

endocannabinoid neurotransmitters have been contradictory, with results of either elevated 

or diminished plasma levels of anandamide in PTSD samples relative to healthy controls. 

Clearly, further research is necessary to determine whether these types of disruptions in the 

ECS, which may result from genetic variation or environmental factors, put individuals at 

risk for developing PTSD. This would have practical implications for screening and 

preventive care, especially among subpopulations with higher risk of exposure to trauma 

(e.g., soldiers, firefighters, police, first responders).
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Although a small subset of individuals exposed to trauma develop PTSD, the debilitating 

course and exorbitant societal costs associated with the disorder require the consideration of 

intervening shortly after trauma but before the development of PTSD. Avenues for cognitive 

intervention have been inconsistent (Van Emmerik, Kamphuis, Hulsbosch, & Emmelkamp, 

2002). In fact, it has been suggested that certain types of memory recall immediately post 

trauma may have an iatrogenic effect (Mayou, Ehlers, & Hobbs, 2000). However, 

pharmacologic research on memory consolidation and reconsolidation has illuminated 

potential methods for such an approach. Currently there is only limited evidence that the 

ECS can be targeted as a preventive measure. Although CB1 agonists were inconsistent in 

blocking the consolidation of fearful memories in rodents, the same intervention after brief 

reactivation of the memory was more dependable in weakening fearful associations. 

Although this approach with cannabinoids has not been extended to humans, a few studies 

with healthy humans have examined reconsolidation in the context of fear conditioning with 

other compounds, achieving success with the β-adrenergic receptor antagonist propranolol 

(Kindt, Soeter, & Vervliet, 2009). However, propranolol failed to prevent PTSD when 

administered shortly after trauma (Hoge et al., 2012). This highlights one of the challenges 

of translation from preclinical to clinical studies, which may be a potential pitfall of 

extending this line of research to include targeting the ECS.

Lastly, the ECS is a potential avenue for enhancing exposure-based therapy for PTSD. 

Although in a nascent stage of science, there is promising converging evidence in the animal 

and human research of enhanced extinction learning and retention through the targeting of 

the ECS. Notably, this approach only worked in conjunction with extinction training; CB1 

receptor agonism on its own had no effect. Although much work remains to be done to 

translate these models to clinical application in the treatment of PTSD, the evidence 

suggests that for at least certain symptoms, cannabis may be only beneficial as an adjunct to 

exposure therapy. For these purposes, FAAH inhibitors that prolong the availability of the 

organism’s endogenous cannabinoid neurotransmitters may be advantageous in both their 

selectivity of desired effects and reduced risk of adverse effects relative to direct 

cannabinoid agonists (Cravatt & Lichtman, 2003). Moreover, rodent research has 

demonstrated ECS interactions with transient receptor potential vanilloid type 1 (Genro, de 

Oliveira Alvares, & Quillfeldt, 2012; Laricchiuta et al., 2013; Marsch et al., 2007), 

polyunsaturated fatty acids (Yamada, Takeo, Koppensteiner, Wada, & Sekiguchi, 2014), and 

dopaminergic receptors (Terzian et al., 2011). These are complex interactions that need to be 

evaluated in humans.

Several areas of research need to be expanded in order to determine if approaches targeting 

the ECS would impact the efficacy of exposure therapy for PTSD. Experiments with human 

subjects need to be expanded to examine quantity, timing, and duration of administration, 

dosing (which has led to reversal of effects in animal studies), and a cost–benefit analysis of 

the available agents that includes comparisons of side effects and implications of long-term 

use. Sex differences in both ECS properties and fear processing need further clarification, as 

lower plasma levels of the endocannabinoid neurotransmitter anandamide have been 

measured in human and rodent females (Neumeister et al., 2013; Reich, Taylor, & 

McCarthy, 2009), and extinction deficits have been moderated by sex in patients with 
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PTSD, with males demonstrating greater impairment in extinction retention relative to 

females (Shvil et al., 2014). Replications of experimental results with ECS manipulations 

need to be extended to subjects with PTSD in studies with larger samples so that individual 

differences can be explored. This would represent a further translational step toward clinical 

trials of exposure therapy with a cannabinoid component.

Clinical case reports (Fraser, 2009; Passie, Emrich, Karst, Brandt, & Halpern, 2012), a small 

open label study (Roitman, Mechoulam, Cooper-Kazaz, & Shalev, 2014), and a review of 

patient charts in New Mexico’s Medical Cannabis Program (Greer, Grob, & Halberstadt, 

2014) suggest some individuals with PTSD get symptom relief from cannabis. However, 

epidemiologic findings showing high rates of comorbid cannabis dependence among 

individuals with PTSD (Galatzer-Levy, Nickerson, Litz, & Marmar, 2013; Ruglass, Lopez-

Castro, Cheref, Papini, & Hien, 2014) may point to a subpopulation that continues to 

struggle with PTSD despite an attempt to alleviate their symptoms with marijuana. Co-

occurring PTSD and substance use treatments have successfully targeted both disorders 

(Hien, Cohen, Miele, Litt, & Capstick, 2004; Hien et al., 2010), but for those who self-

medicate, temporary relief may come at the cost of long-term benefit, as overuse of the drug 

can lead to downregulation of CB1 receptors (Hirvonen et al., 2012; Neumeister, 2013), 

possibly resulting in impaired extinction of symptoms. Moreover, meta-analytic studies 

suggest cannabis use in adolescence increases the risk of psychosis and schizophrenia 

(Large, Sharma, Compton, Slade, & Nielssen, 2011; Semple, McIntosh, & Lawrie, 2005), 

and a variety of poor psychosocial outcomes (Hall, 2014) underscoring the need for a 

thorough evaluation of the drug. As the rapid sociopolitical shift leads to expanded 

legalization of marijuana, a scientifically informed approach that builds on translational 

models is crucial in order to fully understand the role of the ECS in the development and 

treatment of PTSD.
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Fig. 1. 
Targeting the eCB system in experimental paradigms of fear processing. US = 

unconditioned stimulus (e.g., shock); CS+ = conditioned stimulus (e.g., colored light); eCB 

= endocannabinoid. Enhancement includes use of direct and indirect CB1 receptor agonists.
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