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Abstract

In this paper, we study Markov Random Fields as spatial smoothing priors in fMRI detection. 

Relatively high noise in fMRI images presents a serious challenge for the detection algorithms, 

creating a need for spatial regularization of the signal. Gaussian smoothing, traditionally employed 

to boost the signal-to-noise ratio, often removes small activation regions. Recently, the use of 

Markov priors has been suggested as an alternative regularization approach. In this work, we 

investigate fast approximate inference algorithms for using MRFs in fMRI detection, propose a 

novel way to incorporate anatomical information into the detection framework, validate the 

methods through ROC analysis on simulated data and demonstrate their application in a real fMRI 

study.

1 Introduction

Functional magnetic resonance imaging (fMRI) provides a non-invasive dynamic method 

for studying brain activation by capturing the change in the blood oxygenation level. Most 

fMRI detection algorithms operate by comparing the time course of each voxel with the 

experimental protocol, labelling the voxels whose time courses correlate significantly with 

the protocol as “active”. The commonly used general linear model (GLM) [9] further 

assumes that the fMRI signal possesses linear characteristics with respect to the stimulus and 

that the temporal noise is white. Application of GLM to an fMRI time series results in the 

so-called statistical parametric map (SPM), which is often thresholded to produce a binary 

map of active areas. However, because of a low signal-to-noise ratio (SNR), the binary maps 

typically contain many small false positive islands.

A common approach to reducing such false detections employs a Gaussian filter to smooth 

the fMRI signal prior to applying the GLM detector. Unfortunately, Gaussian smoothing, 

though intended to combat low SNR, leads to overly smoothed SPMs and a loss of detail in 

the resulting binary activation maps. A number of alternative approaches have explicitly 

incorporated spatial and temporal correlations into the estimation procedure. Examples 

include autoregressive spatio-temporal models [4, 24], Markov Random Fields (MRFs) [5, 

8, 7], Bayesian models inferring hidden psychological states [15], adaptive thresholding 

methods that adjust statistical significance of active regions according to their size, based on 

the Gaussian Random Field theory [10]. In this paper, we focus on MRFs for modeling 
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spatial coherency, study their performance and develop several increasingly rich spatial 

prior models. Following the formulation in [5], we assume that, given the activation state of 

each voxel, the time courses of different voxels are conditionally independent and can be 

reduced to a sufficient statistic. This work therefore concentrates on spatial regularization of 

the activation maps. Temporal regularization models can be easily incorporated into our 

framework by changing the activation statistic.

For MRFs with binary states, exact solution can be obtained in polynomial time. An fMRI 

detection algorithm based on the GLM statistic and the binary activation states was 

demonstrated in [5]. However, if one wants to go beyond binary states (e.g., treating 

positively and negatively activated voxels differently), the problem of estimating the optimal 

activation states becomes intractable and approximation algorithms must be used. Prior 

work in MRF-based fMRI detection employed simulated annealing [8, 21] and the iterated 

conditional mode algorithm [22]. We adopt the Mean Field solver, introduced in statistical 

physics [18], which has been widely used for image segmentation [16, 17, 20, 25]. In our 

experiments with binary MRFs, the Mean Field algorithm produced results comparable to 

those of the exact solver while reducing computation time by one to two orders of 

magnitude1.

We further refine the activation priors by incorporating anatomical information. Similarly to 

segmentation, where a probabilistic atlas serves as a spatially varying prior on the tissue 

types, the anatomical information can provide a prior on the activation map. Intuitively 

speaking, we want the prior to reflect the fact that activation is much more likely to occur in 

gray matter than in white matter, and not at all in cerebrospinal fluid (CSF) or bone. In 

addition, the spatial coherency of activation is strong within each tissue and not across tissue 

boundaries. In this model, the hidden nodes encode both the tissue type and the activation 

state. Segmentation provides an additional, potentially noisy, observation at each node. We 

derive the detection algorithm for this model and evaluate it on simulated and real data, 

achieving high detection accuracy with significantly shorter time courses compared to the 

standard GLM detector.

Anatomical scans have certainly been used in fMRI analysis and visualization before. 

Hartvig [14] used the anatomical information in his marked point process spatial prior. 

Moreover, in some systems (e.g., BrainVoyager [1]), the subject’s anatomical image is 

transformed into a standard coordinate frame (such as Talairach) and the functional 

activation map is displayed on the surface that corresponds to the cortical sheet in that 

coordinate frame. Other systems (e.g., FSL [2]) rely on sophisticated segmentation 

algorithms to extract a topologically correct representation of the cortical surface from the 

anatomical scan [6]. Performing Gaussian smoothing on the surface eliminates irrelevant 

voxels from the weighted average for the cortical locations. In contrast, our approach does 

not require a surface extraction algorithm, but instead utilizes anatomical information to 

inject the anatomically based coherency bias into the detection algorithm while performing 

the computation directly on the volumetric data. The inspiration for this work comes from 

1We also experimented extensively with the Belief Propagation algorithm, which often produces better approximations, but did not 
find it to be more accurate in this application. We therefore present the results of the Mean Field solution only.
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the success enjoyed by MRFs in providing spatial smoothing priors for image segmentation 

[16, 17, 20, 25].

In the next section, we briefly outline how the GLM detector can be augmented with an 

MRF prior closely following the derivation presented in [5], review the Mean Field 

algorithm, and present the empirical evaluation of the detector on simulated data. In Section 

3, we extend the Markov priors to incorporate the anatomical information and show the 

empirical evaluation of this new, refined model. Section 4 illustrates the proposed detectors 

on a real fMRI data set.

2 Markov Priors for Activation Maps

Background

An fMRI scan contains a time course  for each voxel i (i = 1, …, N), where T is the 

number of time samples and N is the number of voxels in the scan. GLM models the fMRI 

signal as a linear combination of the protocol-dependent component B, and the protocol-

independent component A, such as cardiopulmonary factors. The presence of the protocol-

dependent signal indicates that the corresponding voxel is active due to the stimulus. Let H1 

be the hypothesis that a voxel is active and H0 be the null hypothesis. Under GLM,

for i = 1, …, N. For white temporal noise, . Least squares estimates of the 

activation response βi and the protocol-independent factors αi are found through a linear 

regression on the design matrix C = [A B]:

(1)

and the corresponding F-statistic is given by , where Nβ is the number of 

the regression coefficients in βi and  is their estimated covariance.

Let random variable X = [X1, …, XN] represent an activation configuration of all voxels in 

the volume, and x = [x1, …, xN] be one possible configuration i.e., the activation map. In the 

case of binary hypothesis testing, the random variable Xi, which represents the activation 

state of voxel i, is also binary. Given an fMRI scan [y1, …, yN], the GLM estimate of the 

activation map x∗ is obtained by thresholding the statistic value Fi for all voxels in the 

volume at a certain user-specified level.

It can be shown that the maximum log-likelihood ratio
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(2)

is a monotonic function of the F statistic (see [5] for a detailed derivation). We can therefore 

consider zi as an alternative statistic indicative of the activation state of voxel i. We will use 

this fact in the derivations of the MRF-based detection. If a different model of fMRI 

activation is proposed, it can be easily incorporated into our algorithm by formulating the 

corresponding maximum log-likelihood ratio and using it in place of zi.

Markov Priors

A Markov prior on the activation configuration X, 

, is defined in terms of the singleton potentials 

Ψi(xi) that provide bias over state values xi for voxel i, and the pairwise potentials Ψij (xi, xj) 

(often referred to as the compatibility matrices) that evaluate the compatibility of voxel i 

being in state xi and voxel j being in state xj for each pair < i, j > of neighboring voxels. λ is 

a normalization constant, also called the partition function. Given the activation statistic 

values z, we seek the maximum a posteriori (MAP) estimate of the activation configuration:

(3)

The last equality is based on the assumption that the observations at different voxels are 

independent given the activation state of each voxel, and the likelihood over the volume can 

therefore be written as a product of the individual likelihood terms for each voxel. Fig. 1 

depicts the corresponding graphical model, using a two-dimensional grid for illustration 

purposes only. The estimation is performed fully in 3D in all experiment reported here. We 

assume a spatially stationary generative model, i.e., , Ψi and Ψij are identical for all 

voxels in the volume. The observations (the fMRI signal, and in Section 3, the anatomical 

information) move the MAP estimate away from the spatially stationary configurations.

Direct search for the optimal activation configuration is intractable in general. However, a 

polynomial-time algorithm for exact MAP estimation exists for binary MRFs [13], based on 

a reduction to the Minimum-Cut-Maximum-Flow problem. We refer to this exact solver as 

Min-Max throughout this paper. Min-Max is still computationally intensive when applied to 

the volumetric data: in our experiments, it took 1-3 hours, depending on the pairwise 

potential settings and the initial threshold applied to the GLM statistic. On the other hand, 

the Mean Field approximation for MRFs is fast (ten to hundred times faster than Min-Max 

on the 3D grids we consider in this paper) and reasonably accurate, as our results in the 

remainder of this section indicate.
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Mean Field Solution

The Mean Field algorithm approximates PX |Z (x|z) by a product distribution 

 through minimization of the KL-Divergence between the two 

distributions:

(4)

bi(xi) denotes the probability of voxel i being in state xi (often called the belief), therefore 

, where M is the number of possible states of Xi. The KL-Divergence 

measures how closely Q approximates PX|Z; it is non-negative and is equal to zero only for 

Q = PX|Z. It is easy to see that the minimum of D(·) is achieved for the same state 

configuration x that minimizes the so called free energy, 

, since the last two terms of the latter function are 

independent of x. Substituting the product form for Q, we obtain,

(5)

Setting  under the constrains  yields the following 

iterative update rule:

(6)

The normalization constant γ ensures the solution is a valid probability distribution. N (i) is 

the set of voxel i’s neighbors. In each iteration of the Mean Field algorithm, the voxel’s 

belief is updated according to the linear combination of its neighbors’ beliefs in the previous 

iteration. The probability model (i.e., , Ψi and Ψij) determines the exact form of the 

update rule. Each voxel is assigned the state value with the highest belief at the end of the 

procedure (for binary MRFs, the voxel is set active if bi(1) > bi(0)).

Estimating Model Parameters

The potential functions Ψi, and Ψij and the observation likelihood  must correspond to 

our notions of the appropriate bias toward desired solutions. In this work, we follow a 

common practice of setting the potential functions (same for all voxels) to the corresponding 

marginal probability distributions estimated from data: Ψi(xi) is set to the expected 

percentage of voxels in state xi, Ψij (xi, xj) is set to the joint frequency of the states xi and xj, 

and  is approximated by a smoother version of a class-conditional histogram. Other 

forms of potential functions have also been explored [7, 11, 12].
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Lack of training data or ground truth necessary for estimating the marginal frequencies is a 

more serious problem. Unlike the segmentation application, where manual segmentations by 

experts can be used to construct priors on the frequencies and co-occurrences of tissue types, 

in most fMRI experiments even the experts cannot provide such information. Model 

parameters in the currently used detectors are either set using researcher’s intuition on the 

underlying activation properties (e.g., the threshold in GLM or the kernel width in Gaussian 

smoothing) or estimated from the input images (e.g., the noise variance in GLM). We take a 

similar approach of first running the GLM detector without smoothing and using the 

resulting SPM at a user-chosen threshold to estimate the probability model. To study the 

sensitivity of the method to the parameter settings, we ran experiments where the values of 

the singleton potentials and the compatibility matrices varied substantially (0.1 to 2 times 

the estimated frequencies). The variability in the detection accuracy (3-7%) was within the 

variability across different data sets as reported below.

Empirical Evaluation

To quantitatively evaluate the performance of the method, we generated realistic phantom 

data by applying EM segmentation [19] to an anatomical MRI scan and placing activation 

areas of variable size (average diameter of 15mm) randomly in the gray matter. We then 

downsampled the scan to an fMRI resolution. The gray matter voxels represent 10% of the 

total number of voxels in the volume, and the active voxels represent about 10% of the gray 

matter voxels in these images. We then created simulated fMRI scans based on a fixed 

parametric hemodynamic response function, an event-related protocol, and varying levels of 

noise. We used the estimated SNR, , to determine a realistic 

level of the simulated noise as the true SNR is unaccessible for real fMRI scans. Since the 

signal and the noise overlap in some frequency bands, part of the noise energy is assigned to 

the estimated signal during detection. The estimated SNR is therefore an optimistic 

approximation of the true SNR, which can still be used as a monotonic upper bound of the 

true SNR. In our real fMRI studies, the estimated SNR is about −5dB. Here, we illustrate the 

results for two levels of true SNR, −6dB and −9dB, which correspond to estimated SNR of 

−4.3dB and −6.2dB respectively.

In all experiments, we used the same GLM detector based on a 10-bin non-parametric 

hemodynamic response function. To create a baseline for comparison, we ran the GLM 

detector with and without Gaussian smoothing. To evaluate the Markov priors, we ran GLM 

coupled with the exact Min-Max solver and with the approximate Mean Field solver on the 

same raw images. Fig. 2 shows the ROC curves created for the four methods by varying the 

threshold applied to the GLM statistic. Due to the large number of voxels in the volume and 

the relatively small number of active voxels, only very low false positive rates are of interest 

(we focus on the false positive rates below 0.1%, which corresponds to about 10% of the 

total number of the active voxels, or approximately 250 voxels). The error bars indicate the 

standard deviation of the true detection rate over 15 different, independently created and 

processed, data sets. The Min-Max ROC curve does not have the error bars, as the 

estimation takes too long (1 to 3 hours for a single run). Moreover, the Min-Max ROC curve 

is incomplete because extreme threshold values cause it to run even longer (we stopped the 

runs after 3 hours).
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The Mean Field detection accuracy is very close to the exact Min-Max solution, providing a 

reasonable approximation to the exact solution that also takes much less time to compute 

(most Mean Field runs finished in a few minutes). The Min-Max accuracy is sometimes 

lower than the Mean Field accuracy, which appears to contradict the optimality of Min-Max. 

However, we note that both algorithms solve a particular estimation problem that does not 

necessarily describe the ground truth precisely but rather approximates it using a Markov 

model. Thus, the lowest energy state under this model might not be the best detector in 

practice. It is still reassuring to see that the approximate solver performs as well as the exact 

algorithm. It also suggests that more realistic spatial priors could further improve the 

detection accuracy.

As expected, the accuracy of all methods improves with increasing SNR. At high noise 

levels (low SNR), Gaussian smoothing outperforms MRFs. As the simplest smoothing 

technique, Gaussian smoothing is more robust to noise. We also believe that our current way 

of constructing the likelihood term in the MRF model over-emphasizes the data evidence 

over the prior. We are investigating ways to compensate for this in the estimation of the 

model. As the SNR increases, MRFs provide better regularization of the activation state (for 

example, at SNR=−6dB, at the false positive rate of 0.01%, the MRF outperforms the 

Gaussian smoothing by about 15% in true detection accuracy; at 70% true detection, the 

MRF approximately halves the false detections compared to the Gaussian smoothing). With 

the improving scanning technology, we believe MRFs will become even more helpful in 

reducing spurious false detection islands.

3 Anatomical Priors for Spatial Regularization

The general nature of the Mean Field algorithm allows straightforward extension of the 

probabilistic model in the previous section to include the tissue type for each voxel. We 

define V = [V1, …, VN] to be the tissue types of all voxels, and W = [W1, …, WN] the tissue 

type observations, such as a result of an automatic segmentation procedure. Wi’s are noisy 

observations due to imperfect registration between the fMRI image and the anatomical scan, 

the mismatch in their resolution and the noise in the segmentation itself. Now each voxel has 

two hidden attributes: the activation state Xi and the tissue type Vi. We combine these 

attributes into a single hidden node Ui, as illustrated in Fig. 3. For example, for a binary 

activation states (active or not active) and three tissue types (gray matter, white matter, or 

other), Ui has six possible states. Similarly to the derivations in the previous section, the 

MAP estimate in this case is as follows:

(7)

We assume that the segmentation W and the fMRI observation Z are conditionally 

independent given the state of the voxel since they are obtained from two different images. 

Similarly to the previous section, we derive the iterative update step in the estimation 

procedure:
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(8)

This update rule is similar to Eq. (6), with the exception of the extra likelihood term 

 for the tissue type observation. The compatibility matrix Ψij (xi, xj) is M × M , 

where M is the number of states in Ui.

Empirical Evaluation

We used the same phantom data sets described earlier to evaluate the performance of the 

anatomically-guided detectors. The basic GLM with anatomical prior suppresses activations 

outside of the gray matter using segmentation as a guidance (“soft” masking could also 

account for misregistration and errors in segmentation). To incorporate the anatomical 

information into the Gaussian filter, we adjust the weights of the filter based on the tissue 

types of the voxel’s neighbors: when evaluating the filter at voxel i, we assign higher 

weights to the neighbors sharing the same segmentation results as voxel i. Fig. 4 illustrates 

the ROC analysis for the three regularization methods investigated in the previous section 

(solid lines) and their anatomically-based variants (dashed lines). We omit the Min-Max 

solver for the MRF model, as it cannot handle multi-valued states.

In addition to the trends observed before, we note that the anatomical information 

significantly boosts the performance of all detectors at all noise levels. At high noise levels 

(SNR = −9dB) and false positive rates between 0.01% and 0.1%, all methods gain at least 

10% in true detection rate when using the anatomical information. The MRF model benefits 

more than the Gaussian smoothing, but its detection accuracy is still lower. At the lower 

noise level (SNR = −6dB), the basic GLM detector augmented with anatomical information 

approaches the performance of the Gaussian smoothing. At 0.01% false positive rate, the 

anatomically-guided MRF outperforms the anatomically-guided Gaussian smoothing by 

about 15% in true detection rate, achieving over 90% detection accuracy. The large boost 

experienced by the basic GLM when augmented with anatomical information is easy to 

understand: since false detections occur relatively uniformly throughout the volume, 

masking the gray matter improves the performance substantially.

In addition to the quantitative analysis presented above, we find it useful to visually inspect 

the resulting activation maps. Fig. 5 illustrates the detection results by showing one axial 

slice of the estimated activation map. The top image shows the phantom activation areas that 

were placed in the volume and used to generate the simulated fMRI scan. The middle and 

the bottom rows show the same slice in the reconstructed volume at two different noise 

levels. All the reconstructions were performed at 0.05% false positive rate. In other words, 

each image in Fig. 5 shows one slice in the reconstructed volume that corresponds to a point 

on the ROC curve of the respective detector at 0.05% false positive rate.

The basic GLM produces a fragmented activation map that contains a number of false 

detection islands at high SNR and shows very little of the original activation at low SNR. 

Given either of these maps, the users would have troubles inferring the true activation areas 

and disambiguating them from spurious false detections. The Gaussian smoothing leads to a 
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reasonable estimate of the ground truth. Gaussian smoothing tends to make the detections 

“spherical”, which may change the shape of the detected activations. The smoothing 

effectively over-estimates the extent of the regions. Consequently, many false positive 

voxels in the Gaussian smoothing occur at the boundaries of the activation regions. 

Imposing anatomical information reduces this over-smoothing effect for some of the areas. 

At low SNR (-9dB), the MRF model fills in many of the active pixels that were missed by 

the GLM, but as we saw before, it does not produce as accurate result as Gaussian 

smoothing. At higher SNR (-6dB), MRF produces a relatively accurate result. Not all of the 

scatter activation islands are removed through regularization, but the activation map looks 

more similar to the ground truth. The activation map is further improved when the 

anatomical information is incorporated into the model.

4 Real fMRI Experiment

In real fMRI experiments, the ground truth is unavailable, and ROC analysis is not possible. 

Instead, we visually compare the resulting activation maps produced by different detectors 

to evaluate their performance on reduced-length time courses. This effectively evaluates the 

ability of each method to reconstruct the true activation areas with less evidence on the 

strength of the signal.

In this fMRI study [23], the original scans were obtained during an auditory “two-back” 

word experiment. Each experiment consisted of five rest epochs and four task epochs, each 

epoch 30 seconds long. In the rest condition, the subjects were instructed to concentrate on 

the noise of the scanner and lie still. In the task condition, the subjects were presented with a 

series of pre-recorded single-digit numbers, one number every three seconds. The subjects 

were asked to tap their index finger to the thumb when hearing a number that was the same 

as the one spoken two numbers before. The experiment was repeated ten times for each 

subject. The anatomical images were acquired on a 1.5 Tesla GE signa clinical MR scanner 

(T1-weighted SPGR, 256×256, 124 slices, 1.5mm slice thickness). The EPI images were 

acquired on the same scanner (axial, TR/TE=2500/50msec, FA90, 64×64, 24 slices, 6mm 

slice thickness, no gap). The original study contains nine subjects, but for the purposes of 

voxel-by-voxel comparison of the detectors, we present the results for one subject across all 

detectors. The estimated SNR when averaging over all voxels in the brain was −4.7dB 

(−2.3dB when averaging voxels in selected ROIs relevant to the task).

Fig. 6a shows one axial slice in the reconstructed activation map using GLM without any 

spatial smoothing on the full-length fMRI signal (all 9 epochs). The ground truth for this 

scan is unknown, but we can use this map as a visual reference when evaluating the 

performance of the detectors on the time course of reduced length. For example, Fig. 6b 

shows the result of applying the same GLM detector to the first 5 epochs of the time course. 

This map is more fragmented due to loss in SNR from reducing the length of the signal. The 

other four images illustrate the results of applying GLM with the Gaussian smoothing and 

the MRF priors, as well as their anatomically augmented versions. Although Gaussian 

smoothing removes most of the single voxel activation islands, its activation map (Fig. 6c) is 

an overestimate compared with Fig. 6a. Anatomical weighting slightly reduces the 

overestimate in the Gaussian smoothing. MRF regularization (Fig. 6e,f) yields 
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reconstruction results that are close to the activation map estimated from the full-length 

signal, but do not look overly smoothed. This highlights the potential benefit of using the 

Markov priors in fMRI detection. Similarly to the Gaussian smoothing, the MRF model 

benefits from using anatomical information to remove spurious activations.

5 Discussion and Conclusions

Our experiments confirm the importance of spatial regularization in reducing fragmentation 

of the activation maps. This paper investigates two improvements in spatial modelling for 

fMRI detection: Markov priors and anatomical bias. An MRF provides a spatial prior that 

refines the structure of the resulting activation map over the Gaussian smoothing, as 

demonstrated by our experiments on phantom and real data. In this work, we explored fast 

approximate solvers in application to MRF-based fMRI detection and showed that they 

provide reasonably accurate approximations to the exact solution while taking substantially 

less time to evaluate. We also note that since the Markov model itself is an approximation of 

the real geometry of the activation regions, we should not dwell on the small differences in 

the activation maps introduced by the approximate solvers but rather focus on their 

performance relative to the ground truth.

A separate insight of this paper is that we can use anatomical information to bias the fMRI 

detector. Gaussian smoothing can be straightforwardly augmented with the anatomical prior 

by rescaling the coefficients of the smoothing kernel. Moreover, we derived an algorithm for 

anatomically-guided MRF estimation. One of the problems that should be investigated in the 

future is the partial voluming effects. The anatomical information comes at much higher 

resolution than the fMRI signals. Right now, we downsample the anatomical scan to match 

the resolution of the functional scan. A better solution would be to use the high-resolution 

anatomical scans to resolve the activation in the functional voxels that are on the boundary 

of the gray matter, leading to a “super-resolution” detector.

We evaluated the methods on phantom data by performing ROC analysis and on real data by 

studying their ability to recover activation from significantly shorter time courses. While in 

high noise settings the Gaussian smoothing outperformed other methods, as the SNR in the 

images increased, the Markov priors offered a substantial improvement in the detection 

accuracy. Using this smoothing prior enabled us to shorten fMRI scan length by half while 

retaining the detection power comparable with the full-length fMRI scan. We expect a 

similar effect to occur with respect to the spatial resolution when we extend the method to 

utilize the anatomical information at the original scan resolution. As the quality of the 

scanning equipment improves, the sophisticated spatial models, such as MRFs, will become 

even more important in recovering the details of the activation regions.
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Fig. 1. 
Graphical model for PX ,Z
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Fig. 2. 
ROC curves for different smoothing techniques, at two noise levels. False positive rate is 

shown on the log scale
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Fig. 3. 
Graphical model for PU ,Z ,W
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Fig. 4. 
ROC curves for different smoothing techniques augmented with the anatomical information, 

at two noise levels. False positive rate is shown on the log scale
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Fig. 5. 
One slice from estimated activation maps for the same ground truth at 0.05% false positive 

rate. True and false detections are shown in yellow. The on-line version shows true and false 

detections in different colors
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Fig. 6. 
Real fMRI study. One slice in the estimated activation map. (a) No spatial smoothing, using 

the entire time course. (b)-(f) Estimation based on the first five epochs of the time course 

using different spatial smoothing methods
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