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Abstract

Accurate pharmacokinetic (PK) modeling of Dynamic Contrast Enhanced MRI (DCE-MRI) in 

prostate cancer requires knowledge of the concentration time course of the contrast agent in the 

feeding vasculature, the so-called arterial input function (AIF). The purpose of this study was to 

compare AIF choice in differentiating peripheral zone prostate cancer (PCa) from non-neoplastic 

prostatic tissue (NNPT), using PK analysis of high temporal resolution prostate DCE-MRI data 

and whole-mount pathology (WMP) validation.

This prospective study was performed in 30 patients who underwent multiparametric endorectal 

prostate MRI at 3.0T and WMP validation. PCa foci were annotated on WMP slides and MR 

images using 3D Slicer. Foci ≥0.5cm3 were contoured as tumor regions of interest (TROIs) on 

subtraction DCE (early-arterial - pre-contrast) images. PK analyses of TROI and NNPT data were 

performed using automatic AIF (aAIF) and model AIF (mAIF) methods. A paired t-test compared 

mean and 90th percentile (p90) PK parameters obtained with the two AIF approaches. ROC 
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analysis determined diagnostic accuracy (DA) of PK parameters. Logistic regression determined 

correlation between PK parameters and histopathology.

Mean TROI and NNPT PK parameters were higher using aAIF vs. mAIF (p<0.05). There was no 

significant difference in DA between AIF methods: highest for p90 Ktrans (aAIF differences in the 

area under the ROC curve (Az) =0.827; mAIF Az=0.93). Tumor cell density correlated with aAIF 

Ktrans (p=0.03).

Our results indicate that DCE-MRI using both AIF methods is excellent in discriminating PCa 

from NNPT. If quantitative DCE-MRI is to be used as a biomarker in PCa, the same AIF method 

should be used consistently throughout the study.
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1. INTRODUCTION

It has been suggested that in prostate carcinoma (PCa), a poorer prognosis is associated with 

a greater number of abnormal vessels [1], and microvessel density has been shown to 

correlate with higher Gleason score and predict disease progression [2–4]. This has 

prompted interest in quantitative dynamic contrast-enhanced magnetic resonance imaging 

(DCE-MRI) as a non-invasive tool in assessing the aggressiveness of PCa, and as an 

indicator of response to therapy.

Accurate pharmacokinetic (PK) modeling of DCE-MRI requires knowledge of pre-contrast 

tissue T1 values [5], and knowledge of the concentration time course of the contrast agent in 

the feeding vasculature, the so-called arterial input function (AIF). Manual estimation of 

AIF, based on the signal intensity changes in voxels in an adjacent major feeding vessel for 

each patient, yields patient specific PK parameters [6,7]. A number of approaches have been 

proposed for practical automatic determination of individual AIFs (aAIF) [8–10], as manual 

methods are time consuming and suffer from inter- and intra-observer variability [11,12]. In-

flow effects and B1 inhomogeneity-induced image intensity variation also hamper individual 

estimation of AIF [7]. A popular alternative way of estimating AIF is to use a model-based 

population averaged AIF (mAIF), which assumes an a priori known AIF obtained from 

population studies [13,14]. At limited temporal resolution, this approach has been 

successfully applied in predicting prostate biopsy results [15]. One concern, however, is that 

mAIF may not allow for capturing AIF features from a selected patient cohort, which are 

specific to the acquisition parameters, organ of interest and patient characteristics.

AIF choice has been shown to have a significant influence on PK parameters obtained in 

simulation and in some tumor studies [9,16,17], although determination of accuracy is 

challenging due to difficulty in obtaining accurate pathological validation. It is unknown 

whether AIF choice has an impact on differentiating PCa from normal tissue, and little is 

known about the effect of AIF choice on PCa detection and characterization in the prostate. 

Such comparisons are critical prior to evaluating a role for PK parameters as a PCa 

biomarker.
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The purpose of this study is to compare the diagnostic performance of DCE-MRI using 

mAIF and aAIF in differentiating peripheral zone (PZ) PCa from non-neoplastic prostatic 

tissue (NNPT), using an optimized high temporal resolution prostate protocol [18] and 

whole mount pathology (WMP) as a reference standard.

2. METHODS

Our institutional review board approved this HIPAA-compliant prospective study. Written 

informed consent was obtained.

2.1 Patients

From February 2010 to May 2013, 30 consecutive male patients (median age 63 years; range 

45–69 years) with known PCa, who had pre-operative multiparametric MR imaging 

(mpMRI) at 3T and gave consent for WMP processing of their prostate were enrolled in this 

study. Inclusion criteria were patient ability to undergo endorectal coil prostate MR and 

radical prostatectomy as a treatment plan. Exclusion criteria included contraindication to 

MR imaging, and non-consent to WMP analysis.

2.2 MR Imaging

All MR imaging exams were performed on a GE Signa HDx 3.0T magnet (GE Healthcare, 

Waukesha, WI) using a combination of 8-channel abdominal array and endorectal coil 

(Medrad, Pittsburgh, PA). The multiparametric protocol [18] included T1- and T2-weighted 

imaging, diffusion weighted imaging (b=500,1400), and DCE MRI. DCE-MRI utilized a 3D 

SPGR sequence with TR/TE/α = 3.6 ms/1.3 ms/15°, FOV = 26×26 cm2, with full gland 

coverage and an interpolated voxel size of 1×1×6 mm3. Axial frames were acquired at 

approximately 5-second intervals to achieve a clinically appropriate compromise between 

spatial and temporal resolution. Gadopentetate dimeglumine (Magnevist, Berlex 

Laboratories, Wayne, New Jersey) was injected intravenously into an antecubital vein using 

a syringe pump (0.15 mmol/kg; rate 3ml/sec), followed by 20ml saline flush. The protocol 

included ~5 baseline scans prior to contrast injection for estimation of baseline signal 

intensities.

2.3 Histopathology Acquisition and Analysis

After radical prostatectomy, the intact specimens were inked for laterality and fixed in 

formalin overnight at room temperature. The first 26 consecutive patients were sectioned 

manually from apex to base at 4–5 mm intervals. In the most recent 4 patients a customized 

individual 3D mold was used to process the specimens [19], which were sliced at a 

consistent section thickness of 3 mm. In all cases, each slice was annotated by slice number, 

fixed and paraffin-imbedded. Subsequently, 5-micron WM tissue sections were cut, glass-

mounted, and stained with hematoxylin and eosin.

The central gland/PZ border and all areas of PCa on each WMP section were outlined on 

glass slides by a genitourinary pathologist with 10 years experience (Figure 1). All PCa foci 

were assigned a Gleason score. Percent Gleason pattern 3, 4 and 5 and average tumor cell 

density were documented. The annotated WMP slides were digitally scanned and loaded 
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into 3D Slicer (http://slicer.org), an open source software for medical image visualization 

and analysis [20]. 3D Slicer allowed for simultaneous visualization and fusion of the 

different mpMRI sequences, and for manual contouring of the ROIs for tumor and normal 

areas. To obtain tumor volume measurements we assumed 5mm thickness for routine WMP 

processing, and 3mm thickness for processing using the customized mold. Volumes were 

then scaled by a factor of 1.15 to account for tissue shrinkage [21].

2.4 Correlation of MR data to Histopathology

Correlation analysis was restricted to PZ PCa foci of ≥0.50 cm3 [22,23]. For patients with 

multiple tumors ≥0.50 cm3, an index lesion was chosen to correlate with mpMRI, defined as 

the largest lesion with the highest assigned Gleason score.

Digitized WMP and mpMRI images were viewed side-by-side using 3D Slicer. The 

corresponding ROIs were contoured manually on the digital pathology and MRI datasets 

separately. Using anatomical landmarks (urethra, verumontanum, calcifications or benign 

prostatic hyperplastic nodules) index lesions outlined on WMP slides were identified on 

mpMRI as foci of enhancement on subtraction DCE images, confirmed by both focal low 

signal intensity on T2-weighted images and restricted diffusion on ADC maps. All mpMRI 

sequences (T2WI, DCE, ADC (b=500,1400) were used to confirm lesion location. Images 

were reviewed in consensus by 2 radiologists with over 10 years and 2 years of experience 

respectively in interpretation of prostate MRI. Tumor regions of interest (TROIs) were then 

drawn on subtraction images (Figure 1). ROIs corresponding to NNPT identified on WMP 

slides were also contoured in the corresponding locations on subtraction DCE images. 

Whenever possible, NNPT was contoured on the same slice as tumor, or in the closest 

adjacent slice. For comparative purposes, TROIs and areas of NNPT were also contoured on 

ADC (b0–500) maps. Registration of DCE to ADC was not performed. Instead, 

corresponding ROIs were identified visually on all series of interest and contoured by the 

radiologist.

2.5 Image quantification

Both an aAIF and a mAIF were used for PK analysis of the TROIs and NNPT.

aAIF—The aAIF estimation method incorporated a priori knowledge of anatomy and the 

characteristics of a typical AIF uptake curve, as previously described [10]. This 4-step 

method works by: (i) excluding slices based on artifacts and selecting the best slices based 

on intrinsic anatomic landmarks and enhancement characteristics, (ii) identifying search 

regions for potential AIF voxels within selected slices, (iii) prostate anatomy specific mask 

refinement which excludes regions close to the endorectal coil while retaining vascular 

regions near the prostate, and (iv) selecting the best ranked voxels that meet enhancement 

characteristics and mutual correlation. The signal intensity curves of top 5 ranking voxels 

(or fewer if correlation metric is not met by 5 voxels) are averaged to determine the final 

AIF signal, which is then converted into AIF concentration curve using the SPGR sequence 

signal intensity equation and nominal blood T1 value (1600 msec) (ref 26).
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mAIF—The mAIF method used a previously computed, fixed AIF curve, numerically 

constructed from published first-pass data [24] and concatenated with the Weinmann curve 

for late wash-out [14]. This methodology has been previously reported [25] and was chosen 

because our imaging and injection protocol closely match this reported study. Although our 

AIF is numerically constructed, we have utilized the parametric form of the population AIF 

from Parker et al. [13] to approximate our AIF. The equation of the functional form of the 

Parker AIF is as follows:

Table 1 lists the parametric values from the Parker AIF functional form, used to generate our 

mAIF function. These parameters were obtained by performing a non-linear least squares 

fitting of our numerical population averaged AIF to the above function using Levenberg-

Marquardt optimization.

PK analysis using both aAIF and mAIF—PK analyses based on the Generalized 

Kinetic Model [26] was performed using OncoQuant research prototype (GE Global 

Research, Niskayuna, NY, USA). The 2-parameter model without a plasma volume fraction 

term was chosen because of the limited temporal resolution of the prostate DCE-MRI data 

(~5 sec). All voxels within the ROIs from multi-slice dynamic time series curves were 

estimated using relative signal enhancement. The initial pre-contrast T1 value of the prostate 

was set at 1597 msec [27] and at 1600 msec for blood [28], used for signal intensity to 

gadolinium concentration conversion. Relaxivity value of Gd-DTPA used was 4.9 mM−1 

s−1. Prior to fitting pixel-wise concentration curves to the PK model, we accounted for 

transit time delays by automatically estimating the bolus arrival time (onset time) for each 

voxel, and shifting curves to match the bolus arrival time of the AIF, to ensure there are no 

model fit failures due to differences in onset time. PK modeling was performed via iterative 

curve fitting using forward convolution. Both aAIF and mAIF methods were applied for 

each dataset (Figure 2), resulting in two sets of PK analysis results, each containing maps of 

forward volume transfer constant (Ktrans, min−1) and the fractional volume of extravascular 

and extracellular space per unit volume of tissue (νe). Quality of the model fits was assessed 

using the coefficient of determination (R2). Voxels showing poor fit of the model to the data 

(R2<0.75) were not included in the analysis (~3% for mAIF and <1% for aAIF).

2.6 Statistical Analysis

To incorporate tumor heterogeneity, in addition to the mean value we also determined the 

90th percentile (p90) for Ktrans and νe within TROIs. A paired t-test compared mean and p90 

Ktrans and νe values of TROI and NNPT using both AIF methods. Coefficients of variation 

of these PK parameters were compared between methods using Levene’s test.

To adjust for the variability in PK parameters between patients, we performed an analysis of 

covariance to estimate within-subject correlation between PK parameters obtained with both 

AIF methods [29]. Agreement between PK parameters obtained with both AIF methods was 
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assessed using the Bland-Altman plot [30] to calculate the mean difference, standard 

deviation of the difference, and the 95% limits of agreement.

Logistic regression models evaluated the correlation of PK parameters with pathological 

descriptors of TROI: average tumor cell density, tumor volume, and percent of Gleason 3 

and 4 involvement as linear predictors, and averaged TROI Ktrans and νe as model response.

To determine the accuracy of the PK parameters for diagnosis of PCa, Receiver Operating 

Characteristic (ROC) analysis [31] was performed using mean ROI values. The differences 

in the area under the ROC curve (Az) of PK parameters using aAIF and mAIF were assessed 

with the univariate Z-score test. Az values were also obtained to determine the diagnostic 

accuracy of ADC (b 0–500) maps.

Computer software packages (SPSS, version 17.0 for Windows, SPSS, Chicago, IL (USA); 

Medcalc, Medcalc Software, Mariakerke, Belgium; R version 3.0.1, R Foundation for 

Statistical Computing, Vienna, Austria) were used for the statistical analyses. P value < .05 

was considered to indicate statistical significance.

3. RESULTS

3.1 Study population

The median serum PSA was 5.19 ng/dl (range, 2.20 to 25.95 ng/dl). The mean number of 

days between positive prostate biopsy and prostate MR was 73 days (median 42, range 1 to 

687), and the mean interval between prostate MR and prostatectomy was 58 days (median 

47, range 10 to 217 days).

A total of 85 TROIs were identified in 30 patients, and contoured on WMP slides. Of these, 

44 had a Gleason Grade ≥7, 35 had a Gleason grade 6, and in 6 lesions (from 3 patients) no 

Gleason grade was reported due to prior neoadjuvant chemotherapy. A total of 14 patients 

were excluded from the analysis because they had TROIs below the 0.5cc tumor volume 

threshold (n=8), TROI in central gland only (n=3), had extensive hemorrhage on MRI 

limiting visualization of the tumor (n=2), or did not have all mpMRI sequences available for 

correlation with WMP (n=1). In the remaining 16 patients, only the index lesion was 

selected for inclusion in the analysis.

The mean interval between prostate MR and prostatectomy in these 16 patients was 51 days 

(median 38, range 10 to 217 days). The Gleason score for all 16 TROIs was 7 (i.e., derived 

from either Gleason 3+4, or 4+3), except for two patients: one had prior therapy and an un-

assigned Gleason score and the other had a Gleason score of 6 (i.e. 3+3). As outlined in 

Table 2, a small number of patients also had a tertiary component of Gleason 5. The average 

tumor cell density of these 16 TROIs was 68.5% (median 70%, range 10–90%). The percent 

of each Gleason pattern is described in Table 2.

3.2 PK parameters of DCE-MRI

Mean Comparison—Mean and p90 PK values of the TROI, and mean PK values of 

NNPT using aAIF and mAIF are summarized in Table 3. Mean TROI and NNPT Ktrans and 
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νe were higher when calculated using aAIF compared to mAIF (p<0.05, paired t-test). The 

p90 νe was also higher with aAIF (p<0.001). The p90 Ktrans was not different between aAIF 

and mAIF. In general, the coefficient of variation of Ktrans and νe values calculated using 

mAIF were smaller than those calculated using aAIF, although statistical significance was 

only reached in νe of TROI.

Bland-Altman Analysis—The Bland-Altman plot comparing PK values obtained using 

aAIF and mAIF-based analysis demonstrated a difference of 0.10 ± 0.17 [mean ± SD] and 

0.22 ± 0.17, for Ktrans and νe respectively. The Bland-Altman limits of agreement, i.e. the 

region in which 95% of the differences in Ktrans and νe values were located, ranged from 

−0.23 to 0.44, and −0.11 to 0.55, respectively. Graphically represented in Figure 3, these 

results indicate that Ktrans and νe values obtained using aAIF methodology are generally 

higher than those obtained using mAIF methodology.

Correlation Analysis—Pixel-based correlation analysis of TROI and NNPT 

demonstrated a very strong correlation for Ktrans and νe values between the AIF methods 

(within-subject correlation coefficient between methods was r = 0.91 for Ktrans, p < 0.001; r 

= 0.97 for νe, p < 0.001), graphically represented in Figure 4. Evaluated at the ROI level, 

within-subject correlation coefficients were 0.91 (p<0.001) and 0.98 (P<0.001) for Ktrans 

and νe respectively, using average PK values from TROIs and NNPTs.

Logistic Regression Analysis—Based on a linear regression model, tumor cell density 

was a statistically significant predictor of aAIF Ktrans (p=0.03). Correlation of tumor cell 

density with mAIF Ktrans approached significance at p=0.08. Tumor volume and % Gleason 

patterns 3 and 4 were not statistically significant predictors of either "response variable 

(aAIF or mAIF Ktrans)".

3.3 Diagnostic Accuracy of PK parameters

Using ROC analysis, there was no significant difference between AIF methods in diagnostic 

accuracy for differentiating TROI from NNPT using mean or p90 Ktrans and νe (Figure 5). 

The diagnostic accuracy was highest when using p90 of Ktrans (Az values, 0.827 for aAIF 

method and 0.930 for mAIF analysis, respectively), followed by mean Ktrans value (Az 

values, 0.781 for aAIF and 0.858 for mAIF methods, respectively).

4. DISCUSSION

DCE-MRI detection of true change in tumor perfusion, as measured by PK indices, requires 

accurate and reproducible methodology before it can be proposed as a reliable biomarker. 

This study compared the diagnostic performance of two AIF options, mAIF and aAIF, for 

PK analysis of PCa, using WMP correlation. We found that PK analyses with either AIF 

method proved excellent tools to discriminate PCA from NNPT in prostate PZ. However, 

the PK values obtained differ significantly between the 2 methodologies, indicating that the 

choice of AIF should always be the same when assessing interval change in serial studies. 

The diagnostic accuracy was highest when the p90 of PK values were evaluated, although 

the difference in Az values obtained between mAIF and aAIF were not significant.
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The Az values from ROC analyses are higher than previously reported [15], with the highest 

value of 0.93 for p90 Ktrans using the model AIF. There are several potential explanations 

for this. Firstly, we used a higher temporal resolution DCE-MRI study compared to others 

[15]. This should allow for more accurate capturing of fast-changing dynamics and more 

accurate AIF measurement in data driven AIF methods, although this is speculative and 

cannot be proven in our study. Secondly, we used digitized WMP from radical 

prostatectomy specimens for direct imaging correlation, whereas others [15] correlated 

findings with prostate biopsy results. Thirdly, we limited our study to tumors ≥0.50 cm3 in 

PZ to perform a comparison of DCE-MRI results in significant volume PZ tumors. With the 

exception of one, all tumors ≥0.50 cm3 also had a Gleason score of ≥7 or higher, and 

therefore were a more homogenous population of intermediate-high grade PCa patients 

compared to the biopsy population [15].

Diagnostic accuracy of ADC (b 0–500) was 0.988.This is not surprising considering that 

selection of TROI and areas of NNPT on ADC maps was based on the suspicious 

appearance on ADC, and confirmed on WMP. Direct comparison of diagnostic accuracy of 

ADC and PK indices obtained using both AIF methods is outside the scope of this study, as 

the radiologists were blinded to PK maps but not to ADC maps when drawing ROIs.

Our results demonstrate that mean Ktrans and νe values obtained in TROI and NNPT were 

significantly higher when an aAIF method was used, consistent with known simulations 

which have demonstrated the effect of AIF shape on DCE-MRI parameters [32]. Using p90, 

νe values were also significantly higher with aAIF. While no significant difference was 

found with Ktrans, possibly due to absolute high values of Ktrans being compared using p90, 

it should be noted that the difference between the two AIF methods was approaching 

significance at p=0.062. The overall higher PK values obtained with aAIF may be explained 

by the fact that scaling of the mAIF is not specific for the PCa population being evaluated, 

and results obtained from mAIF analyses do not relate to results from data-driven AIF 

analysis in absolute terms. The aAIF scale, however, is specific to individual enhancement 

characteristics and is scaled explicitly by the data. Furthermore, there is known to be 

considerable variability in the magnitude of the AIF peak across patients when 

individualized analysis is used [33]. We could speculate that these differences could be due 

to the patient-specific conditions such as cardiac output, or due to the imaging-specific 

issues related to orientation of the artery at the location of AIF ROI relative to the scan 

plane, flow artifacts, partial volume effects or motion.

The absolute values of the PK parameters in the TROI and NNPT are both similar [34] and 

dissimilar [35] to those reported elsewhere. This is consistent with quantitative PK studies of 

uterine fibroids [36] and breast cancer [37] that demonstrated absolute values to differ, 

depending on the details of the PK analysis applied to the data, even when performed in the 

same cohort of patients. However, assuming the absolute value of quantitative metrics is an 

essential component to MR evaluation of response to therapy in a single-institution, single-

analysis platform study, our results suggest that aAIF may be a preferable option. This is 

supported by our finding that average tumor cell density was found to be a significant 

predictor of Ktrans in TROI, as previously demonstrated [38], but only for the aAIF option. 

However, further studies are warranted to determine the optimal AIF method in treatment 
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response evaluation. The percentages of Gleason pattern 3 or 4 were not predictors of PK 

values, possibly due to the fact that this is a relatively homogenous clinical cohort, unlike 

other studies where less and highly aggressive tumors were compared [39].

Considering that PK analysis using mAIF and aAIF resulted in significantly different Ktrans 

and νe values, it is of interest that within individual subjects, the correlation was very high. 

While the aAIF method used provides an AIF that is specific for each patient based upon 

enhancing areas within the image, the mAIF used in this study includes a first-pass 

component to improve the quality and reproducibility of kinetic model fitting [40]. The high 

within-subject correlation that we found underscores that differences in PK values likely 

reflect differences in AIF scaling of the peak amplitude between aAIF and mAIF.

We found high AUC Az values for mean and p90 Ktrans, and to a lesser extent for νe. While 

Ktrans is established as being elevated in tumors [15,34,35,39,41], this cannot be said for νe. 

Physiologically, one may expect the extravascular extracellular space to have an inverse 

relationship with cell density, although this has been difficult to prove in other tumors 

[42,43], underscoring the fact that conceptual understanding of νe is somewhat incomplete.

An important issue to consider in AIF choice is that aAIF detection methods can suffer from 

errors due to vessel motion, or difficulties in finding the a priori feeding vessel, and in-flow 

effects. In our study, we did not observe any obvious failures of the aAIF detection 

algorithm.

Our study has potential limitations. We elected to measure only 2 PK parameters (Ktrans and 

νe) to assess the diagnostic performance of the two AIF choices in differentiating TROI 

from NNPT. As it has been demonstrated that Ktrans is one of the most variable parameters 

amongst all of the semi-quantitative and quantitative PK parameters for a variety of tumors 

[44], we feel this choice to be justified. It is also of interest that we found the same 

conclusions with νe analysis as found with Ktrans. Another potential limitation is that we did 

not include a comparison with true individual AIFs. While this would provide a gold 

standard, it does however require measurement of the plasma contrast agent concentration, 

and is not practical in the clinical setting of DCE MRI acquisition. We believe that 

automatic determination of an image derived AIF on a patient-specific basis is a more 

practical way to evaluate individual enhancement characteristics. Another limitation of this 

study is the final number of evaluable patients, as we limited our study to significant volume 

PZ tumors without hemorrhagic artifacts.

5. CONCLUSION

In conclusion, AIF choice in DCE-MRI significantly affects PK parameters obtained in a 

cohort of men with PZ intermediate- to high-grade PCa, although both mAIF and aAIF 

methods evaluated perform extremely well in differentiating PZ PCa from NNPT. PK 

analyses that use aAIF provide Ktrans values that correlate with tumor cell density, and 

higher and more variable PK values in general, compared to those obtained using an mAIF 

method. If quantitative DCE-MRI is to be used as a biomarker in PCa, the same AIF method 

should be used consistently throughout the study.
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Figure 1. 
Whole mount histopathologic correlation with prostate multiparametric MRI. (A): 

Histopathologic whole mount outlining a left peripheral zone tumor with a Gleason score 

4+3=7 (outlined in blue ink). Black dotted line differentiates peripheral zone from central 

gland. Corresponding tumor is seen as an area of low signal intensity on the T2-weighted 

image (B), as an area of restricted diffusion on ADC maps derived from DWI (b0–500) (C) 

and (b0–1400) (D), and as an area of high signal intensity on DCE subtraction map (E). The 
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tumor is outlined by black arrowheads on mpMRI, and comparison volume of right 

peripheral zone which did not contain tumor is outlined on subtraction DCE (E) by arrows.
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Figure 2. 
A: Two arterial input functions (Red curve =aAIF; Black curve = mAIF) from a 64 year-old 

patient with Gleason grade 7 in the left PZ at prostatectomy. This case exemplifies the 

typical difference in AIF curves seen in our PCa population. B: Volume transfer constant 

(Ktrans) parametric map calculated using aAIF, and (C) using mAIF, demonstrating 

increased Ktrans values in the left PZ. For aAIF, up to 5 pixels are selected within the AIF 

(from left femoral artery in this case); 2 of these pixels in one slice are shown in (B), 

denoted as white arrows. Red arrows correspond to tumor on Ktrans maps. Tumor Ktrans 

decreased when using mAIF, which had greater peak amplitude than aAIF.
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Figure 3. 
Bland-Altman Plots comparing mean Ktrans values (A) and mean νe values (B) within the 

TROI and NNPT ROIs, obtained with an aAIF and mAIF setting.

(A) Mean difference between aAIF and mAIF is 0.10 and Bland-Altman 95% limits of 

agreement are −0.23 to 0.44.

(B) Mean difference between aAIF and mAIF is 0.22 and Bland-Altman 95% limits of 

agreement are −0.11 to 0.55.
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Figure 4. 
Scatter plots showing the relation between the aAIF (x-axis) and the mAIF (y-axis) derived 

PK parameters, Ktrans (A) and ve (B) for all 16 patients who met inclusion criteria. Each of 

the 16 plots represents an individual patient, the 3-digit number referring to assigned case 

numbers. Each plot represents voxel values from multi-slice data from the entire TROI or 

NNPT. The plots illustrate the observation that in general the measurement obtained using 

different AIF choices are related by a subject-specific scaling factor. Within-subject pixel-

based correlation was 0.91 for Ktrans (p < 0.001) and 0.97 for νe (p < 0.001).
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Figure 5. 
Receiver Operating Characteristic (ROC) curves illustrating performance of mean and p90 

PK parameters calculated from the ROIs in separating tumor from normal tissue, for the two 

choices of the AIF: (A) mean Ktrans; (B) mean νe; (C) p90 Ktrans; (D) p90 νe. In all cases, no 

significant difference between the two AIF methods was observed in the cancer 

discriminating ability of the individual measures.
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Table 2

TROI Histopathological Characteristics

% Gleason
Grade 3

% Gleason
Grade 4

% Gleason
Grade 5

Mean 53.75 43.75 2.5

Max % 100 80 15

Min % 10 0 0

Abbreviations: TROI= Tumor Region of Interest; Max=maximum % Gleason grade within an ROI; Min= Minimum % Gleason grade within an 
ROI. TROI histopathological characteristics are from 16 index tumors. The Gleason score is the sum of the two most common Gleason grades seen 
in the prostatectomy specimen".
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