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Abstract

Background—Children born to parents with lower income and education are at risk for obesity
and later-life risk of common chronic diseases, and epigenetics has been hypothesised to link these
associations. However, epigenetic targets are unknown. We focus on a cluster of well-
characterised genomically imprinted genes because their monoallelic expression is regulated by
DNA methylation at differentially methylated regions (DMRs), are critical in fetal growth, and
DNA methylation patterns at birth have been associated with increased risk of birth weight
extremes and overweight status or obesity in early childhood.

Methods—We measured DNA methylation at DMRSs regulating genomically imprinted domains
(IGF2/H19, DLK1/MEG3, NNAT and PLAGL1) using umbilical cord blood leucocytes from 619
infants recruited in Durham, North Carolina in 2010-2011. We examined differences in DNA
methylation levels by race/ethnicity of both parents, and the role that maternal socioeconomic
status (SES) may play in the association between race/ethnic epigenetic differences.
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Results—Unadjusted race/ethnic differences only were evident for DMRs regulating MEG3 and
IGF2; race/ethnic differences persisted in IGF2/H19 and NNAT after accounting for income and
education.

Conclusions—Results suggest that parental factors may not only influence DNA methylation,
but also do so in ways that vary by DMR. Findings support the hypothesis that epigenetics may
link the observed lower SES during the prenatal period and poor outcomes such as low birth
weight; lower birth weight has previously been associated with adult-onset chronic diseases and
conditions that include cardiovascular diseases, diabetes, obesity and some cancers.

Understanding and reducing health disparities is a key public health goal.! Segregation,
discrimination and historical processes result in typically worse social and environmental
exposures for minorities and the disadvantaged.?3 Emerging evidence blurs the line between
‘nature and nurture’: social and physical risks and resources by race/ethnicity and
socioeconomic status (SES) may change gene expression.*=2 Meanwhile, genetic ancestry-
linked differences also influence DNA methylation (DNA methylation),10-14 although
genetic and environmental origins of population differences still need to be disentangled. In
2008, exposure to famine in utero was found to predict chronic disease in later life and of
offspring, and DNA methylation was found to differ between individuals exposed to famine
in utero and their same sex siblings at the well-studied IGF2 imprinted domain.1516 Since
then, aberrantly established epigenetic marks which regulate gene expression have been
linked to such diverse outcomes as cancer, asthma, birth weight and hormonal and metabolic
profiles.17=22 Thus, epigenetic research may help describe causal mechanisms for how social
resources and risks ‘get under the skin’ and become manifest in health outcomes and
disparities therein. Since many epigenetic factors are malleable, at least within specific time
windows, this understanding offers prospects for prevention and treatment. Meanwhile, little
is known about how social patterns may influence epigenetic marks23 in early life24 or
gestation. In particular, it is unclear whether social factors differentially relate to distinct
epigenetic marks, and whether there may be parent of origin-specific patterns.

Social differences appear in DNA methylation in adult leucocytes. In two genome-wide
DNA methylation studies, one found that early-life SES predicted DNA methylation
differences for a broader range of genes compared to adult SES® and another found
differential DNA methylation by early-life SES (but not adult SES).8 In studies of repetitive
element DNA methylation (Alu and LINE1), lower DNA methylation appeared among
respondents with lower SES?2% and in blacks,® although early-life low SES predicted higher
DNA methylation.2> A large population sample® revealed differences in repetitive element
DNA methylation by wealth and by race/ethnicity (which persisted with SES adjustment),
but in different directions by measure. These studies evaluated repetitive elements or
genome-wide DNA methylation and thus do not point to loci that improve our understanding
of mechanisms specific to particular diseases. However, these findings support the
hypothesis that in addition to childhood SES, periconceptional and prenatal SES may
structure exposure to conditions which influence epigenetic markers in early life. It is
plausible that early-life epigenetic disparities may influence adult health and disparities, but
further study is needed.
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Once established during early life, DNA methylation patterns in a tissue are not permanent,
but appear to persist over time,242627 including from birth to at least age 3.7 Low birth
weight has been linked with DNA methylation 20 years later.28 Social and physical
exposures such as nutrition, psychosocial stressors and toxicants, all of which can be
socially patterned, change DNA methylation. Methylation patterns can change with
ageing.3931 However, neonatal exposures that alter the establishment or maintenance of
these marks may be much more influential than exposures during the life course.32-34
Epigenetic marks are ‘wiped’ and replaced during gametogenesis and again early in
embryonic development. For most autosomal genes, there is equal probability of expression
of both the maternal or paternal alleles. However, ‘imprinted’ gene expression is specific to
the sex of the parent, established by the differential epigenetic marking of the two parental
alleles in the gametes such that the resulting zygote will have methylation on only one of the
two inherited chromosomes at these *differentially methylated regions’ (DMRs). The
expected theoretical level of methylation at these DMRs is therefore 50% when cells are
analysed, since each has one chromosome with methylation and the same sequence on the
other chromosome is unmethylated. These marks are faithfully retained throughout prenatal
development and in somatic tissues throughout life. Thus, imprinted gene regulatory regions
normally exhibit both temporal and spatial stability32 compared to non-imprinted regions.

Imprinted genes are critical to appropriate prenatal growth and development. Clearly, severe
defects where imprinted status is lost—whether due to genetic defects (eg, loss or gain of the
chromosomal region or the entire chromosome) or to epigenetic defects (loss or gain of
methylation)—Ilead to pregnancy failures3® or to severe developmental and neurological
disorders, including the Prader-Willi and Angelman syndromes,3637 Beckwith-Wiedemann
syndrome38 and neurodevelopmental disorders such as autism.3%40 Furthermore, given the
importance of these genes in directing appropriate prenatal growth,22 DNA methylation
profiles of the regulatory regions and expression levels of imprinted genes are often found to
be highly deregulated in many types of cancer.#142 It is presently unclear how small
differences in methylation at imprinted DMRs alter the imprinting status or affect the
outcome. However, we have previously shown that a 1% change in methylation at the IGF2
DMR is associated with a twofold change in IGF2 transcription, and that this was associated
with differences in birth weight.43 Long-term prospective studies are needed to better
understand how small magnitude shifts in methylation and/or imprint status contribute to
chronic disorders or diseases in adulthood.

This study examined DMRs that are involved in regulating the imprinted expression of
paternally expressed IGF2, DLK1, NNAT, PEG1/MEST, PEG3, PEG10, SGCE, PLAGL1
and maternally expressed H19 and MEG3. The DMRs examined included the paternally
methylated IGF2 DMR (3 CpG sites), H19 DMR (4), MEG3 DMR (8) and MEG3-1G DMR
(4), and the maternally methylated PEG1/MEST DMR (4), PEG3 DMR (10), PEG10/SGCE
DMR (6), NNAT DMR (3) and PLAGL1 DMR (6). An estimated 1-5% of genes are
imprinted;** 65 imprinted genes are documented.32 We have developed assays for 25 of
these regions,*® over-selecting for growth effectors. Of these we examined nine DMRs*6
because they are all known to have important functions in development, some in social
behaviours and nurturing (PEG1/MEST, PEG3),% in maintenance of energy homoeostasis
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and obesity (IGF2, NNAT, PLAGL1, DLK1),1548-51 jn neurological function (IGF2, PEG3,
NNAT),5253 and as non-coding RNAs (H19, MEG3),%4-%6 and all of them have been
implicated in cancer. Thus, this group is among the most intensively studied of the imprinted
genes in humans, and the regions demarcated by differential DNA methylation that control
imprinting and expression of these genes are relatively well understood.

We used data from the Newborn Epigenetic STudy (NEST), a birth cohort study in Durham,
North Carolina, to investigate the association of racial/ethnic social identity with DNA
methylation at the nine DMRs regulating genomically imprinted genes, which also predict
variations in birth weight (a risk factor for common chronic diseases and conditions). We
hypothesise that SES (maternal education, household income) may explain some of the
associations. Separately by DMR, we considered race/ethnicity of both parents, which
differed for a quarter of the sample, separately and then jointly, and assessed the potential
contribution of SES to race/ethnic variation in imprinted gene methylation.

MATERIALS AND METHODS

Data

The NEST recruited pregnant women (age 18+) from six prenatal clinics who intended to
deliver at either of the two obstetric facilities serving Durham, North Carolina (Duke and
Durham Regional hospitals), enabling collection of umbilical cord blood at birth.5758
Overall the two NEST waves (2006—-2008 and 2009-2011), approached 3646 pregnant
women =18 and 70% (n=2534) were consented, with successful umbilical cord blood
collection at delivery for 2214. Enrolment occurred during the first prenatal clinic visit (~13
weeks) with questionnaire and peripheral blood collected. DNA methylation of samples of
umbilical cord blood leucocytes was evaluated at nine DMRs of imprinted genes among the
first 619 newborns from the second wave.

Although epigenetic marks in some regions may vary by cell and tissue type, we have
conducted studies of buccal cells, mono-nuclear and polymorphonuclear cells®?6 and cell
type differences in DNA methylation marks in these regions were not detected. Umbilical
cord blood contains a number of cell types and it is possible that each cell type exhibits a
different pattern of methylation. This is unlikely at imprinted gene DMRs at which
methylation is established during early development (during gametogenesis in the prior
generation and for some regions, just after fertilisation). Since this occurs prior to
gastrulation and tissue differentiation and because DNA methylation is generally
somatically heritable, the methylation profiles that are established in early life are faithfully
maintained, which we have shown is the case in human fetal tissues® and others have shown
to be true in adult somatic tissues.6 Nevertheless, we did analyse fractionated umbilical cord
blood, examining the two major components—peripheral blood mono-nuclear cells and
polymorphonuclear cells—and found that the level of methylation in these fractions was
indistinguishable for all DMRs except MEG3-IG, for which the difference was 1.1%
between fractions.® Because of these prior published results, we believe it very unlikely that
the heterogeneity of cells, at least the major fractions in cord blood, influenced our findings.
Cord blood is also accessible and non-invasive compared to other tissue types (eg, foreskins,
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organ tissue from autopsies, buccal cells), and is collected before the ex utero environment
can influence the epigenome.

Chromosomal locations, bisulfite pyrosequencing conditions, and assay validation are
reported elsewhere.>%1 Briefly, genomic DNA (800 ng) was modified with sodium
bisulfite, which converts unmethylated cytosines to uracils while leaving methylated
cytosines unchanged. Pyrosequencing results in measurement of the percentage of
methylated cytosine at each CpG dinucleotide position within the targeted sequence, and
assesses non-CpG cytosines within every sample/region analysed for completeness of
conversion. Samples were analysed in 96-well plates on a Qiagen PyroMark Q96 MD
Pyrosequencer, with no template controls, fully unmethylated and methylated DNA (Epitect
Control DNAs, Qiagen; Valencia, California, USA) and a 50:50 mixture of the methylated
and unmethylated control. Interplate variability was tested. Within plates, results are
averaged for a given DMR. Samples with values £2 SD from the mean were rerun and
averaged. The average SD between original and repeat runs was 1.37% with a range of
0.02-3.9%. On average, one to two samples were rerun per plate. For each DMR
methylation was examined at 3-10 CpG sites, and the mean taken. The Duke University
Institutional Review Board approved the study protocol.

Variables and measurement

Maternal and paternal race/ethnicity was categorised as non-Hispanic black, Hispanic, Other
and non-Hispanic white, with an additional category for fathers for whom mothers did not
report race/ethnicity (MRE). Limited SES measures were available. Mothers reported their
household income as: less than $25 000, $25 000-$50 000, $50 000-$100 000 or more than
$100 000. Maternal education reference was coded as: up to 12; 13-15, 16 or 17 years or
more. Categorical variables represent missing income/education data.

Statistical analysis

We reported frequencies and percentages of sociodemographic variables, along with
summary and analysis of variance statistics on how DNA methylation of each epigenetic
marker varies by sociodemographic group. Several DMRs had little meaningful social
patterning, so results for these DMRs are reported separately in table 5. Analyses used Stata
statistical software.52 DNA methylation percentages for the DMRs examined were roughly
normally distributed. Standardised coefficients are used to facilitate comparison across
DMRs.

We used regression models to estimate associations of social factors with DNA methylation.
We examined mother’s and father’s race/ethnicity first in separate models, and then jointly.
Next, to assess the potential contribution of socioeconomic differences by race/ethnicity to
overall race/ethnic differences, we examined measures of SES (mother’s education and
household income) with and without adjustment for parental race/ethnicity. There may be a
great many reasons for social differences. We do not adjust for such potential explanatory
variables (eg, maternal nutrition, psychosocial stressors or toxic exposures), because the
goal is to assess baseline social differences and these factors may be causally related. In
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supplementary analyses, we found no problems from multicollinearity (variance inflation
factors <5) or outliers (using Cook’s influence) in the data.

RESULTS

Study participants were racially/ethnically and socioeconomically diverse (table 1). MRE for
8% of fathers, reported more fathers as Other and fewer as non-Hispanic white than reported
for themselves, and gave different race/ethnic groups for themselves and their baby’s father
in 24% of the sample. Missingness did not differ by sociodemographics.

Table 1 shows that DNA methylation means differed by maternal and paternal race/
ethnicity, income and education at the IGF2, H19 and MEG3 DMRs (except the H19 DMR
did not differ by maternal race/ethnicity and education). Analyses of variance did not reveal
race/ethnic differences or socioeconomic differences for the PEG3, PEG10/SGCE,
PLAGL1, PEG1/MEST, MEG3-1G or NNAT DMRs (mean levels given in table 2).

Table 3 presents a series of regression analyses for methylation of each DMR for which
initial race/ethnic differences were found, as well as for the NNAT DMR. Initial patterns in
models 1 and 2 were not consistent by maternal versus paternal race/ethnicity, and changed
when maternal and paternal race/ethnicity were considered together in model 3.
Unstandardised coefficients are given in table 4.

Newborns with black (-0.83 SD, p<0.001) and Hispanic (-0.45 SD, p<0.01) versus white
fathers have lower methylation of the IGF2 DMR, which persists after SES adjustment. In
models with race/ethnicity of both parents included, the lower methylation in newborns with
black mothers becomes non-significant, while a significantly higher methylation for
Hispanic mothers appears (0.33 SD, p<0.05).

For the H19 DMR, those with Hispanic (-0.41 SD, p<0.05) and Other (-0.56 SD, p<0.01)
fathers have lower methylation of the H19 DMR compared to those with white fathers,
differences which increased slightly after adjustment for maternal race/ethnicity. Newborns
with black and Hispanic mothers and fathers, and Other fathers, had higher MEG3
methylation. When considering both parents, the paternal differences were eliminated while
the higher methylation for those with black (0.44 SD, p<0.05) and Hispanic (0.41 SD,
p<0.05) mothers remained. The NNAT DMR exhibited no race/ethnic differences when
parents were examined separately, but considered together, methylation was higher for those
with black (0.47 SD, p<0.05) and Hispanic (0.39 SD, p<0.05) mothers, and lower for black
(-0.52 SD, p<0.05), Hispanic (-0.44 SD, p<0.05) and MRE fathers. That is, the differences
in NNAT were in opposite directions for mothers and fathers.

Incorporating both race/ethnicity and SES together in model 5 and comparing with earlier
models which only adjusted for race/ethnicity or SES allows us to see how considering SES
affects estimates of disparities. That is, since there are race/ethnic differences in SES,
reduced disparities in SES-adjusted models indicate that race/ethnic differences are due to
differences in exposures and access to resources. However, since our SES measures are
simple, the remaining race/ethnic gaps are not automatically ancestry linked but rather may
still have a social component. For the IGF2 DMR, education but not income, differences
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were apparent after adjustment for race/ethnicity. Adjusting for SES reduced the paternal
race/ethnic difference, but the gap in methylation for those with black fathers remained large
and significantly negative (-0.68 SD, p<0.001). Those with MRE versus white fathers also
had significantly less IGF2 DMR methylation, while those with Hispanic mothers had
higher methylation (0.35 SD, p<0.05). For the H19 and MEG3 DMRs, SES differences were
non-significant, but SES-adjustment left the race/ethnic differences insignificant as well. For
the NNAT DMR, adjusting for SES statistically explained paternal race/ethnicity differences,
but did not weaken the significant association of black and Hispanic mothers with higher
methylation.

Multivariable analyses replicating table 3 for the other five DMRs are presented in table 5.
For the PEG10/SGCE and MEG3-IG DMRs, newborns with MRE fathers had lower
methylation. Those with black fathers had significantly lower PEG3 DMR methylation in
unadjusted models only. For PEG1/MEST, those with Other and MRE fathers had
significantly lower methylation before SES adjustment.

DISCUSSION

In this multiethnic cohort, we hypothesised that SES accounted for some of the racial/ethnic
differences in DNA methylation by examining DMRs regulating genomically imprinted
genes. We found unadjusted race/ethnic and socioeconomic (measured by education)
differences in DNA methylation of three of nine DMRs of imprinted genes examined (IGF2,
H19, MEG3), race/ethnic differences alone for one (NNAT), and weak or no differences for
others (PEG3, PEG10/SGCE, PLAGL1, PEG1/MEST and MEG3-IG DMRs). These
differences across genes were not solely differences in strength of association; distinct
patterns were observed linking social conditions with DNA methylation for each gene. An
SES gradient appeared for the IGF2 DMR even after adjusting for race/ethnicity, while the
maternal Hispanic—white and paternal black—white gaps remained with SES controls. For
the H19 and MEG3 DMRs, adjusting for SES statistically ‘explained away’ the observed
race/ethnic differences. For NNAT, those with Hispanic and black mothers had higher DNA
methylation, where those with Hispanic and black fathers had lower DNA methylation,
compared to for white parents. However, the social factors examined were not major
contributors to the overall variance in DNA methylation (R2<0.10, except R2=0.15 for IGF2
DMR). With Bonferroni correction (p<0.006), the only remaining differences were at the
IGF2 DMR. Observed differences in DNA methylation (<5.3% across social groups) were
of a similar magnitude to those reported previously in relation to the Dutch famine (2-5%)1°
or maternal smoking (1-3%).4363

Using the socioeconomic predictors available, we were not able to explain all of the race/
ethnic differences in the IGF2 and NNAT DMRs, especially the lower methylation of the
IGF2 DMR for newborns with black fathers. Previous findings show that prenatal exposure
to faminel® predicts lower IGF2 DMR methylation, and that adult offspring of fathers (but
not mothers) exposed prenatally to famine had higher BMIs.%4 Paternal obesity®® and
maternal depression/antidepressant use86 predict lower IGF2 DMR methylation, and lower
IGF2 DMR methylation has been linked to lower plasma IGF and lower birth weight” and
greater childhood obesity risk,4°® presumably due to rapid early growth, risk of colorectal
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cancer#168 and other conditions.15166970 A speculative explanation which extends the extant
literature is that black fathers’ epigenomes may embody an intergenerational legacy of
nutritional/metabolic disadvantage, information that may be carried forward through the
germline to subsequent generations.”165 Since reprogramming of imprint methylation marks
in males is finalised during sperm maturation, it is also possible that the disadvantage that
the father is experiencing in the time span of sperm generation (~64 days in humans), prior
to conception, affects a shift in methylation reprogramming that is directly transmitted to the
zygote. Methylation quantitative trait loci analysis could be used to search for a genetic
origin. Whatever the origin, this paternal black—white gap in IGF2 DMR methylation at
birth should be a target for mechanistic studies of how it may be involved in the disturbing
black-white differences in birth weight and other outcomes.”2

Another key contribution is the ability to differentiate between maternal and paternal race/
ethnic differences. Evolutionary ‘kinship’ theory explains imprinting as a battle between
paternal and maternal genes in the offspring for accessing maternal resources (eg, nutrients
through the placenta, care-giving postnatally): maternally inherited DNA is thought to
maximise the mother’s reproductive capacity and the fitness of all her offspring by
controlling genes that promote growth, while paternally inherited DNA favours maximising
the fitness and growth of his offspring versus those fathered by other males by controlling
genes that limit growth.”® Extending this theory predicts that maternal/paternal social
conditions would act in opposite directions, a pattern which appeared clearly in the race/
ethnic coefficients for NNAT but is consistent with IGF2 and H19. Disparities in MEG3,
however, appear similar for both parents, and probably stem from maternal resources.
Socioeconomic variation among mothers could be suppressed if maternal and paternal
resources are ‘warring’ and mothers and fathers have similar SES. However, it does appear
that social factors act strongly on some DMRs and weakly or not at all on others.

Study strengths include a sizeable, socially diverse cohort with data collection occurring at a
key point in the life course when postnatal exposures would not yet have come into play,
and the use of race/ethnic information on both parents. Since respondents were captured at
hospitals within one community, the data here reflect the community’s population but do not
form a representative sample. Perhaps stronger social patterning would have been apparent
in a larger cohort. More sensitive SES measures might have shown stronger gradients. In
addition, it may be paternal resources that are relevant under paternal DNA methylation.
Future research will explore the potential role of fathers’ characteristics in DNA methylation
at birth. Given the measures available and sample size, we cannot fully explore the potential
for exposures and behaviours which differ by race/ethnicity and SES to contribute to
disparities. We use race/ethnic reports by the mother rather than genetic measures, due to
our emphasis on social aspects; results using genetic measures may differ. We have
examined only nine DMRs, and only in cord blood. We did not examine the relationship
between methylation and expression, or how methylation shifts observed may or may not be
related to alterations in imprinting status of the genes in the domains analysed. However, the
genes we study are known to be involved in growth and perturbed very early in life.

Previous research on DNA methylation which considered social factors has typically
focused on either repetitive sequences such as LINE1 and Alu,%3925 or epigenome-wide
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DNA methylation studies.®® Our findings are descriptive, but bring attention to the value of
DMR-specific social epidemiological research. Focusing on a few genes in a cluster can
help achieve two very important aims: (1) to elucidate the interrelationships among
predictors more clearly and (2) to enable comparisons between DMRs in the differential
roles that predictors may play. Crucially, birth cohort studies using umbilical cord blood
DNA provide a unique opportunity to examine intergenerational influences including
genomic differences and the accumulation of disadvantage captured in epigenetic
information transmitted from prior generations, before the individual experiences the
postnatal environment. Newborns’ epigenetic profiles appear to not be ‘a blank slate,” but
rather prenatal social and other factors most likely play complex roles in generating
epigenetic differences.
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What isalready known on this subject?

Epigenetic regulation of imprinted genes associates with birth weight. Social disparities
have been shown in repeated elements DNA methylation and epigenome-wide in limited
studies in adults. It is not known if social disparities in DNA methylation exist at birth
and how they may vary by epigenetic marker.

What this study adds?

Race/ethnic differences appeared in methylation at four of nine imprinted gene regions
examined in umbilical cord blood, notably a difference between newborns of black
versus white fathers at the IGF2 locus, which has been linked to birth weight. Epigenetic
social disparities differ by gene and by parent of origin. Differences in DNA methylation
patterns may not only influence fetal health but also have the potential to affect adult
health disparities.
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Summary statistics for non-socially variant DMRs

DMR Mean SD Minimum Maximum
MEG3-IG 49.3 3.6 312 616
MEST1 43.3 4.8 17.7 785
PEG3 36.0 3.2 269 70.0
PEG10/SGCE 447 6.1 22 934
PLAGLL/HYMAl1 57.1 6.8 0.8 82.6

Newborn Epigenetic Study, cord blood leucocytes, 2010-2011.

DMR, differentially methylated region.
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