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Summary

This article deals with jointly modeling a large number of geographically referenced outcomes 

observed over a very large number of locations. We seek to capture associations among the 

variables as well as the strength of spatial association for each variable. In addition, we reckon 

with the common setting where not all the variables have been observed over all locations, which 

leads to spatial misalignment. Dimension reduction is needed in two aspects: (i) the length of the 

vector of outcomes, and (ii) the very large number of spatial locations. Latent variable (factor) 

models are usually used to address the former, although low-rank spatial processes offer a rich and 

flexible modeling option for dealing with a large number of locations. We merge these two ideas 

to propose a class of hierarchical low-rank spatial factor models. Our framework pursues 

stochastic selection of the latent factors without resorting to complex computational strategies 

(such as reversible jump algorithms) by utilizing certain identifiability characterizations for the 

spatial factor model. A Markov chain Monte Carlo algorithm is developed for estimation that also 

deals with the spatial misalignment problem. We recover the full posterior distribution of the 

missing values (along with model parameters) in a Bayesian predictive framework. Various 

additional modeling and implementation issues are discussed as well. We illustrate our 

methodology with simulation experiments and an environmental data set involving air pollutants 

in California.
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1. Introduction

With enhanced capabilities in collecting, storing, and accessing geographically referenced 

data sets, spatial analysts today frequently encounter data comprising a large number of 
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variables across a very large number of locations. In several instances, inference focuses 

upon three major aspects: (i) estimate associations among the variables, (ii) estimate the 

strength of spatial association for each variable, and (iii) predict the outcomes at arbitrary 

locations.

Modeling multiple geographically referenced outcomes proceeds from two different 

premises. One approach (Royle and Berliner, 1999; Gelfand et al., 2004) considers a 

conditional regression-like approach where the marginal distribution of the first outcome is 

specified, followed by the conditional distribution of the second outcome given the first, and 

so on. This approach is more suitable when there is a natural “ordering” of the outcomes 

suggesting the sequence for constructing the conditional distributions.

Settings that lack such information prefer joint modeling for the set of outcomes to avoid the 

explosion in models emerging from alternate ordering schemes. Conditional inference can 

subsequently proceed from the joint distribution by conditioning on the relevant variables. 

The challenge in the joint modeling approach is to specify valid multivariate spatial 

processes using matrix-valued, cross-covariance functions ([e.g., Ch. 7]; Banerjee, Carlin, 

and Gelfand 2004). Gelfand et al. (2004) offer a detailed comparison of both approaches for 

multivariate spatial data. Here we focus upon the joint modeling approach.

The linear model of coregionalization (LMC) proposed by Matheron (1982) is among the 

most general models for multivariate spatial data analysis. Here, the spatial behavior of the 

outcomes is assumed to arise from a linear combination of the independent latent processes 

operating at different spatial scales (Chilés and Delfiner, 1999). The idea resembles latent 

factor analysis (FA) models for multivariate data analysis (e.g., Anderson, 2003) except that 

in the LMC the number of latent processes is usually taken to be the same as the number of 

outcomes. Then, an m × m covariance matrix has to be estimated for each spatial scale (see, 

e.g., Lark and Papritz, 2003; Castrignanó et al., 2005; Zhang, 2007; Finley et al., 2008), 

where m is the number of outcomes. When m is large (e.g., m ≥ 5 and 300 spatial locations), 

obtaining such estimates is expensive. Schmidt and Gelfand (2003) and Gelfand et al. (2004) 

associate only an m × m triangular matrix with the latent processes. However, high 

dimensional outcomes are still computationally prohibitive for these models.

When the number of independent latent processes in an LMC is taken to be fewer than the 

number of outcomes (e.g., Zhang, 2007), we obtain a spatial factor model. Wang and Wall 

(2003) studied multivariate indicators of cancer risk in Minnesota using one spatial factor. 

Liu, Wall, and Hodges (2005) deployed multiple factors with each underlying factor 

explaining its own unique set of observed/measured variables. Christensen and Amemiya 

(2002) developed semiparametric latent variable (shift-factor) models for rectangular grids. 

Hogan and Tchernis (2004) fitted a one-factor spatial model and compared the results using 

different forms of spatial dependence through the single factor. Minozzo and Fruttini (2004) 

applied log-linear spatial FA to geo-referenced frequency counts adopting the classical 

proportional covariance model to the latent factors.

Our current work is similar to the aforementioned articles in its use of independent latent 

spatial processes as underlying factors. However, we propose three methodological 
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innovations within this framework. First, we use a multivariate low-rank spatial process to 

achieve dimension reduction over space. Critically, we need to work with irregularly spaced 

locations that do not necessarily lie on a grid, nor can they be easily projected onto the same. 

Although there are several choices here, we deploy the multivariate Gaussian predictive 

process (Banerjee et al., 2008, 2010). The method is closely related to kernel-convolutions, 

splines and low-rank kriging, (see, e.g., Wikle and Cressie, 1999; Kamman and Wand, 2003; 

Ver Hoef et al., 2004; Paciorek, 2007; Cressie and Johannesson, 2008), all of which attempt 

to facilitate computation through lower dimensional process representations. The predictive 

process can be applied to any spatial correlation function and maintain the richness of 

desired hierarchical spatial modeling specifications using a set of locations (or knots).

Second, we do not fix the number of factors but model it stochastically. We do so differently 

from some existing approaches. For example, Lopes and West (2004) addressed this 

problem by constructing proposals using the results of a preliminary Markov chain Monte 

Carlo (MCMC) run under each model. Such an approach has high computational demands, 

becoming infeasible as the sample size and potential number of factors increase. Dunson 

(2006) introduced a model averaging method for FA, but the construction of factor selection 

is inconvenient for spatial models. Chen and Dunson (2003) proposed a Bayesian random 

effect selection method which is similar to what we propose but, instead of selecting random 

variables, we choose the underlying latent processes that capture spatial dependence. We 

avoid complex computational strategies such as reversible jump algorithms and build our 

adaptive models by utilizing some key identifiability results, hitherto largely unaddressed, to 

construct hierarchical models.

Third, we reckon with spatial misalignment in the context of spatial FA. Misalignment 

occurs frequently in spatial data when not all variables have been observed across all 

locations. Put differently, the sets of observed locations for the different outcomes are not 

identical (either because they are missing or have been collected by different monitoring 

sets). Assuming that all covariates are available at a location, we want to estimate the 

functional relationship between the covariates and the outcomes at that location—even if all 

the outcomes have not been observed there. We also seek to predict the outcomes at any 

arbitrary location in the domain, thereby estimating the response surfaces for each outcome.

Our motivating application pertains to ambient air quality assessment in California. The 

deleterious impact of air pollution upon health and quality of life is widely recognized as a 

major environmental issue (e.g., Dominici et al., 2006). Spatial interpolation of air pollutants 

plays a crucial role in assessing and monitoring ambient air quality and modeling multiple 

pollutants can capture associations within and across different locations, which can enhance 

predictive performance. Our data set includes five commonly encountered pollutants 

observed over 300 monitoring stations across California and is spatially misaligned in the 

aforementined manner. Estimating fully specified joint models for such data will be 

exorbitant, which is why multivariate spatial modeling has rarely been undertaken in such 

frameworks.

The remainder of this article is organized as follows. Section 2 describes the features of the 

LMC and discusses the model construction, identifiability issues, stochastic selection, and 
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prior specification. Section 3 outlines the proposed class of low-rank adaptive spatial factor 

models, how we handle misaligned data, and carry out inference. Section 4 illustrates the 

analysis for two simulated data sets and one air quality monitoring data. Finally, Section 5 

concludes the paper with a summary and an eye toward future work.

2. Model Construction

2.1 LMC Model Structure and Specification

LMC consists of decomposing the set of original second-order random stationary outcomes 

into a set of reciprocally orthogonal regionalized factors. Suppose, for a study region D ⊆ 

ℝd, an m × 1 process Z(s) = (Z1(s), …, Zm (s))′ is a second-order stationary process. Then, 

for all s, h ∈ ℝd and i, j = 1, …, m, we have E[Zi (s)] = μi and cov{Zi (s), Zj (s + h)} = Cij 

(h). The matrix-valued function C(h) = {Cij (h)} is called the multivariate cross-covariance. 

Generally for i ≠ j, a change in the order of the variables or a change in the sign of the 

separation vector h changes the values of the cross-covariances. If both the sequence and the 

sign are changed, we would have the same value Cij (h) = Cj i (−h), which implies C(h) = 

C(−h)′. C(h) must also be a positive definite function. That is, for any finite set of spatial 

locations s1, …, sn ∈ D and any vectors ai ∈ ℝm, i = 1, …, n, 

. Specifying a valid cross-covariance function 

is less straightforward because of this constraint, but several spectral and constructive 

approaches (Ver Hoef and Barry, 1998; Chilés and Delfiner, 1999) have been proposed and 

used in multivariate spatial analysis.

A straightforward cross-covariance is the so-called intrinsic specification, C(h) = ρ(h)T, 

where T is an m × m positive definite matrix and ρ(h) is a univariate correlation function. 

The limitation here is that each Zi (s) has the same spatial parameters, so each outcome 

would have the same strength in spatial association over the domain. An extension 

(Wackernagel, 2003) specifies , where for each k, Tk is a rank-one 

positive semidefinite matrix and ρk (h; ϕk) is a correlation function that depends upon 

additional parameters ϕk. Here, r is the total number of different spatial correlation functions 

in the multivariate cross-covariance.

The spectral decomposition yields , where uk is the normalized (i.e., ‖uk‖ = 1) 

eigenvector of Tk corresponding to the only positive eigenvalue ξk of Tk. Because Tk is 

symmetric with rank one, all its other eigenvalues are zero. This implies that there is an m × 

1 vector, , which is the square root of Tk such that . Although ‖uk‖ = 1, 

it still has two possible directions. To build a one-to-one transformation between Tk and λk, 

we need to impose some further constraints on λk by, for instance, restricting the first 

element of λk to be positive.

Let wk (s), k = 1, …, r, be independently distributed univariate Gaussian processes, each 

with unit variance and a parametric correlation function. We write wk (s) ~ GP(0, ρk (·; ϕk)) 

with var{wk (s)} = 1, cov{wk (s), wk (t)} = ρk (s, t; ϕk), and cov{wk (s), wl (t)} = 0 whenever 

k ≠ l for all s and t (even when s = t). Here ρk (·; ϕk) is a correlation function associated with 
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wk (s), and ϕk includes the spatial decay and smoothness parameters. We can easily see that 

the multivariate cross-covariance function for the process wk (s)λk is ρk (h; ϕk)Tk and hence, 

for , the function is .

We often assume that the mean of the outcomes arises linearly in the predictors so that the 

mean of the jth outcome Yj (s) is modeled as xj (s)′ βj, where xij (s) is a pj × 1 vector of 

predictors, assumed to be known at location s, and βj is the corresponding pj × 1 vector of 

slopes. Let Y(s) be the m × 1 vector of outcomes with jth element Yj (s) and let X(s)′ be an m 

× p block diagonal matrix, where  and the jth diagonal block is given by xj(s)′ 

and  is a p × 1 vector of slopes. Then, the spatial factor model is

(1)

where Λ = (λ1, …, λr) is a m × r matrix with kth column λk, w(s) = (w1(s), …, wr (s))′, and 

ε(s) is an m × 1 vector of measurement errors distributed as N (0, Ψ). The measurement error 

variance Ψ can be any m × m positive definite matrix but is usually assumed diagonal with 

elements  for j = 1, …, m along the diagonal.

2.2 Identifiability in Spatial Factor Model

Model (1) is similar to FA models with the factor-loading matrix Λ and latent factor w(s), 

except that w(s) is now a multivariate stochastic process positing spatial dependence. As is 

well known (see, e.g., Anderson, 2003), orthogonal FA models must be further constrained 

to ensure identifiability. A widely used approach is to fix certain elements of Λ to constant 

values, usually to zeroes, such as restricting Λ to be an upper or lower triangular matrix with 

strictly positive diagonal elements (Lopes and West, 1999).

In LMCs, (see, e.g., Schmidt and Gelfand, 2003; Gelfand et al., 2004; Finley et al., 2008), a 

lower triangular Λ with positive diagonal elements identifies the covariances among the 

outcomes within a location because C(0) = ΛΛ′. But what we really seek to model is C(h). 

Finding proper identifiability constraints on Λ is equivalent to finding transformations that 

retain the statistical properties of the model.

Let P be an r × r orthogonal matrix, so that P′P = PP′ = Ir. The random effect term in (1) 

can be written as Λw(s) = ΛPP′w(s) = Λ̄ w̄(s), where Λ̄ = ΛP and w̄(s) = P′w(s). For 

nonspatial or traditional FA, the elements of w(s) are uncorrelated and the model is invariant 

to any orthogonal transformation because w(s) and w̄(s) have identical cross-covariances 

and ΛΛ′ = Λ̄Λ̄′. One can, therefore, obtain an infinite number of equivalent matrices of 

factor loadings by simply applying orthogonal transformations.

Matters are subtly different when w(s) is a spatial process. The cross-covariance matrix 

cov{w(s), w(t)} = Γ(s, t; ϕ), is now diagonal (and not an identity matrix as in traditional FA) 

with the kth diagonal element ρk (s, t; ϕk). Orthogonal transformations can, therefore, alter 

the distribution of w̄(s). To be precise, now cov{w̄(s), w̄(t)} = P′Γ(s, t; ϕ)P, which is neither 

Ren and Banerjee Page 5

Biometrics. Author manuscript; available in PMC 2015 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



necessarily diagonal nor equal to Γ(s, t; ϕ). Therefore, spatial factor models are not 

necessarily invariant to any orthogonal transformation.

Our primary motivation for using a Λ without any pre-specified 0 element is stochastic 

modeling for the number of factors (see Section 2.3). Such a model would automatically 

identify the latent spatial processes and, hence, the corresponding columns of Λ that are 

retained in (1). Specifying Λ to be lower triangular is now problematic because it is unlikely 

that such a structure will be retained throughout the stochastic selection process. On the 

other hand, using a Λ that is identifiable but that does not restrict certain elements to be zero 

will avoid such awkwardness.

In fact, we argue (see Web Appendix A for details) that only two groups of orthogonal 

transformations lead to nonidentifiability in spatial factor models. The first transformation P 
satisfies P′Γ(s, t; ϕ)P = Γ(s, t; ϕ). Such a P must be diagonal with 1’s and −1’s only. It is a 

special reflector (i.e., P2 = I) and is obtained as a product of elementary reflectors of the 

form , where ei is the ith Euclidean standard coordinate vector. The orthogonal 

matrix P alters the sign of the columns in Λ. To identify Λ (or have a one-to-one relationship 

between Λ and ΛΛ′), we need to specify one element in each column of Λ as positive or 

negative. Without losing generality, we could set the first row of Λ to be positive.

Permutation matrices constitute the second group of orthogonal transformations that lead to 

nonidentifiability in spatial factor models. A permutation matrix switches the elements of 

w(s) and the corresponding columns of Λ simultaneously, so the distributions of Λ̄w̄(s) and 

Λw(s) are the same. To address such identifiability issues, we impose some constraints on ρk 

(h; ϕk), more specifically on ϕk (Zhang, 2007). For simplicity, we consider the exponential 

correlation function ρk (h; ϕk) = exp(−ϕk ‖h‖), which has a spatial decay parameter ϕk as the 

only unknown parameter. We require the range parameter ϕk, k = 1, …, r, to be ordered as 

ϕ1 < ϕ2 ⋯ < ϕr or ϕ1 > ϕ2 ⋯ > ϕr. Simulation studies (see Sections 4.1 and 4.2) reveal that 

without this constraint, parameter estimation becomes problematic.

2.3 Adaptive Bayesian Factor Model

Determining the number of spatial factors (r) is challenging because of the lack of rigorous 

theoretical results that hint at the data’s ability to inform about r. Generally, previous work 

Webster, Atteias, and Duboiss (1994) employing the LMC assumes r < m is fixed. The 

choice of the number of spatial processes and their respective scales is a critical point in 

geostatistical models. In the applications of LMC to multivariate spatial analysis (see, e.g., 

Webster et al., 1994; Castrignanó et al., 2005; Buttafuoco et al., 2010), the spatial 

correlation functions ρk (h; ϕk), the parameters ϕk, and r are obtained from empirical 

estimates of the auto- and cross-variograms before any modeling. This approach ignores the 

uncertainty in the estimates of the spatial parameters and may yield dubious inference.

We adapt earlier work by Kuo and Mallick (1998) and Chen and Dunson (2003) to propose 

an approach for selecting spatial processes corresponding to different spatial scales using a 

Bayesian hierarchical model. Indicator variables δ = {δ1, …, δr}, where each δk is supported 

at two points 1 and 0, are introduced in model (1) to yield:
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(2)

When δk = 1, we include the kth spatial random process wk (s) and the corresponding λk in 

the model. Otherwise, we omit the kth spatial scale. This yields 2r submodels. We call (2) 

the adaptive Bayesian factor model, in which the unknown parameters are estimated 

together with which factors will be retained.

2.4 Prior Specification

We place a multivariate normal prior on the slope parameter β with mean μβ and variance 

Σβ. Often, a flat prior  is used. Each diagonal element of Ψ is assigned an Inverse 

Gamma (IG) distribution. With , the prior for Ψ becomes 

 with hyperparameters a and b. A customary 

choice is to use a = 2, which suggests a distribution with infinite variance and a mean of b 

(often gleaned from a semivariogram).

For simplicity, we assume independent priors for δ and Λ (Kuo and Mallick, 1998). The 

indicator variables δk, k = 1, …, r, are taken a priori to be independent, with p(δk = 1 | ω) = 

ω. We regard ω as unknown and assume that it has a uniform prior on (0, 1). Imposing 

constraints on Λ, only requires a minor modification in the derivation of the full conditional 

distribution. Here, we take independent priors such as . The first row of Λ is 

restricted to be positive, that is,  for k = 1, …, r, where I(·) is the 

indicator function. Berger and Pericchi (2001) suggest caution in the use of such priors in 

generic hierarchical models because the outcome of the model selection process can be quite 

sensitive to their vagueness. However, this seems to be less of an issue in dynamic factor 

models once the loading matrix is made identifiable (Lopes and West, 2004), where-upon 

inference and model selection were robust to the prior specifications. Similar results are 

obtained in random effect selection models (Chen and Dunson, 2003; Cai and Dunson, 

2006). In our current context, restricting the first row of Λ to be positive, hence assigning a 

truncated normal to each element of the first row of Λ, ensures robust model selection and 

related inference to .

One also needs to assign priors on . The prior for ϕ depends upon the choice of 

correlation functions. Quite remarkably, the spatial process parameters are not consistently 

estimable and the effect of the prior does not disappear with increasing amounts of data 

(Zhang, 2004). Hence, prior information becomes an even more delicate issue. Typically, we 

set prior distributions for the range parameters relative to the size of their domains. In this 

article, an exponential correlation function is used and the prior for the range parameter is 

specified on a support with upper and lower limits denoted as ϕu = −log(0.01)/dmin and ϕl = 

−log(0.05)/dmax, where dmin and dmax are the minimum and maximum distances across all 

the locations (Wang and Wall, 2003). Because of identifiability issues discussed in Section 

2.2, we construct a joint distribution for the ϕk’s to ensure ordering. In particular, we set
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where π(ϕ1) is a uniform density with support (ϕl, ϕu) and subsequently, for k = 2, 3, …, r,

(3)

Here the hyperparameters ck > 0 controls the shape of the distribution and the separation of 

the ϕk’s. In all our subsequent analyses, we fix ck = 2k as a reasonable choice that delivers 

robust inference. For any finite domain this prior is proper (i.e., integrable). To offer some 

additional insight, let ϕk − ϕk−1 ∈ (0, hck) and h = 4. Numerical integration yields p(ϕk − 

ϕk−1 < ck /2 | ϕk−1) < 0.01. This implies that ϕk is unlikely to appear in (ϕk−1, ϕk−1 + ck /2) 

unless there is a strong mode from the likelihood. So (3) could efficiently separate the ϕk’s. 

On the other hand, , which indicates that π(ϕk | ϕk−1) 

becomes informative when ϕk−1 and ϕk are away from each other.

An alternative specification is π(ϕ) ∝ I (ϕl < ϕ1) I (ϕ1 < ϕ2) ⋯ I (ϕr < ϕu). This is somewhat 

simpler than (3), but encounters problems in practical implementation. Here, the posteriors 

for ϕk and ϕk +1, although they theoretically obey ϕk < ϕk +1, can become very close to each 

other. In that case, one of the two latent processes becomes redundant, yet stochastic factor 

selection keeps both processes. The specification in (3) avoids this situation.

3. Predictive Process Factor Models

Although FA is a powerful tool for summarizing multivariate outcomes and conducting 

dimension reduction on the number of outcomes, the spatial FA is prohibitive with a large 

number of locations. A popular model-based approach for dimension reduction over space 

uses low- or fixed-rank representations for w(s). Their likelihood resembles linear-mixed 

models and can be estimated using standard algorithms with some minor adaptations.

Here we consider one such representation that projects the spatially associated latent factors 

w(s) onto a lower-dimensional subspace determined by a partial realization of the process 

w(s) over a manageable set of locations called “knots.” Unlike several other low-rank 

methods, the predictive process does not introduce additional parameters or kernels. Also, 

some approaches require empirical estimates of the data’s covariance structure. This may be 

challenging here as the variability in the “data” is assumed to be a sum of unobserved 

factors. Therefore, we cannot use variograms on the data to isolate empirical estimates of its 

spatial covariance structure from that of the individual factors.
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3.1 Model Construction

A Gaussian predictive process (see, e.g., Banerjee et al., 2008; Finley et al., 2009; Banerjee 

et al., 2010) uses a set of fixed “knots” , n* ≤ n which are usually fixed 

and may, but need not, form a subset of the observed locations  = {s1, …, sn}. The 

Gaussian process defined in Section 2.1 implies that  follows 

, where  is the n* × n* covariance matrix whose (i, j)th element is 

. The spatial interpolation or “kriging” function at a site s0 is given by 

, where dk (s0; ϕk) is an n* × 1 vector 

whose ith element is . This defines the predictive process w̃k (s) ~ GP(0, ρ̃
k (·; 

ϕk)) derived from the parent process wk (s), where 

.

The predictive process underestimates the variance of the parent process wk (s0) at any 

location s0 because var{wk (s0)} − var{w̃k (s0)} = var{wk (s0) − w̃k (s0)} ≥ 0. The veracity of 

this is an immediate consequence of the definition of w̃k (s) as a conditional expectation. 

This means that the estimated Ψ from the predictive process model roughly captures the 

same amount of variability as the estimated Ψ + Λ(Ir − E[Γ̃(s0)])Λ′ from (1), where Γ̃(s0) is 

an r × r diagonal matrix with kth diagonal element ρ̃
k (s0, s0; ϕk).

Defining , where , we easily obtain 

var{fk (s)} = var{wk (s)} = 1, as desired. Replace w(s) with f(s) = (f1(s), …, fr (s))′ in (2) and 

define fk = (fk (s1), …, fk (sn))′, F = (f1, …, fr) and . This yields 

the posterior distribution p(F, w*, β, Ψ, ϕ, Λ, δ, ω |Y) proportional to

(4)

where Dk (ϕk) = (dk (s1), …, dk (sn))′ and Σfk is an n × n diagonal matrix with ith diagonal 

element . π(ω) is uniformly distributed on (0, 1) and π(ϕ) is defined in (3). Estimation 

of (4) proceeds using MCMC sampling (see Web Appendix B for details).

We offer some remarks on knot selection. With evenly distributed locations, knots on a 

uniform grid (see, e.g., Diggle and Lophaven, 2006) may suffice. With irregular locations, 

space-covering designs (e.g., Royle and Nychka, 1998) yield a more representative set. In 
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general, different knots selection methods still produce robust results in predictive process 

models (see, e.g., Finley et al., 2009; Banerjee et al., 2010). And the modified predictive 

process model fk (s) is even less sensitive than w̃k (s) to such choices. Here, we use the K-

means clustering algorithm (Hartigan and Wong, 1979) to arrive at a set of knots.

3.2 Handling Missing Observations

Missing outcomes arise frequently in many environmental applications. The outcomes may 

be missing for a variety of unintended reasons: nonresponse, equipment failure, lack of 

collection, and so on. Bayesian analysis often proceeds from data augmentation (Tanner, 

1993) or multiple imputation (Rubin, 1976) to handle the incomplete data problem. Both 

methods impute the missing values within a Gibbs step and then use the complete data set. 

Instead, here we condition on the latent factors, which simplifies the MCMC algorithm and 

reduces the computational burden. Conditional on the latent factor f(s), the outcomes are 

independent of each other, which yields a likelihood depending only upon observed data. 

The missing values can, then, be recovered from the posterior predictive distribution.

Let Y(s) be the m × 1 vector of measured and unmeasured outcomes at site s. Suppose the 

measured and unmeasured elements of Y(s) have indices i1, …, ids and ids+1, …, im, 

respectively, where ds is the number of observed outcomes at s. Let vj, j = 1, …, m, be an m 

× 1 vector whose jth element is 1 and the rest are all 0. We can then construct matrices 

R1(s)ds×m and R2(s)(m−ds)×m, which can extract the observed and unobserved elements when 

multiplied by Y(s). More precisely, R1(s) = (vi1, …, vids
)′ and R2(s) = (vids+1

, …, vim)′.

Observe that Yo (s) = R1(s)Y(s) and Yu (s) = R2(s)Y(s) consist of the observed and 

unobserved elements, respectively. Multiplying both sides of model (2) by R1(s) reveals that 

the likelihood p(Yo (s) | f(s), γ, β, Λ, Ψ) follows a multivariate normal distribution with 

variance R1(s)ΨR1(s)′ and mean . Note that R1(s)ΨR1(s)′ 

is a ds × ds diagonal matrix with lth diagonal element  for l = 1, …, dS. This ensures that 

R1(s)ΨR1(s)′ is a valid covariance matrix, and so is R2(s)ΨR2(s)′ for similar reasons. See 

Web Appendix B for implementation details.

3.3 Prediction and Predictive Model Comparison

Spatial analysis for data sets with missing values customarily entail three types of inference: 

(i) recover missing values, (ii) predict outcome Y(t) = (Y1(t), …, Ym (t))′ at any arbitrary 

location t, and (iii) generate replicates for the observed data for use in model assessment and 

selection (Gelfand and Ghosh, 1998).

To recover the missing values, we use composition sampling to draw Yu from p(Yu|Yo), 

where Yo = (Yo (s1)′, …, Yo (sn)′)′ and Yu = (Yu (s1)′, …, Yu (sn)′)′. Note that
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where Λ̃ = (δ1λ1, …, δrλr). Using the samples {F(l), θ(l)} from p(F, θ |Yo), the missing value 

at s is recovered by drawing  for each, l = 1, …, L, from an (m − ds) × 1 multivariate 

normal distribution with mean R2(s)[X(s)′ β(l) + Λ̃(l) f(l) (s)] and variance R2(s)Ψ(l)R2(s)′.

Prediction of the outcomes at unsampled or ungauged sites is often a major study objective. 

Using notations defined earlier, we have

where  and 

. Here, Gk (ϕk) is the variance of fk, 

which equals . For prediction, we would first sample fk (t)(l) 

from  using posterior samples  and . Then, Y(t)(l) is drawn 

from an m ×1 multivariate normal distribution with mean X(t)′β(l) + Λ̃(l) f(t)(l) and variance 

Ψ(l).

Finally we turn to generating replicated observations for Yo. This is easily achieved by first 

sampling from p(w*, θ |Yo). The replicate  is generated from a ds × 1 multivariate 

normal distribution with mean R1(s)[X(s)′β(l) + Λ̃(l) w̃(l)(s)] and variance R1(s)[Ψ(l) + Λ̃(l) 

Σf(s) (ϕ(l))Λ̃(l)′]R1(s)′, where Σf(s) is a diagonal matrix with kth diagonal element . 

Then  and  can be calculated respectively, where i 

indexes the observed data. Gelfand and Ghosh (1998) present a posterior predictive criterion 

that balances goodness-of-fit and predictive variance under a squared error loss function. 

This assigns a score to each model that is the sum of two terms, P and G, where 

 is an error sum of squares and represents goodness-of-fit, whereas 

 represents predictive variance and acts as a penalty term. Therefore, 

complexity is penalized and a parsimonious choice with lower D = G + P indicates preferred 

models.
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4. Illustrations

We executed our adaptive spatial factor models using the R programming language. The 

most demanding model (12 × 1 vector of outcomes across 1, 000 locations) took 

approximately 48 hours to deliver its entire inferential output from 20, 000 MCMC 

iterations, including 4, 000 samples for burn-in, on a 3.10-GHz Intel i5–2400 processor with 

4.0 Gbytes of RAM. The statistics of Gelman and Rubin (1992) was used to assess chain 

convergence alongside visual inspection of the trace plots and empirical autocorrelation 

functions.

4.1 Simulation Study One

The objective of this simulation study is to explore different specifications for Λ and 

demonstrate model identifiability. Adaptive factor modeling and predictive processes are not 

employed here. The data generating model uses a 2 × 2 factor loading matrix Λ and a spatial 

range parameter ϕ whose first element is smaller than the second. A synthetic data set 

comprising 250 locations within a [0, 50] × [0, 50] square was generated from (1) with r = m 

= 2. An isotropic exponential correlation function, ρk (s − t; ϕk) = exp(−ϕk ‖s − t‖) for k = 1, 

2, was used to produce a spatially dependent bivariate random field. The bivariate outcomes, 

Y(s), were simulated with the following parameters:

where β is the mean vector for Y(s) and . Note the strong negative 

cross-correlation between the two spatial processes. Also, the correlation decays six times 

faster in the second process than in the first, yielding spatial ranges −log(0.05)/ϕ1 ≈ 30 and 

−log(0.05)/ϕ2 ≈ 5 units for the first and second process, respectively.

Three models are estimated and compared. The first restricts Λ to be lower-triangular, as in 

the LMC setting, but does not order the ϕi’s a priori. The other two models use factor 

loadings with positive elements in the first row of Λ and use the prior in (3) for ϕ. One of 

these two models assumes ϕ1 < ϕ2, reflecting the true ordering, although the other reverses 

the inequality and results in a misspecified model a priori. However, because the factor 

loadings are now identifiable, the estimated Λ contains permuted columns according to the 

order of the ϕi’s. This is attractive in practice—one need not ascertain the correct ordering of 

the range parameters a priori. We arrange them in the same order as the true values although 

presenting estimates in Table 1.

In the first model Λ21 = 0, ϕi’s are assigned uniform priors over (ϕl, ϕu) without any further 

restrictions. Priors for the two other models are assigned as discussed in Section 2.4 with 

hyperparameters μβ = 0, , ϕl = 0.047, ϕu = 25, a = 2, and b = 5. Posterior 

inferences for the latter two models are consistent. This indicates the importance of ordering 

constraints; without them, the posterior distributions for ϕ and Λ can produce multiple 

modes as the MCMC chain could jump between the possible specifications (Lopes and 
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West, 2004). The parameter Λ21 (boldface in Table 1), which was set as 0 in the lower 

triangular setting, is significantly different from 0 in both the models using general factor 

loadings. Thus, we can capture the underlying cross-covariance structure without restricting 

the loading matrix, but by imposing an ordering on the spatial decay parameters. In addition, 

our proposed models have a lower posterior predictive model comparison score (D = 14, 

202) than the lower triangular setting (D = 14, 941). This, again, demonstrates a preference 

for using general factor loadings.

4.2 Simulation Study Two

Now we demonstrate the adaptive spatial factor model using a simulated data set with 

missing values. We generated 1, 000 locations in a [0, 30] × [0, 30] square. At each location, 

we simulated a 12 × 1 vector of outcomes, Y(s), from (1) with three factors and outcome-

specific intercepts as the only regressors. Each spatial process, wk (s), was generated from an 

isotropic exponential correlation function. The parameters are defined as:

After the data was generated, we allowed a quarter of the locations to retain all the 

outcomes, although randomly omitting 2/3 of the outcomes from the remaining locations. 

This produced a data set with approximately 50% missingness.

We applied the Gibbs sampling algorithm described in Section 3 for estimation. For the 

predictive process, we selected 200 knots using a K-means clustering algorithm (Hartigan 

and Wong, 1979). The maximum number of latent factors, r, was taken to be 5. For 

comparison, we also fit spatial factor models using a fixed number of latent factors for the 

same data set. The prior distributions resemble those in Section 4.1, except that now ϕl = 

0.07 and ϕu = 310 to better reflect the domain. Also, for the adaptive model we used 

independent Bernoulli priors for δ with p(δk = 1| ω) = ω, k = 1, …, r and ω ~ U(0, 1).

Stochastic selection produced the final model with three latent factors based upon the 

highest posterior probabilities. Figure 1 illustrates the posterior distributions for ϕ. The 

spatial parameters in the active processes are ϕ1, ϕ2, ϕ3 (corresponding to δk = 1) and their 

posteriors are well identified. The true values are all included in the central 95% credible 
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intervals. The posteriors for ϕ4 and ϕ5 only reflect prior information. The wide range of their 

posteriors suggest that there is very little posterior learning and the MCMC sampler is 

sampling from the prior. The marginal posterior density for ω reveals substantial posterior 

learning. The credible intervals of β and Ψ contain the true values, as does most of the 

elements of Λ, suggesting sound estimative performance.

Spatial factor models with fixed number of latent factors equaling 1, 2, 4, and 5 are also 

fitted. The posterior predictive criterion discussed in Section 3.3 is presented for model 

assessment and the scores are compared in Table 2. The adaptive spatial factor model with 

D = 99740 (boldface in Table 2) seems to be the winner here. There is overwhelming 

evidence that the regression model with random processes f1(s), f2(s), and f3(s) is optimal. 

This, pleasantly, agrees with the true specification.

4.3 Air Monitor Value Data

Our current application involves data compiled from the Environmental Protection Agency 

across 316 air monitors in California involving five pollutants: carbon monoxide (CO), 

nitrogen dioxide (NO2), ozone (O3), particulate matter with diameter < 2.5 micrometers 

(PM2.5), and particulate matter with diameter < 10 micrometers (PM10). Concentrations 

(ppm) measured by monitoring equipments are used for CO, NO2, and O3 and (µg/m3) for 

PM2.5 and PM10. Here we use the annual average of the monitor values recorded in 2008. 

All the variables were standardized to mean 0 and variance 1.

For the modeling, each pollutant is assigned its own intercept term. Elevation (in kilometers) 

is the only predictor and is depicted as a contoured image in the top-left panel of Figure 2. 

The instruments only monitor some of the five pollutants at most of the sites, so the data set 

has about 53% of observations missing. The longitude and latitude of the monitors are 

transformed to Easting and Northing in kilometer units. For the predictive process, 50 knots 

were selected using a K-means clustering algorithm. Interpolation for the air pollutants and 

the locations of monitor sites (·) appear in Figure 2.

Visually, the air pollutants exhibit spatially varying concentrations as well as the 

associations among them at a given location. We seek to model both kinds of dependence. It 

is not clear whether it is appropriate to assume a single factor underlying the different air 

pollutants or if additional factors need to be introduced. To address this question, we 

repeated the approach described in Section 3 using the exact model (4). The priors are the 

same as in Section 4.2 except for ϕ, which has distribution (3) with ϕl = 0.002 and ϕu = 136.

The model is implemented in the same manner as in Section 4.2. The maximum possible 

number of factors r is taken to be 3. We decide to use 4,000 iterations for a burn-in period, 

and then a further 16,000 iterations for posterior inference.

The probability assigned to the model with one latent factor is 1, suggesting that one factor 

is sufficient. The interpolation of the latent spatial processes are displayed in Figure 3. The 

panel at the top depicts the only active process (δ1 = 1), which presents some characteristics 

for the spatial concentrations of the air pollutants. The panels at the bottom do not show 

significant association with the data and only demonstrate the prior information. For each air 
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pollutant Yj (s), the percentage of the variance explained by the spatial factor fk (s), is simply 

, j = 1, …, 5. Overall, about 50% of the variation is explained by 

the first latent factor—NO2 and CO are more closely related to this latent factor, although 

PM2.5 is weakly explained.

Table 3 presents the posterior inferences of β, Ψ, ϕ, Λ, and the correlation ρ = {ρi,j}, i, j = 1, 

…, 5, j > i, among air pollutants, which is estimated from the variance estimator ΛΛ′ + Ψ. 

Only CO and NO2 reveal significant (negative) intercept coefficients. The slope parameters 

seem to suggest that elevation has a significant impact only upon Ozone among the five 

pollutants. The posterior inference for ϕ1 has median 0.018, which corresponds to the 

effective range (i.e., the distance at which the correlation drops to 0.05) roughly 160 

kilometers. The posterior inferences for ϕ2 and ϕ3 indicate weak spatial dependence. So we 

only present the first column of Λ and omit the rest in Table 3. The Λj1’s reflect the 

influence of the common factor on the corresponding outcome variables. Because the 

residual variances, , differ across j, the Λj1’s measure covariances on different scales 

and cannot be directly compared to assess strength of association between outcomes. The 

parameters  can be interpreted as independent measurement error variances. The 

covariances of the outcomes collected within one set are , where λ1 = (Λ11, …, 

Λ51)′. The corresponding correlations among the outcomes are also presented in Table 3.

5. Summary

We have addressed the problem of modeling large multivariate spatial data, where 

dimension reduction is sought both in the number of outcomes and in the number of spatial 

locations. The former is achieved with fewer number of factors, although the latter is 

achieved using a knot-based predictive process. Model-based strategies (Guhaniyogi et al., 

2011) exist for choosing knots but recent findings, including our own explorations here, 

suggests that simple space-covering or clustering algorithms usually deliver robust 

inference. Our adaptive model lets the number of factors be stochastic and allows the data to 

drive the inference.

One can use either the predictive process w̃k (s) or its “modification” fk (s) in the adaptive 

spatial factor models but fk (s) adapts better to the data and, hence, is less sensitive to the 

knots. Although the substantive inference is quite robust to both these processes, some 

subtle differences are seen in the estimation algorithm with regard to transition among 

models. This is related to the strength of the spatial random field and is explained in Web 

Appendix C.

Given the widespread use of R as a statistical language, we presented computational 

benchmarks on R running on fairly standard architectures. In multivariate spatial analysis, 

“large” refers to the size of m × n, where m is the number of outcomes and n is the number 

of locations. With R running on standard architectures, mn > 1, 000 is usually deemed 

exorbitant without dimension reduction. Substantial computational gains accrue from using 

lower-level languages (C/C++) on shared memory systems.
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Alternative approaches for modeling large spatial data sets include an SPDE/GMRF 

approach proposed by Lindgren, Rue, and Lindström (2011) that uses explicit Markov 

representations of the Matérn covariance family using a class of stochastic partial 

differential equations. Rather than MCMC, they use a faster Integrated Nested Laplace 

Approximation algorithm for Bayesian inference. Another approach, termed covariance 

tapering (Furrer, Genton, and Nychka 2006), relies upon compactly supported correlation 

functions to produce sparse covariance matrices containing only a moderate number of 

nonzero elements. How effective these alternative approaches will be with dynamic spatial 

factor models is yet to be ascertained.

Space-time or dynamic factor modeling using low-rank processes can also be envisioned. 

Misalignment can now occur both over space and over time to yield data matrices that are 

highly irregular. Our formulation can, nevertheless, be easily adapted to such settings. Also, 

although we attended only to point-referenced data here, adaptive space-time factor models 

could be used for multivariate regionally aggregated data (Jin, Banerjee, and Carlin 2007) as 

well. Here, usually the number of regions is not onerous, so dimension reduction is relevant 

over the number of outcomes (FA) and time (a temporal predictive process).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Histograms of the posterior distributions for ϕ.

Ren and Banerjee Page 19

Biometrics. Author manuscript; available in PMC 2015 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Interpolation of air pollutants measured on monitor sites across California.
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Figure 3. 
Interpolation of latent spatial factors across California.
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Table 1

Posterior percentiles (50%, 2.5%, and 97.5%) estimated for the parameters in different model specifications

True
parameter

Lower triangular
setting

General factor loadings

Increasing ϕk Decreasing ϕk

β1 = 5 4.77 (1.22, 7.49) 5.00 (3.29, 6.98) 5.58 (3.77, 7.85)

β2 = 10 10.38 (8.65, 12.73) 10.15 (8.38, 11.60) 9.68 (7.73, 11.16)

C(0)1,1 = 10 8.59, (4.76, 15.08) 10.82 (6.53, 18.54) 10.65 (6.23, 17.66)

C(0)2,1 = −4 −5.64 (−9.99, −2.93) −5.34 (−10.84, −1.82) −5.11 (−9.88, −1.67)

C(0)2,2 = 8 12.17 (6.76, 17.54) 12.99 (7.15, 19.43) 12.83 (7.15, 18.42)

Ψ1 = 2 3.65 (2.61, 4.88) 2.30 (1.19, 3.66) 2.35 (1.15, 3.55)

Ψ2 = 5 3.27 (0.97, 8.38) 3.33 (1.06, 7.99) 3.21 (0.99, 7.99)

ϕ1 = 0.1 0.06 (0.05, 0.12) 0.07 (0.05, 0.13) 0.07 (0.05, 0.14)

ϕ2 = 0.6 0.95 (0.25, 2.15) 1.17 (0.52, 2.58) 1.15 (0.49, 2.44)

Λ1,1 = 3 2.93 (2.18, 3.88) 3.11 (2.32, 4.15) 3.07 (2.31, 4.06)

Λ1,2 = −2 −1.93, (−2.80, −1.17) −2.53 (−3.42, −1.79) −2.48 (−3.33, −1.68)

Λ2,1 = 1 Fixed at 0 1.02 (0.56, 1.68) 1.01 (0.55, 1.78)

Λ2,2 = 2 2.89, (1.84, 3.47) 2.57 (1.33, 3.22) 2.60 (1.34, 3.23)
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