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Abstract

Arrhythmogenic cardiomyopathy (AC) is a primary myocardial disorder characterized by a high 

incidence of ventricular arrhythmias often preceding the onset of ventricular remodeling and 

dysfunction. Approximately 50% of patients diagnosed with AC have one or more mutations in 

genes encoding desmosomal proteins, although non-desmosomal genes have also been associated 

with the disease. Increasing evidence implicates remodeling of intercalated disk proteins reflecting 

abnormal responses to mechanical load and aberrant cell signaling pathways in the pathogenesis of 

AC. This review summarizes recent advances in understanding disease mechanisms in AC that 

have come from studies of human myocardium and experimental models.

Introduction

Arrhythmogenic cardiomyopathy is a primary myocardial disease characterized by 

ventricular arrhythmias and sudden cardiac death.1 Originally described as a right 

ventricular disease (ARVC), it is now recognized to include left ventricular and biventricular 

forms which are often misdiagnosed as dilated cardiomyopathy or myocarditis. In light of 

this broader phenotypic spectrum, the term arrhythmogenic cardiomyopathy (AC) has been 

adopted.2

AC has a prevalence of 1:1000 to 1:5000 in the general population, but it accounts for 11–

22% of sudden cardiac deaths among young athletes.3 It is the major cause of sudden death 

among athletes in Northern Italy4 and accounts for 17% of sudden cardiac deaths in young 

people (≤35 years) in the United States.5 AC is a familial disease in at least 50% of cases 

and is usually inherited as an autosomal dominant trait.6 The overall prevalence may be 

underestimated because wide phenotypic variation, age-related progression and low genetic 

penetrance may obscure diagnosis.6 Currently, the diagnosis of AC rests upon fulfilling a 

complex set of criteria established by an International Task Force, which although relatively 

specific are not highly sensitive.7

AC is a highly arrhythmogenic disease. Arrhythmias usually arise as the first manifestation 

of disease, and typically precede structural remodeling of the myocardium.8 This so-called 

“concealed” phase is unique among the non-ischemic cardiomyopathies. In hypertrophic 
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cardiomyopathy, for example, arrhythmic risk appears to be related at least in part to the 

underlying substrate of myocyte disarray, hypertrophy, fibrosis and small vessel disease. In 

dilated cardiomyopathy, arrhythmias occur in the context of significant left ventricular 

remodeling and contractile dysfunction. By contrast, there is something fundamentally 

arrhythmogenic about early AC, in which frequent arrhythmias occur in otherwise 

apparently normal hearts.2 As the disease progresses, degenerative changes in cardiac 

myocytes associated with inflammation and accumulation of fibrofatty scar tissue become 

more prominent. Thus, AC exhibits features of both the inherited arrhythmia syndromes 

such as long QT and the non-ischemic cardiomyopathies characterized by complex 

myocardial pathology.2

Genetics of AC

Autosomal dominant inheritance in AC was first described in 1987 in a report on eight 

Italian families.9 The first genetic locus linked to AC was identified at 14q23-q24 in 1994 

after evaluation of a large Venetian family.10 It was not until 1998, however, that analysis of 

patients from the Greek island of Naxos led to identification of the first causative gene 

mutation in AC.11 So-called Naxos disease is a highly penetrant recessive syndrome 

characterized by the clinical triad of ARVC, woolly hair and keratoderma involving pressure 

areas of the palms and soles. The cutaneous phenotype is expressed from infancy, thereby 

unequivocally identifying affected individuals and ensuring accurate linkage analysis. The 

cardiac symptoms characteristically develop from adolescence to early adulthood although 

arrhythmias have been documented in young children.11 The disease allele was mapped to 

17q21 and shown to involve a homozygous two-base-pair deletion in the gene encoding the 

desmosomal protein plakoglobin (γ-catenin).12 This first association of a desmosomal gene 

mutation with AC paved the way for identification of disease-causing mutations in other 

desmosomal genes.

A mutation in the desmoplakin gene, DSP, resulting in truncation of the C-terminal domain 

was subsequently implicated in another recessive cardio-cutaneous syndrome described in 

families from Ecuador.13 So-called Carvajal syndrome consists of palmoplantar 

keratoderma, woolly hair and a biventricular cardiomyopathy that exhibits clinical features 

of dilated cardiomyopathy.14 Clinical and pathological characterization of Carvajal 

syndrome is limited, but frequent and complex ventricular arrhythmias have been 

documented in pre-adolescence.14 Pathological features include biventricular dilatation with 

focal aneurysms, and myocyte degeneration and replacement fibrosis (albeit without adipose 

tissue) preferentially affecting sub-epicardial and mid-myocardial layers while sparing the 

sub-endocardium.15 Focal ventricular aneurysms and sub-epicardial/mid-myocardial 

prominence are typical features of the myocardial pathology of AC.

The first dominantly inherited mutation in DSP was identified in 2002 in an ARVC family 

of Italian descent. This mutation (S299R) was predicted to modify a putative 

phosphorylation site in the N-terminal domain of desmoplakin and interfere with the 

protein’s binding to plakoglobin.16 Three additional dominant mutations in DSP were 

reported in 2005 (R1775I, R1255K and c.423-1G>A) in ARVC families characterized by a 

high occurrence of sudden cardiac death and prominent left ventricular involvement.17 Soon 
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after, another mutation was identified (2034insA) in a family showing predominant left 

ventricular disease, giving rise to the term “arrhythmogenic left ventricular 

cardiomyopathy”.18 Yang et al. reported 4 additional variants (V30M, Q90R, W233X, and 

R2834H) also linked to biventricular forms of the disease.19

Once the focus of the gene hunt was directed to the desmosome, mutations in AC families 

were discovered in genes encoding plakophilin-2 (PKP2), desmoglein-2 (DSG2) and 

desmocollin-2 (DSC2).20 PKP2 appears to be the most commonly mutated gene in ARVC. 

In the Netherlands, for example, PKP2 mutations may account for up to 70% of index 

cases.21 Prudence, however, must be applied in distinguishing truly pathogenic mutations 

from background genetic noise, especially in the case of missense mutations. A recent study 

on a large series of ARVC patients showed that 21% of patients carry missense mutations in 

desmosomal genes versus a remarkably high 16% of controls.22 In some cases, a single 

sequence variant may be insufficient to cause AC by itself but may contribute to disease 

expression when combined with another sequence variant in the same gene (compound 

heterozygosity) or in another gene (digenic heterozygosity).23

Mutations in non-desmosomal genes have also been associated with AC, the most 

convincing of which include those encoding transmembrane protein 43 (TMEM43)24 and 

phospholamban (PLN).25 The S358L mutation in TMEM43, first identified in a large 

founder population in Newfoundland, causes a fully penetrant non-classic form of the 

disease associated with a high incidence of premature death and heart failure in survivors.24 

The PLN mutation R14del, first described in Greek families with dilated cardiomyopathy 

and heart failure,26 was recently identified in a substantial number of Danish patients 

clinically diagnosed with ARVC or dilated cardiomyopathy phenotypes, further supporting a 

broader phenotypic spectrum for AC.25

Other extra-desmosomal genes have been associated with AC including those encoding 

desmin,27 transforming growth factor beta-328 and the cardiac ryanodine receptor,29 

although the latter appears to be more closely linked to catecholaminergic polymorphic 

ventricular tachycardia.30 It is currently possible to identify mutations in one or more of the 

5 major desmosomal genes in ~60% of probands who fulfill International Task Force criteria 

for AC. Presumably, other disease alleles yet to be described may be responsible for at least 

some of the remaining patients with AC.

More than a disease of abnormal cell-cell adhesion

Since being recognized as a non-ischemic cardiomyopathy by the World Health 

Organization in 1994,31 AC has become the focus of active investigations of its molecular 

pathophysiology and disease mechanisms. While there has been significant progress in 

identifying AC-causing mutations, much less is known about how the mutant proteins 

actually cause the disease. One leading hypothesis is that abnormal cell-cell adhesion injures 

the cardiac myocytes and promotes cell death with subsequent replacement by fibrofatty 

tissue.32 Such a mechanism almost certainly plays a role. However, desmosomal proteins 

may fulfill dual roles as structural proteins in adhesion junctions and as signaling molecules, 

which can alter signaling pathways and thereby modulate pathological gene expression, 
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promote cardiac myocyte apoptosis and perhaps mediate expression of a fibrogenic and/or 

an adipogenic phenotype.33 Moreover, mononuclear (predominantly T cell) inflammatory 

infiltrates may be especially prominent in the hearts of AC patients, occurring in nearly 80% 

in some postmortem series.34 The sub-endocardium is commonly affected, suggesting that 

the inflammatory response may reflect extension of the disease to previously unaffected 

regions of the myocardium. Active disease progression associated with intense inflammation 

could play a role in the development of “hot phases”, episodic exacerbations following an 

interval of clinically quiescent disease.2 However, this remains entirely speculative as no 

definitive experimental evidence exists to link inflammation in AC to disease pathogenesis 

and/or progression.

Although desmosomes occur in virtually all solid organs, clinical phenotypes related to 

desmosomal gene mutations appear to be limited to the heart and skin, tissues that 

experience the greatest mechanical load.33 Young competitive athletes with AC have a 5.4-

fold relative risk of sudden death compared to non-athletes.35 Strenuous physical activity 

has been associated with an increased penetrance and acceleration of the disease 

phenotype.36 The right ventricular apex, an area preferentially affected in ARVC, exhibits 

heterogeneous fiber orientation and elevated incremental strains, potentially creating a 

mechanically weak spot in the heart.37 Finally, electron microscopy studies of patient 

myocardial samples have reported decreased numbers of desmosomes and apparent clefts or 

widening of various components within the intercalated disks.38 All of these observations 

suggest that mechanical stress plays an important role in disease progression and sudden 

death. However, it should be emphasized that, currently, there is no direct evidence of 

weakened cell-cell adhesion in the hearts of patients with AC. Thus, despite the interesting 

potential associations between inflammation and exercise and AC disease pathogenesis, we 

really have a very limited understanding of the molecular mechanisms responsible for 

arrhythmias and myocyte injury in AC. Advances in understanding such mechanisms might 

not only aid in development of preventive measures in AC, but perhaps reveal fundamental 

new paradigms in sudden death occurring in other, more common forms of heart disease.

Disease mechanisms in AC: What have we learned from human studies?

To gain insights into mechanisms of AC pathogenesis, we have analyzed patient myocardial 

samples in an effort to discover features of the molecular pathology of this disease spectrum. 

The great majority of the world-wide human myocardial tissue archive for AC consists of 

formalin-fixed, paraffin-embedded samples obtained by endomyocardial biopsy or at 

autopsy. While this limits the repertoire of analytical approaches that may be applied, we 

have learned a great deal about AC by studying the distribution of intercalated disk proteins 

using immunohistochemistry.

We first determined whether mutant proteins are expressed in AC and if so whether they are 

localized at cell-cell junctions or are re-distributed to other (intracellular) compartments. We 

also asked whether a mutation in a single desmosomal protein could affect the localization 

of other (non-mutant) desmosomal proteins.32 Because defects in intercellular mechanical 

coupling are generally associated with abnormal cell-cell communication via gap 

junctions,39 we also determined whether mutations in desmosomal proteins were associated 
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with changes in the distribution of connexins, proteins that form electrical junctions in the 

myocardium. Initial studies in myocardial samples from patients with Naxos disease showed 

that the truncated mutant form of plakoglobin was abundantly expressed in both ventricles 

but it failed to localize properly at intercalated disks (Fig. 1).40 A similar analysis of the 

heart in Carvajal syndrome showed that not only the mutant protein, desmoplakin, failed to 

localize at cell-cell junctions, but so did its non-mutant binding partner plakoglobin (Fig 

1).15 Thus, a mutation in a single desmosomal protein can affect the localization of other 

proteins that are not genetically altered.32 We also observed a marked reduction in the 

amount of immunoreactive signal for Cx43, the major ventricular gap junction protein, in 

both Naxos and Carvajal myocardium (Fig 1).15, 39

We have subsequently analyzed myocardium from a large number of patients with clinically 

and/or pathologically documented ARVC related to mutations in one or more of the 5 

desmosomal protein genes and involving autosomal dominant inheritance in most cases.41 

We observed that immunoreactive signal for plakoglobin was reduced at cell-cell junctions 

in the great majority of cases, independent of the underlying pathogenic mutation. It also 

occurred in cases that fulfilled diagnostic criteria but in which no desmosomal gene 

mutation could be identified by genetic screening. This consistent finding was associated 

with decreased amounts of immunoreactive signal for desmoplakin or plakophilin-2 in some 

cases while in others the signal appeared normal (Fig. 2). Reduced junctional plakoglobin 

signal occurred diffusely in both ventricles including areas that appeared histologically 

normal.41 A similar reduction was not seen in myocardial samples from patients with end-

stage heart failure due to hypertrophic, dilated or ischemic cardiomyopathies41 although 

subsequent studies have shown that junctional plakoglobin signal is diminished at cell-cell 

junctions in myocardium from patients with sarcoidosis or giant cell myocarditis, both 

highly arrhythmogenic forms of granulomatous myocarditis.42 Taken together, these 

observations suggest that redistribution of plakoglobin is a consistent feature in AC and raise 

the possibility of common arrhythmogenic mechanisms in AC and some forms of 

granulomatous myocarditis.41,42 Furthermore, as discussed below, redistribution of 

plakoglobin from junctional to intracellular and/or intranuclear sights may be responsible for 

modulating Wnt signaling pathways which experimental studies have implicated in AC 

disease pathogenesis.43

An extensive literature exists on the dependence of cell-cell electrical coupling at gap 

junctions on normal mechanical coupling by intercellular adhesion junctions.39 Such 

dependency is probably of particular importance in the myocardium in which extremely 

large gap junctions, presumably required for safe impulse propagation, are surrounded by 

extensive points of cell-cell adhesion within intercalated disks.39 Initial observations of 

diminished Cx43 immunoreactive signal at cell-cell junctions in Naxos disease39 and 

Carvajal syndrome15 (Fig. 1) have now been confirmed in additional cases of autosomal 

dominant ARVC associated with mutations in various desmosomal proteins (Fig. 2).44 Gap 

junction remodeling in AC occurs diffusely in the myocardium and has been shown in at 

least one case of Naxos disease to precede development of myocardial degeneration and 

remodeling.45 These observations suggest that gap junction remodeling is a consistent 

feature of AC and raise the possibility that it may contribute to abnormal tissue 

electrophysiology during the concealed phase of the disease in which arrhythmias occur in 

Asimaki and Saffitz Page 5

Cell Commun Adhes. Author manuscript; available in PMC 2015 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the absence of structural changes.46 It should be emphasized, however, that thus far no 

studies have been reported on functional consequences of the apparent gap junction 

remodeling seen by immunohistochemistry. Thus, the contributions, if any, of gap junction 

remodeling to arrhythmogenesis in AC remain a matter of speculation.

Very little is known about the molecular pathology of AC caused by mutations in non-

desmosomal genes. The TMEM43 protein contains 4 trans-membrane segments and a large 

hydrophilic domain that is remarkably conserved among species. It is widely expressed, 

particularly in the placenta, and in most tissues localizes at the inner nuclear membrane and 

endoplasmic reticulum where it has been shown to interact with emerin and lamins.47 

Immunoreactive signal for plakoglobin was found to be depressed at intercalated in 

myocardial samples from 3 ARVC patients with TMEM43 mutations, whereas PKP2, Cx43 

and emerin appeared to be normally distributed.48 The implications of these observations are 

uncertain but they add weight to the notion that redistribution of plakoglobin from junctional 

to intracellular and/or intranuclear sites may be an important component of the underlying 

disease pathway in AC.

Phospholamban regulates the sarcoplasmic reticulum Ca+2 pump (SERCA2a) in cardiac 

muscle and is thus important for maintaining Ca+2 homeostasis.49 Three different PLN 

mutations have been linked to a dilated cardiomyopathy phenotype associated with 

malignant ventricular arrhythmias and interstitial fibrosis.50–52 Given the phenotypic 

overlap between PLN mutation carriers diagnosed with dilated cardiomyopathy and classical 

ARVC, a large population of patients diagnosed with both disease entities was screened for 

mutations in this gene.25 A 3-base pair deletion (R14del) was identified in 39 (15%) dilated 

cardiomyopathy and 12 (12%) ARVC index patients, none of whom had mutations in 

desmosomal genes. Interestingly, samples from PLN R14del carriers diagnosed with ARVC 

showed reduced immunoreactive signal for plakoglobin at cardiac IDs in the majority of 

cases (5 of 7). By contrast, only 1 of 9 R14del carriers diagnosed with dilated 

cardiomyopathy showed evidence of plakoglobin re-distribution (Fig. 3).25 These 

observations suggest that diminished plakoglobin signal at intercalated disks may track with 

the ARVC phenotype rather than genotype.

As detailed in the next section, new information is emerging from experimental models that 

expression of mutations linked to AC is associated with reduced Na+ current density.53 

Although the responsible mechanisms are not known, this observation could have important 

implications for understanding arrhythmogenesis in AC. Reduced INa has not been 

documented in patients although reduced signal for Nav1.5 at intercalated disks has been 

shown by immunohistochemistry in myocardium from patients with AC.54 Taken together 

with observations of gap junction remodeling, this raises the possibility that decreased INa 

combined with reduced electrical coupling could affect impulse propagation and thereby 

contribute to arrhythmias early in the disease process.55 This is a promising area of 

investigation.
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Disease mechanisms in AC: What have we learned from experimental 

models?

Perhaps the most important insight to emerge from experimental models of AC is the 

potential role of altered Wnt signaling in disease pathogenesis.43 Like its homolog β-catenin, 

plakoglobin (γ-catenin) functions as both an adhesion junction protein and a nuclear 

signaling molecule modulating Wnt pathways.56 The N-terminus plays a key role in 

determining stability and degradation of armadillo proteins. This region appears to be a 

target for N- and O-glycosylation57 and is also involved in the ubiquitin-proteasomal 

degradation pathway.58 Wnt pathways are involved in fundamental biological processes 

including cardiac development and differentiation, hypertrophy, cell-cell adhesion, 

cytoskeletal re-arrangement and calcium homeostasis.59 Under basal conditions, 

cytoplasmic plakoglobin undergoes phosphorylation at N-terminal serine residues by 

glycogen synthase kinase 3β (GSK-3β) which targets it for ubiquitylation and proteasomal 

degradation. Activation of the canonical Wnt signaling pathway inhibits GSK-3β which 

allows plakoglobin to accumulate within the cell and enter the nucleus where it may interact 

with Tcf/Lef transcription factors and alter gene expression. The precise role of plakoglobin 

once it enters the nucleus is still incompletely understood but the prevailing view is that 

nuclear localization of plakoglobin suppresses canonical Wnt signaling and its downstream 

targets through Tcf/Lef1 transcription factors.56 In this context, Garcia-Gras et al. showed 

that siRNA-mediated suppression of desmoplakin expression in an atrial cell line promotes 

nuclear accumulation of plakoglobin associated with a 2-fold reduction in canonical Wnt 

signaling.43 The resulting phenotype also included increased expression of adipogenic and 

fibrogenic genes and intracellular accumulation of fat droplets.43 This important study was 

the first to implicate abnormal Wnt signaling in the pathogenesis of AC. In subsequent 

studies, these authors provided evidence that suppression of the canonical Wnt pathway in 

progenitor cells in the heart causes a switch to an adipogenic instead of a myogenic fate 

which could explain the often prominent accumulation of mature adipocytes in areas of 

myocyte damage in AC.60

Transgenic mice with cardiac-specific expression of the V30M or Q90R N-terminal 

desmoplakin mutations are embryonic lethal.19 On the contrary, transgenic mice with 

cardiac-specific expression of a C-terminal desmoplakin mutation (R2834H) are viable. 

These animals show increased cardiac myocyte apoptosis, fibrosis and lipid accumulation as 

well as biventricular enlargement and dysfunction.19 Lyon et al. used the ventricular myosin 

light chain-2-Cre system to ablate desmoplakin specifically from cardiac myocytes, a mouse 

model designated as DSP-cKO.61 Following gene deletion, animals developed a dramatic 

phenotype characterized by biventricular dilatation, extensive myocyte loss with fibrosis and 

ultrastructural abnormalities at intercalated disks. DSP-cKO mice also exhibited ventricular 

arrhythmias that were exacerbated in response to exercise and catecholamine stimulation. 

Finally, the mice showed RV conduction defects and abnormal electrical wavefront 

propagation, presumably associated with reduction in expression of the gap junction proteins 

Cx40 and Cx43.61 While this mouse model exhibits some major features reminiscent of 

biventricular AC in patients with severe desmoplakin mutations, it should be remembered 

that germline deletion of desmosomal proteins including plakoglobin,62 desmoplakin63 and 
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plakophilin-264 are all embryonic lethal in mice. Furthermore, the best available evidence 

indicates that mutant desmosomal proteins are expressed in various forms of AC in patients 

suggesting that disease pathogenesis may be mediated by dominant-negative effects rather 

than by null alleles.

The idea that exercise exacerbates the disease phenotype in AC noted above in the DSP-

cKO model has also been investigated in mice with heterozygous deletion of the plakoglobin 

gene.65 By 10 months of age, plakoglobin+/− mice show enlarged right ventricles, but 

endurance training (8 weeks of daily swimming) caused premature right ventricular 

dilatation and dysfunction at 5 to 6 months of age.65

Transgenic mice with cardiac-specific over-expression of an ARVC-causing mutant form of 

DSG2 (N271S) recapitulate clinical features of the disease including premature death, 

spontaneous ventricular arrhythmias, cardiac dysfunction and biventricular dilatation and 

aneurysms.66 Hearts of mice heterozygous for a PKP2-null allele show mild ultrastructural 

changes but no histological or gross anatomical abnormalities.67 However, ventricular 

myocytes exhibit changes in INa and the Na+ channel blocker flecainide provoked 

ventricular arrhythmias and death in PKP2-deficient animals but not in controls.67

While clinical experience has suggested that exercise increases disease expression in 

patients with AC and disease phenotypes are intensified in some mouse models subjected to 

exercise, relatively little is known about the responsible molecular mechanisms. We have 

shown that HEK293 cells expressing two different mutations in plakoglobin (2057del2 

which causes Naxos disease, or S39_K40insS which causes a dominant form of ARVC 

without associated cutaneous abnormalities) show abnormal responses to short-term cyclical 

stretch.68 Whereas normal cells increase the amount immunoreactive signal for plakoglobin 

and Cx43 at cell-cell junctions after even brief intervals of stretch, these responses are 

significantly blunted in cells expressing mutant desmosomal proteins.68 It has also been 

shown that knockdown of PKP2 expression in neonatal rat ventricular myocytes in vitro 

reduces cell-cell adhesion strength.69 These studies must be viewed with caution, however. 

Responses in HEK cells may not be the same as in cardiac myocytes68 and, as emphasized 

previously, phenotypes observed after genetic ablation strategies may not reflect disease 

profiles in patients caused by expression of mutant desmosomal proteins. Moreover, the 

underlying mechanisms remain poorly understood.

Most experimental studies of AC have focused on myocardial injury and molecular 

pathology with relatively little attention paid to potential changes in cellular 

electrophysiology that may contribute to the highly arrhythmogenic phenotype in AC. 

However, recent studies have begun to shed light on this important area. Using cultured 

cardiac myocytes, Sato et al. have provided some evidence that PKP2 interacts directly with 

Nav1.5 and that knockdown of PKP2 expression promotes changes in the INa and the 

velocity of impulse propagation.70 Finally, Kim et al. generated iPS cell lines from a patient 

with clinical ARVC and a homozygous (c.2484C>T) mutation in PKP2 that causes cryptic 

splicing with a 7-nucleotide deletion in exon 12 leading to frame-shift of the carboxy-

terminal amino acids.72 The derived cardiac myocytes abnormal plakoglobin nuclear 

translocation and decreased Wnt signaling. This important study was the first to characterize 
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cardiac myocytes derived from a patient with AC. Many technical limitations apply to such 

studies but it can be anticipated that additional insights into disease mechanisms in patients 

will come from further studies using this approach.

Conclusions

AC has an unusually dramatic arrhythmogenic phenotype, which is manifest early in the 

natural history of the disease, often preceding the development of significant ventricular 

remodeling or contractile dysfunction. The identification of desmosomal gene mutations in 

>50% of index patients has focused attention on the possibility that abnormal cell-cell 

adhesion may play a critical role in myocardial injury and arrhythmogenesis. At the same 

time, increasing evidence has implicated abnormal Wnt signaling, perhaps related to 

redistribution of junctional plakoglobin to intracellular/intranuclear sites. Moreover, AC 

may be caused by mutations in non-desmosomal genes, and the genetic basis of the disease 

is undefined in a significant number of patients. It remains to be determined to what extent 

changes in electrical coupling contribute to the highly arrhythmogenic phenotype in AC and 

how gap junction remodeling interacts with other potential arrhythmogenic mechanisms in 

this deadly disease. One promising avenue for future investigation is more detailed 

elucidation of the manifold mechanisms implicated in dysregulated Wnt signaling pathways. 

How a mutation in a Ca+2 homeostasis protein such as PLN or a nuclear membrane protein 

such as TMEM43 promotes displacement of plakoglobin from cell-cell junctions must be 

elucidated. The exact role of plakoglobin in the nucleus and the panel of genes whose 

expression it may control must be determined. The relationship between genetic, epigenetic 

and environmental factors, such as exercise, and the role they play in modifying disease 

manifestation also requires further investigation. Advances in these areas could provide new 

insights into arrhythmogenesis not only in AC but also in other, more common forms of 

heart disease, and identify much needed mechanism-based therapies to treat or prevent 

sudden death.
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Figure 1. 
(A) Representative confocal immunofluorescence images of control myocardium and 

myocardium from a patient with Naxos disease and a patient with Carvajal syndrome. 

Specific immunoreactive signal for plakoglobin was significantly depressed in both cases 

compared to controls, as was signal for the major gap junction protein Cx43. 

Immunoreactive signal for desmoplakin was depressed at intercalated disks in Carvajal 

syndrome but not in Naxos disease. Signal for the non-desmosomal adhesion protein N-

cadherin was present and control-like in both cases.

(B) Western Immunoblots using an N-terminal plakoglobin antibody showed that the mutant 

plakoglobin form (2057del2) is expressed in left and right ventricular myocardium from a 

patient with Naxos disease. Mutant plakoglobin migrates at a lower molecular weight than 

the wildtype protein. 2057del2 plakoglobin cannot be detected when a C-terminal 

plakoglobin antibody is used (reproduced from Kaplan et al Heart Rhythm 2004; 1)40
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Figure 2. 
Representative confocal immunofluorescence images of control myocardium and 

myocardium from two patients with autosomal dominant ARVC. Specific immunoreactive 

signal for plakoglobin was depressed at cell-cell junctions in the great majority of cases 

regardless of the underlying pathogenic mutation. Signal for desmoplakin and plakophilin2 

varied, while signal for N-cadherin was always present and indistinguishable from controls. 

The majority of cases examined showed gap junction remodeling as evidenced by decreased 

junctional signal for Cx43 (reproduced from Asimaki et al. NEJM 2009; 360:1078).41
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Figure 3. 
Immunofluorescence images of endomyocardial biopsy samples from two patients 

diagnosed with ARVC and one with idiopathic dilated cardiomyopathy, all carrying the PLN 

R14del mutation, compared to a control sample. Immunoreactive signal for plakoglobin at 

cell-cell junctions was significantly depressed in the ARVC subjects compared to controls 

and the dilated cardiomyopathy patient (reproduced from Van der Zwaag et al. Eur J Heart 

Fail 2012; 14:1204).25
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