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Abstract

Diagnostic systematic review is a vital step in the evaluation of diagnostic technologies. In many 

applications, it involves pooling pairs of sensitivity and specificity of a dichotomized diagnostic 

test from multiple studies. We propose a composite likelihood method for bivariate meta-analysis 

in diagnostic systematic reviews. This method provides an alternative way to make inference on 

diagnostic measures such as sensitivity, specificity, likelihood ratios and diagnostic odds ratio. Its 

main advantages over the standard likelihood method are the avoidance of the non-convergence 

problem, which is non-trivial when the number of studies are relatively small, the computational 

simplicity and some robustness to model mis-specifications. Simulation studies show that the 

composite likelihood method maintains high relative efficiency compared to that of the standard 

likelihood method. We illustrate our method in a diagnostic review of the performance of 

contemporary diagnostic imaging technologies for detecting metastases in patients with 

melanoma.
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1 Introduction

Conducting diagnostic reviews is a vital step in the evaluation of diagnostic technologies1,2. 

The majority of diagnostic papers report estimates of sensitivity and specificity and 

represent data summaries as 2 × 2 tables based on dichotomized test results compared to the 

gold-standard determination of disease status3. The procedure of pooling pairs of sensitivity 

and specificity is not straightforward because of two important characteristics of this type of 

data. The first is that the estimated sensitivities and specificities are typically negatively 

correlated across studies4. One of the reasons for such a negative correlation is that the 

classification of disease status is typically based on a continuum of (at least partly) 

measurable traits. Suppose the higher trait is associated with positive result. Then higher 

threshold leads to lower sensitivity but higher specificity. When the threshold varies across 

studies, the study-specific sensitivity and specificity are negatively correlated5. The second 

important characteristic of the data is the substantial between-study heterogeneity in 

sensitivities and specificities6,7,8. Such heterogeneity may arise due to differences in study 

population characteristics, variability of assessment, and other factors.

A simple method for conducting diagnostic reviews that has been frequently used in practice 

is to construct a summary receiver operating characteristic (sROC) curve from the studies 

using simple linear regression9,6. However, serious limitations of this method have been 

pointed out by several authors10,8,11. Specifically, the assumptions of simple linear 

regression are usually not met and the resulting inference may not be valid. Furthermore, the 

sROC approach converts each pair of sensitivity and specificity values into a single measure 

of accuracy, the diagnostic odds ratio, which does not distinguish the ability to detect 

individuals with disease from the ability to identify healthy individuals. The conation of 

sensitivity and specificity makes it difficult to determine the optimal use of a test and 

therefore diminishes the practical utility of this method in clinical practice4.

Two statistical methods that have been proposed for conducting diagnostic reviews have 

overcome the limitations of the sROC approach. One is the hierarchical summary receiver 

operating characteristic (HSROC) model12,8. The other is the bivariate mixed effects 

models13,14,4,15,11. Importantly, Harbord et al. reported that the HSROC model and the 

bivariate mixed effects model are very closely related, and are even identical in the absence 

of covariates16.

Among the bivariate mixed effects models, the bivariate general linear mixed effects model 

and the bivariate generalized linear mixed effects model (BGLMM) are commonly 

used13,14,4,15,11,17. The performances of these two models have been compared by extensive 

simulation studies18,19, and the conclusion is that the BGLMM is preferred due to less bias 

and better coverage probability performance, especially for studies with small sample sizes, 

or with sensitivities or specificities close to 1. However, two practical issues in the standard 

likelihood inference have been reported18,19. The first is a non-convergence or non positive 

definite covariance matrix problem19. Such problems are caused mainly by the maximum 

likelihood estimate of the correlation being close to ±1, and are even more severe when the 

number of studies is small or moderate. The second practical issue is computational 
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difficulty caused by a double-integral in the likelihood function. Although modern 

computational methods such as Laplace or adaptive Gaussian quadrature approximation are 

easy to implement in software such as NLMIXED in SAS (SAS Institute Inc., Cary, NC) and 

ADMB (Automatic Differentiation Model Builder)20, these approximations may still have 

non-negligible approximation errors. These computational errors often result in unstable or 

unreproducible estimates (e.g., results sensitive to initial values)19. To our best knowledge, 

there is no satisfactory solution to these practical problems. More importantly, the standard 

likelihood inference of BGLMM relies on the bivariate normality assumption on the logit 

sensitivity and specificity, which may not be appropriate. One scenario is that the logit 

sensitivity and specificity may follow distributions with heavier tails. Another scenario is 

that the correlation between sensitivity and specificity may be non-homogeneous across 

studies. Under these situations, the inference based on the standard likelihood method may 

lead to biased estimates of diagnostic accuracies and their standard errors.

In this paper, we propose an alternative inference procedure for better computational 

performance and model robustness. The idea is to construct a composite likelihood (CL) 

function by using an independent working assumption between sensitivity and 

specificity21,22. Such a CL has been used in longitudinal data analysis and multivariate 

survival data analysis to account for the correlations between observations23,24. There are 

three immediate advantages of using this CL method. First, the non-convergence or non 

positive definite covariance matrix problem is resolved since there is no correlation 

parameter involved in the CL. Secondly, because the two-dimensional integration involved 

in the standard likelihood is substituted by one-dimensional integrals, the approximation 

errors are substantially reduced. Thirdly, the inference based on the CL only relies on the 

marginal normality of logit sensitivity and specificity. Hence the proposed method can be 

more robust than the standard likelihood inference to mis-specifications of the joint 

distribution assumption.

This article is organized as follows. In Section 2, we describe the proposed CL method. In 

Section 3, we conduct simulation studies to compare the CL method with the standard 

likelihood method where their biases, coverage probabilities and relative efficiencies are 

investigated. We illustrate the CL method in Section 4 with a diagnostic review of 

contemporary diagnostic imaging technologies for detecting metastases in patients with 

melanoma. We provide a brief discussion in Section 5.

2 Statistical Methodology

We consider a diagnostic review with m studies. For the ith study, denote ni11, ni00, ni01, and 

ni10 as the number of true positives, true negatives, false positives, and false negatives, 

respectively, i = 1, …, m. Let ni1 = ni11 + ni10 and ni0 = ni01 + ni00 be the number of diseased 

and healthy subjects, respectively, and Sei and Spi be the study-specific sensitivity and 

specificity, respectively.

To account for the heterogeneity between studies and the correlation between Sei and Spi, 

the following bivariate generalized linear mixed model (BGLMM) approach is commonly 
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used in diagnostic reviews15,11. The BGLMM can be formulated in two stages. Specifically, 

the first stage of the BGLMM is

(1)

If Sei and Spi are known, the number of true positives ni11 and the number of true negative 

ni00 are assumed to follow independent binomial distributions. This conditional 

independence assumption is generally reasonable because the true positives and true 

negatives are from two different groups of patients. At the second stage, to take the 

heterogeneity between studies and the correlation between Sei and Spi into consideration, a 

random effects model is assumed,

(2)

Here g(·) is a known link function such as a logit function, Xi and Zi are vectors of study-

level covariates, possibly overlapping, related to Sei and Spi, respectively, and the intercepts 

(μi1, μi2) are often assumed to follow a bivariate normal distribution with mean zero and 

covariate matrix Σ,

where  and  capture the between-study heterogeneity in sensitivities and specificities, 

respectively, and ρ describes the correlation between the random effects Sei and Spi in the 

transformed scale.

To keep the notation simple and make our discussion concrete, we assume Xi = Zi = 1 and 

choose a logit link function. In this case, β1 and β2 are the respective overall sensitivity and 

specificity (in a logit scale). For diagnostic accuracy, there are several measures available to 

help clinicians in decision making. The most popular one is the pair of overall sensitivity 

and specificity, i.e., exp(β1)/{1+exp(β1)} and exp(β2)/{1+exp(β2)}, respectively. 

Alternatively, likelihood ratios, LR+ and LR−, have been suggested in the literature25, where 

LR+ = sensitivity/(1 − specificity) = Pr(+|D)/Pr(+|D̄) = exp(β1){1+exp(β2)}/{1+exp(β1)}, 

and LR− = (1 − sensitivity)/specificity = Pr(−|D)/Pr(−|D̄) = {1 + exp(β2)}/[exp(β2) {1 + 

exp(β1)}]. Likelihood ratios quantify the extent to which a test result changes the probability 

of disease. Thus they can be used by clinicians to make decisions in treating patients, 

conducting further testing, or not evaluating patients further because the prevalence of the 

disease is low25. If a single measure of diagnostic accuracy is preferred, a commonly used 

one is the diagnostic odds ratio (dOR), where dOR = {sensitivity/(1-sensitivity)} × 

{specificity/(1-specificity)} = exp(β1 + β2). The value of dOR ranges from zero to infinity, 

with a higher value indicating better discriminatory power. A value of 1 is expected for tests 

with no difference detected between the diseased group and the healthy group26. We note 

that these descriptive measures are all functions of β1 and β2 only.
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For simplicity of notation, denote  and θ = (θ1, θ2). The log 

likelihood function of (θ1, θ2, ρ) is

(3)

where ϕ(·, ·; θ1, θ2, ρ) is the bivariate logit normal distribution indexed by (θ1; θ2;ρ) and 

Binomial(·|·;·) is the binomial distribution. The integral in equation (3) does not have a 

closed form and has to be evaluated by numerical methods such as adaptive Gaussian 

quadrature27. In practice, the package NLMIXED in SAS version 9.1 (SAS Institute Inc., 

Cary, NC) can be used to maximize the approximation to the log likelihood function in 

equation (3). However, the standard maximum likelihood inference (hereafter referred to as 

standard likelihood method or SL method) faces the computational difficulites as described 

in the Introduction section. These problems are due to the two-dimensional integrals in the 

likelihood function and the need of estimating the correlation parameter ρ19.

Now we propose an alternative inference procedure. We note that the commonly used 

descriptive measures of diagnostic test (e.g., overall sensitivity, specificity, diagnostic 

likelihood ratios and diagnostic odds ratio) are all functions of β1 and β2 only, and do not 

involve the correlation parameter ρ. In addition, the computational problems are mainly 

caused by the two-dimensional integrals. We propose to construct a pseudolikelihood by 

using an independent working assumption. Specifically, setting ρ = 0 in equation (3), we 

obtain the pseudolikelihood

(4)

where

and ϕ(·; θj) is the logit normal distribution indexed by θj (j = 1, 2). We note that only one-

dimensional integrals are involved in the pseudolikelihood. Hence the approximation errors 

can be reduced. In addition, the non-convergence or non positive definite covariance matrix 

problem is alleviated since there is no correlation parameter involved in the 

pseudolikelihood. More importantly, in contrast to the bivariate normality assumption made 

by the standard likelihood method, the pseudolikelihood relies on the marginal normality of 
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logit sensitivity and specificity. Hence the pseudolikelihood based inference may be more 

robust than the standard likelihood inference to misspecifications of the joint distribution 

assumption.

Such pseudolikelihood Lp(θ1, θ2) is a type of CL where (weighted) marginal or conditional 

densities are multiplied together to form the CL28,21,29,22. Since each component of the CL 

function, i.e., log Lj(θj) (j = 1, 2), is a true log marginal likelihood, the corresponding score 

equation can be shown to be unbiased. Consequently, the maximum CL estimator (θ̃1, θ̃2) is 

consistent and asymptotically normal.

By a standard argument using asymptotic theories, we can show that the estimator (θ̃1, θ̃2) is 

asymptotically normal with mean zero and covariance matrix

where

for j = 1, 2. Consequently, (θ̃1, θ̃2) is approximately normal with zero mean and covariance 

matrix Σ̂/m where Σ̂ is

(5)

where

and

It is worth noting that the asymptotic results of the maximum CL estimates follow the 

standard maximum likelihood30 under model mis-specifications. Specifically, the variance 

takes the form of a sandwich form31 as that in generalized estimating equation23, which 

often arises when the information equality does not hold.
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The maximum CL estimates can be obtained by conducting two separate univariate meta-

analyses with a random effect model based on data {(ni11, ni1) : i = 1, …, m} or {(ni00, ni0) : 

i = 1, …, m}. Such univariate random effect model can be easily fitted in most of statistical 

software. The covariance matrix can be easily calculated using the above formulas, which 

only involve one-dimensional integrations. We note that although the correlation parameter 

ρis set at 0, the off-diagonal matrices in Σ̂ still properly account for the covariance between 

the estimated overall sensitivity and specificity. In contrast, such covariance cannot be 

properly considered if investigators conduct meta-analysis by univariate meta-analyses only. 

In other words, although both the CL method and the univariate meta-analysis provide the 

same and valid inference on sensitivity and specificity alone, they provide different 

inferences on functions of sensitivity and specificity such as diagnostic likelihood ratios and 

diagnostic odds ratio. The CL method can correctly account for the covariance between the 

estimated sensitivity and specificity whereas the univariate method cannot due to the ignored 

covariance between the estimated sensitivity and specificity. In Section 1 of the 

Supplementary Materials, we numerically demonstrate the advantage of the proposed 

method over the univariate analysis in estimating functions of sensitivity and specificity, 

where the univariate method leads to confidence intervals with incorrect coverage 

probabilities. We consider the CL method as a method between bivariate and univariate 

meta-analyses, inheriting the ability of inferring functions of overall parameters (such as 

diagnostic likelihood ratios and diagnostic odds ratio) with correct variance/covariance 

estimates while not suffering from their limitations.

3 Simulation Study

We conduct simulation studies to evaluate the finite sample performance of the CL method 

and compare it to that of the SL method. The data are generated from a two-stage procedure 

as specified by equations (1) and (2). We consider five different scenarios including settings 

with or without study level covariates, normal and t distributions for random effects, and 

logit and complementary log-log (c-log-log) link functions. Table 1 provides a description of 

these five different scenarios. For the scenario with study-level covariates, we consider two 

covariates: a binary covariate (e.g. 1 for regional cancer and 0 for distant cancer), and a 

continuous covariate sampled from a uniform distribution (e.g., QUADAS score with range 

of [1, 14]). We consider three different sizes of meta-analysis with a relatively small number 

(m = 10), a moderate number (m = 25), and a relatively large number (m = 50) of studies. 

The number of subjects in each study is randomly sampled from an application of meta-

analysis for diagnostic tests of metastases, which will be described in details in Section 4. 

We consider two settings of sensitivity and specificity: (Se, Sp)=(0.70, 0.80) and (Se, 

Sp)=(0.90, 0.95), reflecting scenarios of low accuracy and high accuracy tests. Five thousand 

datasets are generated for each simulation setting. For each generated dataset, we apply both 

the CL and SL methods to obtain the estimates of sensitivity (Se), specificity (Sp), LR+ and 

LR−. Specifically, the CL method is implemented in R (R Development Core Team, Version 

2.14.1) by using the glmmML package32. The model-based standard errors of the CL 

estimates are obtained by equation (5). To obtain the SL estimates, we use the adaptive 

Gaussian quadrature method in the SAS NLMIXED procedure (SAS Institute Inc., Cary, 

NC). The model-based standard errors of the SL estimates are obtained by the inverse of the 
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negative hessian matrix of the log likelihood. Programming codes are provided in the 

Appendix.

In Table 2 we show the empirical bias (BIAS), empirical standard error (SE), average of 

model-based standard error estimates (MBSE) and the coverage probability (CP) of the 95% 

confidence intervals for the estimates when data is generated from ℳ1 with (Se, Sp)=(0.90, 

0.95). When the number of studies is moderate (m = 25) or relatively large (m = 50), both 

the CL and SL methods provide approximately unbiased estimates (relative bias < 3%), 

MBSEs close to true SEs, and CPs close to nominal levels, with the CP from the CL method 

being slightly better than that from the SL method. When the number of studies is relatively 

small (m = 10), both methods have approximately 10% relative bias and under-estimated 

standard errors in the estimation of LR+ and LR−. The CP of the CL method is still 

acceptable with the range of [87.8%, 90.7%] and is not influenced by the degree of 

correlation. In contrast, the CP of the SL method deteriorates as the magnitude of correlation 

increases, and has a range of [73.0%, 90.3%]. When the SL method is applied, around 5 ~ 

11% of the simulated replicates have the non-convergence problem (i.e., number of 

iterations reaches the default number of 200 iterations while the relative gradient 

convergence criterion < 1e − 10 is not satisfied), or non-positive definite covariance matrix 

problem. The fitting results under non-convergence were excluded when summarizing 

simulation results from replications. Simulation results with lower sensitivity, i.e., (Se, 

Sp)=(0.70, 0.80), are summarized in Table S1 of the Supplemental Material. Similar findings 

are obtained with the CL method achieving better CPs compared to the SL method.

One interesting finding seen from Table 2 is that the empirical SE of the estimates from the 

SL method does not decrease as the correlation increases (in magnitude) and the empirical 

SE from the SL method is very close to that from the CL method. This suggests that the 

efficiency gain in the joint analysis of sensitivity and specificity when conducting diagnostic 

reviews may not be large. Such an observation has been previously reported by Simel and 

Bossuyt25. To investigate the relative efficiency of the CL method compared to the SL 

method, we plot the relative efficiency (defined by the sample variance of the SL estimates, 

divided by that of the CL estimates) against the correlation ρ, as shown in Figure 1. All four 

panels in Figure 1 show that the relative efficiency of the CL method is at least 90%. Note 

that when the number of studies is 25, the CL method tends to be more efficient than the SL 

method; whereas when the number of studies is 50, the SL method tends to be more 

efficient.

In Table 3 we evaluate the robustness of the CL and SL methods under various model mis-

specifications when the number of studies is 50. Under the setting ℳ2 where the study-

specific sensitivity and specificity (in logit) are generated from bivariate t distribution with 4 

degree of freedom, both methods produce satisfactory inferences with unbiased estimates 

and CP close to the nominal level. Interestingly, under the setting ℳ3 where c-log-log 

(instead of logit) link is used, the CP of the CL method remains satisfactory, whereas the CP 

of the SL method deteriorates rapidly as the magnitude of correlation increases. This 

suggests that the SL method (which requires to estimate the correlation) is not sensitive to 

the heavy tail distribution under logit link, but is very sensitive under the asymmetric c-log-

log link function. In contrast, the CL method is quite robust to the heavy tail distribution 
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under both link functions. Under the setting ℳ4, we consider the heterogeneity in correlation 

where the correlation takes one value in half of the studies and takes a different value in the 

remaining half. Under this setting, the likelihood of the SL method is mis-specified, whereas 

the likelihood of the CL method is not because the CL method does not assume 

homogeneous correlation across studies. As expected, the CL method leads to unbiased 

estimates with CP close to the nominal level, whereas the SL method underestimates the 

standard errors and has poor CPs (range of CP: [80.7%, 83.8%]).

Table 4 summarizes the simulation results when study-level covariates are available and the 

number of studies is 30 or 50 (i.e., setting ℳ5). In this case, the regression coefficients are 

parameters of interest. Similar to the findings from Table 2, both methods provide unbiased 

estimates and CPs close to the nominal level. The CL method has up to 23.4% of efficiency 

loss. In this setting, the SL method is recommended if there is no convergence problem, 

where the CL method can be considered as an alternative.

In summary, simulation studies suggest that the CL method outperforms the SL method 

when the number of studies is relatively small, and when the correlation is heterogeneous 

across studies. The CL method is also more robust than the SL method under various model 

mis-specification settings considered. When study-level covariates are available, the CL 

method can be less efficient than the SL method, which should be used as an alternative 

when the SL method encounters convergence problem.

4 Applications

Melanoma is a malignant tumor of melanocytes, the cells that produce the skin pigment, 

melanin. Less common than other types of skin cancer, melanoma is much more dangerous 

when not found early, and causes the majority (75%) of deaths related to skin cancer33. 

Although sentinel lymph node biopsy is the acknowledged gold standard for the pathological 

staging of melanoma in patients whose lymph nodes are clinically negative, imaging 

technology has also been used in some clinical settings for preoperative lymph node 

assessment and postoperative surveillance. Imaging technology can be used for the early 

detection of melanoma metastasis, and provides a cost-effective surveillance approach34. 

Currently, the diagnostic imaging technologies most commonly used for melanoma include 

ultrasonography (US), computed tomography (CT), positron emission tomography (PET) 

and a combination of the latter two technologies (PET-CT). It is critical to evaluate the 

performance of these contemporary diagnostic imaging technologies when used for patients 

with melanoma.

Xing et al.35 conducted a diagnostic review based on 98 published studies of 10, 528 

patients carried out between January 1, 1990 and June 30, 2009. The number of studies for 

each diagnostic imaging technology and each type of cancer (i.e., regional and distant) are 

cross-tabulated in Table S3 in the Supplemental Material. To apply the composite likelihood 

method, we fit a sequence of nested meta-regression models where the smallest model 

includes a variable for stage of cancer (i.e., 1 for regional and 0 for distant), and three 

dummy variables for types of imaging modalities with PET-CT as the reference group. 

Larger models were considered sequentially by adding interaction terms between types of 
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cancer and imaging modalities. To select models fitted by CL method, modifications of 

Akaike's information criterion (AIC) and Bayesian information criterion (BIC) can be 

used36,37. Specifically, the composite likelihood version of AIC is defined as 

, where , Ĵ is the estimated covariance 

matrix of ∂Lc(θ1, θ2)/∂(θ1, θ2) evaluated at (θ̃1, θ̃2) and Ĥ is −∂2 log Lc(θ1, θ2)/∂(θ1, θ2)2 

evaluated at (θ̃1, θ̃2). It is easy to show that  equals to the number of parameters in the 

model. The composite likelihood version of BIC is defined as 

, where P is the number of model parameters, 

and γ is a tuning parameter and is taken as 0 when P is relatively small compared to the 

number of studies as suggested in Gao and Song37. The results of fitting the sequence of 

nested models are summarized in Table 5.

Both CL-AIC and CL-BIC suggest the use of the baseline model with 12 model parameters. 

However, model assumptions such as normality and equal variance need to be investigated. 

QQ-plots of the logit sensitivity and specificity are produced in Figure S2 of the 

supplementary material, and Shapiro-Wilk test38 for normality is conducted. Both the plots 

and the test suggest the normality assumption is appropriate. To evaluate the equal variance 

assumption across different subgroups (i.e., different diagnostic technology and types of 

cancer), we apply Bartlett's test39. This test suggests that homogeneity assumption is 

appropriate for logit specificity, but not for logit sensitivity (p < 0.001). To study the 

sensitivity of the results from the baseline model (as recommended by both CL-AIC and CL-

BIC) on the equal variance assumption, we conduct a separate analysis for each subgroups, 

and find that the results from the subgroup analyses are generally similar to those from the 

baseline meta-regression model.

Figure 2 presents the results from the subgroup analyses with the CL method on the overall 

diagnostic sensitivity, specificity and diagnostic odds ratio, and the associated 95% 

confidence intervals for the four diagnostic imaging modalities. The results from the SL 

method are displayed as the dashed lines in Figure 1 for comparison. We note that for the 

subgroup with regional cancer, there are only 5 studies with PET-CT, and 3 studies with CT. 

The inference based on the SL method is sensitive to the choice of initial values, and 

singular covariance matrix is encountered. Thus, the confidence intervals for these two 

subgroups are not provided. In general, the results from the CL method are consistent with 

those from the SL method. For the surveillance of regional lymph node metastasis, US has 

the highest sensitivity (64%; 95% CI=40% to 82%), specificity (98%; 95% CI=95% to 99%) 

and diagnostic odds ratio (77.3; 95% CI=22.8 to 262.0) among all four imaging modalities. 

For the surveillance of distant lymph node metastasis, PET-CT has the highest sensitivity 

(85%; 95% CI=68% to 94%), specificity (94%; 95% CI = 86% to 97%) and diagnostic odds 

ratio (83.8; 95% CI=23.2 to 303.1). The results from the CL method suggest that US is a 

more accurate imaging modality for diagnosing regional lymph node involvement and PET-

CT is the preferred imaging modality to diagnose distant metastasis. On the other hand, the 

confidence intervals for sensitivity, specificity and diagnostic odds ratio overlap 

substantially. Hence more studies are required to draw more definitive conclusions in regard 

to these imaging modalities and their roles for detection of metastasis.
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Since the estimated bivariate summary measures are often correlated, separate confidence 

intervals that do not account for such a correlation may be misleading16. Figure 3 presents 

the summary points and 95% confidence region for sensitivity versus 1 minus specificity 

without stratification on stages of metastasis (i.e. regional or distant) using the CL method. 

Specifically, the parametric representation of the boundary of the elliptical Wald-type 

confidence region for sensitivity and specificity (in logit scale) is obtained as40,

where sS1 and sC1 are the estimated standard errors of Ŝ1 and Ĉ1, r is the estimate of their 

correlation, ϕ runs from 0 to 2π, and f2,n−2;α is the upper 100α% point of the F distribution 

with degrees of freedom 2 and n − 2, and n is the number of studies. Similar as shown in 

Figure 1, the wide ranges of those confidence regions suggest that more studies are needed 

to increase the precision of those estimates, and to reach definitive conclusions comparing 

those imaging modalities.

5 Discussion

In this paper, we proposed a composite likelihood method for the bivariate analysis of 

sensitivity and specificity in diagnostic reviews. The main advantages of this method over 

the standard likelihood method are the avoidance of the non-convergence problem, 

computational simplicity and some robustness to model mis-specifications such as 

distributions with heavy tails and non-homogeneous correlations across studies. 

Furthermore, our simulation studies suggested that the composite likelihood method 

maintains a high relative efficiency compared to the standard likelihood method. Other 

bivariate random effects models have been considered in the literature. For example, 

Sarmanov beta-binomial models have been studied by Chu et al.41 and Chen et al.42. The 

composite likelihood with working independence assumption can be used to deal with the 

limitations of constrained correlation parameter space43,44. It is worth mentioning that the 

composite likelihood approach is analogous to two other approaches under specific 

applications: the generalized estimating equation (GEE) by Liang and Zeger23 for the 

inference of marginal models for longitudinal data with an independence working 

correlation structure, and the pseudo-partial likelihood function by Lin24 for the inference of 

marginal models for multivariate survival data when failure times within the same unit are 

treated as independent random variables. We believe our method can be a useful alternative 

to the standard likelihood method for bivariate analysis in diagnostic reviews.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Relative efficiency (RE) of maximum composite likelihood estimator of sensitivity (upper 

left panel), specificity (upper right panel), LR+ (lower left panel) and LR− (lower right 

panel) compared to the maximum likelihood estimator under various values of correlation ρ.
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Figure 2. 
Estimated accuracies and 95% confidence intervals of four diagnostic imaging technologies 

when identifying the pathological stage of distant and regional lymph nodes in patients with 

melanoma. Solid segments: results from the CL method; dashed segments: results from the 

SL method.
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Figure 3. 
Summary points and 95% confidence regions of sensitivity versus 1-minus-specificity for 

four diagnostic imaging modalities. Filled circle: summary point; solid line: boundary of 

95% confidence region for the summary point.
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Table 1

Configurations of five different simulation scenarios: ℳ1 ~ ℳ5.

Model Covariates Link function Random effects distribution Correlation structure

ℳ1 No logit bivariate normal fixed

ℳ2 No logit bivraiate t fixed

ℳ3 No c-log-log bivariate t fixed

ℳ4 No logit bivariate normal mixture

ℳ5 Yes logit bivariate normal fixed
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Table 5

Model selection using the CL-AIC and CL-BIC when analyzing the data in Xing et al. (2011).

Model −2logCL CL-AIC CL-BIC

baseline 12 1050 1074 1106

+I(Regional)*I(US) 14 1050 1078 1115

+I(Regional)*I(CT) 14 1048 1076 1113

+I(Regional)*I(PET) 14 1050 1078 1114

+I(Regional)*I(US)+I(Regional)*I(CT) 16 1048 1080 1122

+I(Regional)*I(US)+I(Regional)*I(PET) 16 1050 1082 1124

+I(Regional)*I(CT)+I(Regional)*I(PET) 16 1048 1080 1122

+I(Regional)*I(US)+I(Regional)*I(CT)+I(Regional)*I(PET) 18 1048 1084 1131

baseline: meta-regression model with study-level covariates of I(Regional) + I(US) + I(CT) + I(PET).
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