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Dendritic cells play important roles in regulating innate and adaptive
immune responses. DEC205 (CD205) is one of the major endocytotic
receptors on dendritic cells and has been widely used for vaccine
generation against viruses and tumors. However, little is known
about its structure and functional mechanism. Here we determine the
structure of the human DEC205 ectodomain by cryoelectron micros-
copy. The structure shows that the 12 extracellular domains form a
compact double ring-shaped conformation at acidic pH and become
extended at basic pH. Biochemical data indicate that the pH-
dependent conformational change of DEC205 is correlated with
ligand binding and release. DEC205 only binds to apoptotic and
necrotic cells at acidic pH, whereas live cells cannot be recognized by
DEC205 at either acidic or basic conditions. These results suggest
that DEC205 is an immune receptor that recognizes apoptotic and
necrotic cells specifically through a pH-dependent mechanism.
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In living organisms such as humans, billions of cells are turned
over through apoptosis or killed by pathological infections or
inflammation every day. Therefore, clearance of dead cells is
critical for maintaining tissue homeostasis and preventing auto-
immunity and inflammation (1-3). Dead cells are usually re-
moved by the host immune system through phagocytosis by
phagocytes. Antigen-presenting cells (APCs) such as dendritic
cells and macrophages are professional phagocytes that can en-
gulf target cells or fragments by recognizing specific ligands
through their cell surface receptors (4), and after antigen uptake,
processing, and presentation, they can lead to either immune
activation or tolerance (5-8).

DEC205 (CD205 or Ly75, MW 205 kDa) is an endocytotic
receptor with wide tissue distribution and is highly expressed on
dendritic cells and thymic epithelial cells (8, 9). It has been
shown that DEC205 is involved in antigen uptake and can induce
either tolerance or immunity in the absence or presence of in-
flammatory stimulus (10). It has also been suggested that DEC205
may bind apoptotic and necrotic cells (11) and oligonucleotides
(12); however, neither the structure nor the functional mechanism
of DEC205 has been identified.

In contrast, the role of DEC205 in generating protective immu-
nity has been studied extensively. It is probably the most widely used
receptor target in dendritic cell-based immune therapies. The high
efficiency of antigen delivery and presentation makes DEC205 an
ideal vehicle for vaccine generation against various antigens such as
tumors and viruses (13, 14), mainly through DEC205-specific an-
tibodies fused with a fragment or intact protein of the target antigen
(15-17). This strategy has been shown to be successful in generate
protective immune responses and reveals good potentials in clinical
applications (18).

DEC205 belongs to the mannose receptor family (19). To
date, five proteins have been classified as the mannose receptor
family members, including the mannose receptor itself (20),
DEC205 (9), Endo180 (21), PLA2R (22), and FcRY (23). These
receptors share similar structural features, but their physiological
functions are made diverse by recognizing different ligands. The
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ectodomain of mannose receptor family members begins with a
cysteine-rich domain (CysR), followed by a fibronectin type II
domain (FNII) and eight (10 for DEC205) C-type lectin-like
domains (CTLDs) (Fig. 14). Probably because of the potential
internal flexibility, no high-resolution structures have been de-
termined for this family. Currently known structural information
of this family comes from electron microscopy. A negatively
stained image reconstruction shows that the mannose receptor
has a compact conformation (24). The cryoelectron microscopy
(cryoEM) reconstruction of FcRY indicates that its ectodomain
adopts a double-ringed conformation at acidic pH (25). How-
ever, because of limited resolution, the detailed domain ar-
rangements of these molecules, especially the interactions among
these domains, are unclear.

Here we determined the 3D structure of human DEC205
ectodomain by cryoEM single-particle reconstruction, identi-
fied its pH-dependent conformational change, and also in-
vestigated the mechanism of the conformational change and its
correlation with ligand binding and release. These results in-
dicate that DEC205 is an immune receptor that recognizes
apoptotic and necrotic cells specifically through a pH-dependent
mechanism.

Results

pH-Dependent Conformational Change of DEC205. The human DEC205
ectodomain (residues 1-1,668) was expressed in HEK293 cells.
The purified protein was analyzed by size-exclusion chromatog-
raphy (SEC) at both acidic (pH 6) and basic (pH 8) conditions.
The DEC205 ectodomain eluted earlier at pH 8 than at pH 6 (Fig.
1B), suggesting a more extended conformation at pH 8. Consistent
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Fig. 1. The pH-dependent conformational change of DEC205. (A) A schematic
representation of DEC205 domain arrangement. (B) SEC profiles of DEC205 at
pH 6 and pH 8. (C) Dynamic light scattering analysis of DEC205 at pH 6 and
pH 8. (D) A negatively stained EM micrograph (Top) and the representative
reference-free 2D classes (Bottom) of DEC205 at basic pH. (E) A negatively
stained EM micrograph (Top) and the representative reference-free 2D classes
(Bottom) of DEC205 at acidic pH. (F) A cryoEM micrograph (Top) and the rep-
resentative reference-free 2D classes (Bottom) of DEC205 at acidic pH. (Scale
bars, 50 nm for micrographs and 10 nm for the reference-free 2D classes.)

with this interpretation, dynamic light scattering showed an increase
in the hydrodynamic radius at basic pH compared with acidic pH
(Fig. 1C).

To visualize the conformational change of DEC205 directly, the
DEC205 ectodomain was negatively stained at both acidic (pH 6.0)
and basic (pH 8.0) conditions and was imaged by electron micros-
copy. The images obtained at acidic pH showed that DEC205 had
a homogeneous conformation with a globular shape (Fig. 1E),
whereas the sample stained at basic pH showed mostly linear and
extended particles with heterogeneous conformations (Fig. 1D).
These results confirmed that DEC205 underwent a conformational
change between acidic and basic conditions.

CryoEM Reconstruction of DEC205. To investigate the 3D structure
of DEC205 at higher resolution, we collected images from the
unstained frozen hydrated samples of human DEC205 ectodo-
main by cryoEM at pH 6 (Fig. 1F) and pH 8. 3D reconstruction
of DEC205 at pH 8 was not successful, probably because of the

7238 | www.pnas.org/cgi/doi/10.1073/pnas.1505924112

flexibility and heterogeneity of the open conformation at basic
conditions, as observed in the negatively stained images (Fig.
1D). The compact conformation at pH 6 was reconstructed and
refined to 14.6 A resolution, the highest resolution achieved for a
mannose receptor family member to date (Fig. 2). The overall
structure of DEC205 can be roughly divided into a head and a tail
region. The head adopts a double-ringed conformation. The small
ring contains CysR, FNII, and CTLD1~CTLD3, with CysR inter-
acting with CTLD3. The larger ring is formed by FNII and
CTLD1~CTLD6, with FNII interacting with CTLD6 (Fig. 2 and
Fig. 34). The tail of DEC205 includes domains from CTLD7 to
CTLD10. A similar compact double ring-shaped conformation at
acidic pH has been found for FcRY (25), suggesting the confor-
mation might be conserved within the mannose receptor family.
The cryoEM reconstruction also allows the individual domain
of DEC205 to be recognized (Fig. 2B). For example, the pseudo
threefold structure of CysR (26) and the adjacent saddle-like
shape consistent with the structure of FNII domain (27) are vi-
sualized in the reconstruction (Fig. 2 B and C). Crystal structures
of CTLDs suggest these domains include a large loop region of
about 20 residues (28), which may introduce internal flexibility
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Fig. 2. 3D reconstruction of DEC205 by cryoEM. (A) A ball-and-stick model of
DEC205 domain arrangement from cryoEM. (B) Views of the cryoEM re-
construction of DEC205. (C) CryoEM densities (gray) of the individual domains
(CysR, FNII, and CTLD4) (Left) and DEC205 (Right) fitted with the corresponding
homology models. (D) Back projections of DEC205 reconstruction (Top) and the
corresponding reference-based 2D classes (Bottom).
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Fig. 3. The mechanism of DEC205 conformational change. (A) The
conformational change of the small ring (CysR~CTLD3, light purple, Left)
and the large ring (FNII~CTLD®6, dark purple, Right) of DEC205 between
acidic and basic pH. The approximate position of H129 is shown as a
yellow dot. The domains involved in the intramolecular interactions are
circulated by the brown dotted lines. (B) SEC profiles of the small ring at
pH 6 and pH 8. (C) SEC profiles of the large ring at pH 6 and pH 8. (D) SEC
profiles of the small ring H129E mutant at pH 6 and pH 8. (E) Sensor-
grams for the interactions of CysR with CTLD3 at acidic (Left) and basic
(Right) conditions. (F) Sensorgrams for the interactions of CTLD6 with
FNII at acidic (Left) and basic (Right) conditions. (G) Sensorgrams for the
interactions of CysR(H129E) with CTLD3 at acidic (Left) and basic (Right)
conditions.

and reduce the resolution of reconstruction. However, the bound-
ary of each CTLD is recognizable in the reconstruction and
can be fit with CTLD models (Fig. 2C). Notably, the adjacent
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CTLDs of DEC205 can form groups, such as CTLD1~CTLD2,
CTLD4~CTLDS5, and CTLD8~CTLD10. The CTLDs within
the same group associate with each other tightly, consistent
with the results from protease digestions of the mannose re-
ceptor (29). In contrast, CTLD3, CTLD6, and CTLD7 are
loosely associated with neighboring domains (Figs. 14 and 2B).
The tight or loose association among neighboring CTLDs may
contribute to the formation of the overall conformation and the
transition between the open and the closed states.

Mutagenesis Studies of the DEC205 Conformational Change. To in-
vestigate the pH-dependent conformational change of DEC205, a
series of mutants was constructed to probe the interactions among
the extracellular domains. A truncation mutant containing the
domains that form the small ring, including CysR, FNII, and
CTLD1~CTLD3, was constructed and expressed. The purified
protein of this mutant exhibited a pH-dependent elution shift by
SEC at pH 6 and pH 8 (Fig. 3 4 and B), suggesting the small ring
is involved in the pH-dependent conformational change. Another
mutant comprising the domains forming the large ring, including
FNII and CTLD1~CTLD®6, was also expressed and purified, and a
similar pH-dependent elution shift was observed (Fig. 3 4 and C).
These results suggest that both rings are open at basic pH, driving
DEC205 to adopt a linear and extended structure as observed by
SEC and negatively stained EM.

The pH-dependent properties of proteins are commonly as-
sociated with histidine residues that undergo charge transitions
between acidic and basic environments. We therefore investigated
the potential locations of histidine residues in the ectodomain of
DEC205 based on the cryoEM reconstruction. For forming the
small ring, CysR and CTLD3 need to interact with each other, and
histidine 129 of CysR locates at the potential interface between
CysR and CTLD3 in the fitting model (Fig. 34). Indeed, the SEC
elution profiles at pH 6 and pH 8 of the purified H129E (Fig. 3D)
and H129A mutants were almost identical, suggesting the pH-
dependent conformational change was abolished for these mu-
tants. These results also validate the cryoEM model. Identification
of the histidines that regulate the conformational change of the
large ring was not successful because of the low expression level of
the large ring mutants.

To further validate the intramolecular interactions of DEC205 that
are critical for forming the double ring-shaped conformation at acidic
pH, four single domains, including CysR, CTLD3, FNII, and
CTLD6, were expressed individually fused to an IgG Fc region, and
the interactions of CysR with CTLD3 and FNII with CTLD6 were
monitored by surface plasmon resonance (Fig. 3 E and F). The re-
sults showed that both interactions, CysR with CLTD3 and FNII with
CTLD®6, were pH-dependent, thus validating the structural model
from cryoEM. We also tested the interaction between the CysR
(H129E) and CTLD3, and no detectable interaction was found at
either acidic or basic pH (Fig. 3G), confirming the importance of this
residue in the DEC205 conformational change.

pH-Dependent Recognition of Apoptotic and Necrotic Cells by DEC205.
We further explored functional correlation of the DEC205 con-
formational change by a series of cell assays. Binding of the GFP-
tagged DEC205 to Jurkat and HEK293 cells were assayed at
different pH conditions by flow cytometry and confocal microscopy.
The flow cytometry data showed that DEC205 had no binding to
healthy Jurkat cells at either acidic or basic pH (Fig. 44). However,
when these cells were treated with actinomycin D (ActD) to induce
apoptosis and necrosis, DEC205 exhibited binding activities under
acidic, but not basic, conditions (Fig. 44). Similar binding charac-
teristics were also observed for DEC205-GFP interactions with
HEK?293 cells (Fig. 4B), suggesting common ligands were expressed
on both cell types. In addition, DEC205-GFP also bound frozen-
thawed HEK293 cells at acidic pH (Fig. 4C), indicating that the
ligand of DEC205 was likely to be a naturally expressed cellular
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cells, but strong binding to the apoptotic and the early necrotic cells,
and the strongest binding to the late necrotic cells. These results
suggested that the cellular ligands of DEC205 were gradually ex-
posed as the apoptotic process continued until the stage of necrosis.

component before apoptosis. To further investigate binding differ-
ences between apoptotic and necrotic cells, both viable and ActD-
treated Jurkat cells were stained by DEC205-GFP at acidic pH (Fig.
4D). DEC205 showed only weak binding to the preapoptotic Jurkat
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Fig. 4. The pH-dependent recognition of apoptotic and necrotic cells by DEC205. (A) DEC205-GFP binds to the ActD-treated Jurkat cells at acidic pH.
(B) DEC205-GFP binds to the Apopida-treated HEK293 cells at acidic pH. (C) DEC205-GFP binds to the frozen-thawed HEK293 cells at acidic pH.
(D) Triple staining of the viable Jurkat cells (Left) and the ActD-treated Jurkat cells (Middle) by Annexin V-APC, Pl, and DEC205-GFP at acidic pH. The
binding of DEC205 to the gated subsets of the viable and the ActD-treated Jurkat cells are shown on the right. () CysR~CTLD3-GFP (the small ring)
binds to the ActD-treated Jurkat cells at acidic conditions. (F) FNII~CTLD6-GFP (the large ring) does not bind to the ActD-treated Jurkat cells at either acidic or basic
conditions. (G) DEC205 (H129E)-GFP does not bind to the ActD-treated Jurkat cells at either acidic or basic conditions. (H) The fixed and permeabilized HEK293 cells
stained by DEC205-GFP and DAPI at pH 6.0 by confocal microscopy. (/) The fixed and permeabilized HEK293 cells stained by DEC205-GFP and DAPI at pH 7.4 by
confocal microscopy. (Scale bars, 25 um.) (J) A cartoon representation of the pH-dependent recognition of apoptotic cells by DEC205.
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The truncation mutants of DEC205, including the small ring
fragment (CysR to CTLD3) and the large ring fragment (FNII to
CTLDo6) (Fig. 3), were also used for cell staining. The results
showed that the small ring bound only to the apoptotic and ne-
crotic cells at acidic pH and had no binding to healthy cells (Fig.
4F), similar to the results obtained from the intact DEC205
ectodomain (Fig. 44). In contrast, the large ring fragment
showed no binding to both ActD-treated and untreated cells at
either acidic or basic pH (Fig. 4F). Furthermore, the H129E
mutant of DEC205 was also tested for staining and showed no
binding activity to both treated and untreated cells at either
acidic or basic conditions (Fig. 4G). These data together dem-
onstrated that the small ring of DEC205 was required and suf-
ficient for recognizing apoptotic and necrotic cells, and the
binding and release of ligand were correlated with the pH-
dependent conformational change. To visualize cell staining by
DEC205, fixed and permeabilized HEK293 cells were stained
with DEC205-GFP and imaged by confocal microscopy at both
pH 6 and pH 8. The images showed that DEC205 stained most of
the cellular regions except nucleus at pH 6 (Fig. 4H), but at pH §,
DEC205-GFP showed only background level of cell staining (Fig.
41), suggesting DEC205 only recognized cellular components at
acidic conditions.

Discussion

Similar to other mannose receptor family members, DEC205 has
a relatively large ectodomain that contains 12 domains; however,
instead of having a flexible conformation, the cryoEM structure
of DEC205 shows a rather compact double ring-shaped confor-
mation at acidic pH. Similar conformation has been found for
FcRY (25), another member of mannose receptor family, and it
may also be true for the mannose receptor, according to the
negatively stained EM results (24). It is noteworthy that this
unique conformational feature has not been found outside this
family, suggesting a common ancestor shared by the family
members during evolution.

The high-resolution structural determination of the mannose
receptor family members is not successful up to date, which
could be because of the internal flexibility of the molecule;
for example, the CTLD domains usually have large flexible
loops, which would reduce the reconstruction resolution. Nev-
ertheless, the 14.6-A-resolution structure of DEC205 obtained
by cryoEM is able to differentiate the individual domains of
DEC205 clearly (Fig. 2), thus locating the interacting interfaces
among these domains. The head of DEC205 contains two ring-
shaped structures. The small ring is formed by CysR, FNII,
and CTLD1~CTLD3, whereas the large ring is formed by FNII
and CTLD1~CTLD6. The tail starts from CTLD7 to CTLD10.
Consistent with the protease digestion results of the mannose
receptor (29), the EM reconstruction shows that there are three
tightly associated groups of CTLDs in DEC205, including
CTLD1~CTLD2, CTLD4~CTLDS, and CTLD8~CTLD10,
which may act as a scaffold for maintaining the double-ringed
conformation (Fig. 14). The domains that are loosely associated
with neighboring domains such as CTLD3 and CTLD6 may have
more flexibility in locating their binding partners. Indeed, the
small ring is formed by the interaction between CTLD3 and
CysR, and the large ring is formed by CTLD6 interacting with
FNII. Similar domain arrangements and intramolecular in-
teractions have been found in the EM structures of other man-
nose receptor family members (24, 25).

The pH-dependent conformational change has been observed
for FcRY (23) and mannose receptor (24), suggesting pH de-
pendence might be a conserved feature for the family. However,
the mechanism and the residues involved in the conformational
changes have not been identified in both cases. The mutagenesis
studies of DEC205 show that both the small ring and the large
ring undergo conformational changes as pH changes, resulting in
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a linear conformation at basic or physiological pH (~7.4). The
cell binding results indicate that only the small ring is involved in
ligand binding at its closed state; therefore, the opening and
closing of the large ring may act as a facilitating factor for the
conformational change of the small ring. It is not surprising that
a histidine (His129) is identified as an important residue for the
conformational change of the small ring and ligand binding.
However, whether histidine residues are directly involved in li-
gand recognition remains unclear.

It seems unexpected that DEC205 is activated for apoptotic cell
recognition at acidic pH, rather than at physiological pH. In fact,
the intracellular acidification has been found to be common for
apoptotic cells and occurs as an early event of apoptosis (30-32). As
apoptosis proceeds, the extracellular environment around the ap-
optotic cells may also be acidified; for example, through hydrogen
exchangers (33) or when cell membrane starts leaking. The acidi-
fication can then induce the conformational change of DEC205 and
make it ready for ligand binding (Fig. 4/). The requirements for
both acidification and ligand exposure increase the selectivity of
DEC205 for target recognition. Unfortunately, the natural ligand or
ligands of DEC205 still remain unknown. Nevertheless, the finding
of the pH-dependent binding characteristic of DEC205 would help
ligand identification in the future.

The extracellular acidification is usually associated with in-
flammation and tumorigenesis and treated as a “danger signal”
by immune system (34, 35). For dendritic cells, extracellular acid-
ification can affect their maturation and differentiation, especially
antigen uptake and presentation (36). It has been shown that the
antigen uptake of dendritic cells at pH 6.5 is almost 10-fold higher
than at pH 7.3 (37), suggesting more receptors are activated at
acidic pH, which is well consistent with the finding of DEC205.

To date, a number of receptors of phagocytes such as CD14
(38), CD36 (39), and integrin (40) are identified to be involved in
removing apoptotic cells. The phagocyte receptors bind to dead
cells through a variety of cell surface markers (3). For example,
PtdSerR recognizes phosphatidylserine on the membrane of
apoptotic cells (41). LRP of engulfing cells recognizes calreti-
culin on apoptotic cell surface for clearance (42). Clec9A rec-
ognizes actin filaments of damaged cells (43-45). However, none
of these receptors has been shown to have pH-dependent ac-
tivities. Therefore, the pH-dependent recognition of apoptotic
and necrotic cells by DEC205 represents a novel mechanism for
the immune system to regulate cell clearance and immune re-
sponses. Considering the high expression level of DEC205 on
dendritic cells, DEC205 might be involved in routine screening
over cells, detecting apoptosis at early stages by sensing pH
changes and ligand exposure and triggering phagocytosis. Al-
ternatively, DEC205 may also be able to access the internalized
dead cells or fragments at phagosome and be activated under the
acidic environment for antigen binding and presentation.

Unlike normal cells, tumor cells have relatively higher in-
tracellular pH and lower extracellular pH, which could facilitate
their proliferation, apoptosis evasion, and extracellular matrix
remodeling for invasion (46). Therefore, the pH-dependent ac-
tivities of DEC205 may give it advantages to target tumors
specifically for immune recognition and clearance. Because
DEC205 has been used for tumor vaccine generation (17, 18), a
combination of the pH-dependent feature of DEC205 with its
high antigen presentation efficiency may provide more potential
to the immune therapies against tumors.

Materials and Methods

HEK293F cells were cultured with HyClone SFM4 HEK293 medium (HyClone
Laboratories, Inc.) supplemented with penicillin and streptomycin. Five hours
before transfection, the cells were collected by centrifugation and cultured
in suspension with FreeStyle 293 expression medium (Gibco, Inc.) at 1 x 10®
cells/mL for transfection.

Further experimental details can be found in S/ Materials and Methods.
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