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The signal-to-noise ratio (SNR), a commonly used measure of fidelity
in physical systems, is defined as the ratio of the squared amplitude
or variance of a signal relative to the variance of the noise. This
definition is not appropriate for neural systems in which spiking
activity is more accurately represented as point processes. We show
that the SNR estimates a ratio of expected prediction errors and
extend the standard definition to one appropriate for single neurons
by representing neural spiking activity using point process general-
ized linear models (PP-GLM). We estimate the prediction errors using
the residual deviances from the PP-GLM fits. Because the deviance is
an approximate χ2 random variable, we compute a bias-corrected
SNR estimate appropriate for single-neuron analysis and use the
bootstrap to assess its uncertainty. In the analyses of four systems
neuroscience experiments, we show that the SNRs are −10 dB to
−3 dB for guinea pig auditory cortex neurons, −18 dB to −7 dB for
rat thalamic neurons, −28 dB to −14 dB for monkey hippocampal
neurons, and −29 dB to −20 dB for human subthalamic neurons.
The new SNR definition makes explicit in the measure commonly
used for physical systems the often-quoted observation that single
neurons have low SNRs. The neuron’s spiking history is frequently
a more informative covariate for predicting spiking propensity than
the applied stimulus. Our new SNR definition extends to any
GLM system in which the factors modulating the response can
be expressed as separate components of a likelihood function.
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The signal-to-noise ratio (SNR), defined as the amplitude
squared of a signal or the signal variance divided by the variance

of the system noise, is a widely applied measure for quantifying
system fidelity and for comparing performance among different
systems (1–4). Commonly expressed in decibels as 10log10(SNR),
the higher the SNR, the stronger the signal or information in the
signal relative to the noise or distortion. Use of the SNR is most
appropriate for systems defined as deterministic or stochastic
signals plus Gaussian noise (2, 4). For the latter, the SNR can be
computed in the time or frequency domain.
Use of the SNR to characterize the fidelity of neural systems is

appealing because information transmission by neurons is a noisy
stochastic process. However, the standard concept of SNR cannot
be applied in neuronal analyses because neurons transmit both
signal and noise primarily in their action potentials, which are
binary electrical discharges also known as spikes (5–8). Defining
what is the signal and what is the noise in neural spiking activity is
a challenge because the putative signals or stimuli for neurons
differ appreciably among brain regions and experiments. For ex-
ample, neurons in the visual cortex and in the auditory cortex
respond respectively to features of light (9) and sound stimuli (10)
while neurons in the somatosensory thalamus respond to tactile
stimuli (11). In contrast, neurons in the rodent hippocampus re-
spond robustly to the animal’s position in its environment (11, 12),
whereas monkey hippocampal neurons respond to the process of
task learning (13). As part of responding to a putative stimulus,

a neuron’s spiking activity is also modulated by biophysical factors
such as its absolute and relative refractory periods, its bursting
propensity, and local network and rhythm dynamics (14, 15).
Hence, the definition of SNR must account for the extent to which
a neuron’s spiking responses are due to the applied stimulus or
signal and to these intrinsic biophysical properties.
Formulations of the SNR for neural systems have been stud-

ied. Rieke et al. (16) adapted information theory measures to
define Gaussian upper bounds on the SNR for individual neu-
rons. Coefficients of variation and Fano factors based on spike
counts (17–19) have been used as measures of SNR. Similarly,
Gaussian approximations have been used to derive upper bounds
on neuronal SNR (16). These approaches do not consider the
point process nature of neural spiking activity. Moreover, these
measures and the Gaussian approximations are less accurate for
neurons with low spike rates or when information is contained in
precise spike times.
Lyamzin et al. (20) developed an SNR measure for neural

systems using time-dependent Bernoulli processes to model the
neural spiking activity. Their SNR estimates, based on variance
formulae, do not consider the biophysical properties of the
neuron and are more appropriate for Gaussian systems (16, 21,
22). The Poisson regression model used widely in statistics to
relate count observations to covariates provides a framework for
studying the SNR for non-Gaussian systems because it provides
an analog of the square of the multiple correlation coefficient
(R2) used to measure goodness of fit in linear regression analyses
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(23). The SNR can be expressed in terms of the R2 for linear and
Poisson regression models. However, this relationship has not
been exploited to construct an SNR estimate for neural systems
or point process models. Finally, the SNR is a commonly com-
puted statistic in science and engineering. Extending this concept
to non-Gaussian systems would be greatly aided by a precise
statement of the theoretical quantity that this statistic estimates
(24, 25).
We show that the SNR estimates a ratio of expected prediction

errors (EPEs). Using point process generalized linear models (PP-
GLM), we extend the standard definition to one appropriate for
single neurons recorded in stimulus−response experiments. In
analyses of four neural systems, we show that single-neuron SNRs
range from −29 dB to −3 dB and that spiking history is often a
more informative predictor of spiking propensity than the signal
being represented. Our new SNR definition generalizes to any
problem in which the modulatory components of a system’s output
can be expressed as separate components of a GLM.

Theory
A standard way to define the SNR is as the ratio

SNR=
σ2signal
σ2noise

, [1]

where σ2signal is structure in the data induced by the signal and
σ2noise is the variability due to the noise. To adapt this definition to
the analysis of neural spike train recordings from a single neu-
ron, we have: to (i) define precisely what the SNR estimates;
(ii) extend the definition and its estimate to account for cova-
riates that, along with the applied stimulus or signal input, also
affect the neural response; and (iii) extend the SNR definition
and its estimate so that it applies to point process models of
neural spiking activity.
By analyzing the linear Gaussian signal plus noise model (Sup-

porting Information), we show that standard SNR computations
(Eq. S5) provide an estimator of a ratio of EPEs (Eq. S4). For
the linear Gaussian model with covariates, this ratio of EPEs is
also well defined (Eq. S6) and can be estimated as a ratio of sum
of squares of residuals (Eq. S7). The SNR definition further
extends to the GLM with covariates (Eq. S8). To estimate the
SNR for the GLM, we replace the sums of squares by the re-
sidual deviances, their extensions in the GLM framework Eqs. S9
and S10. The residual deviance is a constant multiple of the
Kullback−Leibler (KL) divergence between the data and the
model. Due to the Pythagorean property of the KL divergence of
GLM models with canonical link functions (26–28) evaluated at
the maximum likelihood estimates, the SNR estimator can be
conveniently interpreted as the ratio of the explained KL di-
vergence of the signal relative to the noise. We propose an ap-
proximate bias correction for the GLM SNR estimate with
covariates (Eq. S11), which gives the estimator better perfor-
mance in low signal-to-noise problems such as single-neuron
recordings. The GLM framework formulated with point process
models has been used to analyze neural spiking activity (5–7, 29).
Therefore, we derive a point process GLM (PP-GLM) SNR
estimate for single-neuron spiking activity recorded in stimulus−
response experiments.

A Volterra Series Expansion of the Conditional Intensity Function of a
Spiking Neuron. Volterra series are widely used to model bi-
ological systems (30), including neural spiking activity (16). We
develop a Volterra series expansion of the log of the conditional
intensity function to define the PP-GLM for single-neuron
spiking activity (31). We then apply the GLM framework out-
lined in Supporting Information to derive the SNR estimate.
We assume that on an observation interval ð0,T�, we record

spikes at times 0< u1 < u2 < .....< uJ <T. If we model the spike
events as a point process, then the conditional intensity function
of the spike train is defined by (5)

lim
Δ→0

PrðNðt+ΔÞ−NðtÞjHtÞ
Δ

= λðtjHtÞ, [2]

where NðtÞ is the number of spikes in the interval ð0, t� for t∈ ð0,T�
and Ht is the relevant history at t. It follows that for Δ small,

Pr spike  in  ðt, t+Δ�jHtÞ≈ λðtjHtÞΔ.ð [3]

We assume that the neuron receives a stimulus or signal input and
that its spiking activity depends on this input and its biophysical
properties. The biophysical properties may include absolute and
relative refractory periods, bursting propensity, and network
dynamics. We assume that we can express log λðtjHtÞ in a Volterra
series expansion as a function of the signal and the biophysical
properties (31). The first-order and second-order terms in the ex-
pansion are

log λðtjHtÞ=
Z t

0

sðt− uÞβSðuÞdu+
Z t

0

βHðuÞdNðt− uÞ

+
Z t

0

Z t

0

sðt− uÞsðt− vÞh1ðu, vÞdudv

+
Z t

0

Z t

0

h2ðu, vÞdNðt− uÞdNðt− vÞ

+
Z t

0

Z t

0

h3ðu, vÞsðt− uÞdNðt− vÞ+ ..., [4]

where sðtÞ is the signal at time t, dNðtÞ is the increment in the
counting process, βSðuÞ is the one-dimensional signal kernel, βHðtÞ
is the one-dimensional temporal or spike history kernel, h1ðu, vÞ is
the 2D signal kernel, h2ðu, vÞ is the 2D temporal kernel, and
h3ðu, vÞ is the 2D signal−temporal kernel.
Eq. 4 shows that up to first order, the stimulus effect on the

spiking activity and the effect of the biophysical properties of the
neuron, defined in terms of the neuron’s spiking history, can be
expressed as separate components of the conditional intensity
function. Assuming that the second-order effects are not strong,
then the approximate separation of these two components makes
it possible to define the SNR for the signal, also taking account of
the effect of the biophysical properties as an additional covariate
and vice versa. We expand the log of the conditional intensity
function in the Volterra series instead of the conditional intensity
function itself in the Volterra series to ensure that the conditional
intensity function is positive. In addition, using the log of the
conditional intensity function simplifies the GLM formulation by
using the canonical link function for the local Poisson model.

Likelihood Analysis Using a PP-GLM.We define the likelihood model
for the spike train using the PP-GLM framework (5). We assume
the stimulus−response experiment consists of R independent tri-
als, which we index as r= 1, ...,R. We discretize time within a trial
by choosing L large and defining the L subintervals Δ=T−1L. We
choose L large so that each subinterval contains at most one spike.
We index the subintervals ℓ= 1, ...L and define nr,ℓ to be 1 if, on
trial r, there is a spike in the subinterval ((ℓ−1)Δ,ℓΔ) and it is 0
otherwise. We let nr = ðnr,1, ...nr,LÞ be the set of spikes recorded on
trial r in ð0,T�. Let Hr,ℓ = fnr,ℓ−J , ..., nr,ℓ−1g be the relevant history of
the spiking activity at time ℓΔ. We define the discrete form of the
Volterra expansion by using the first two terms of Eq. 4 to obtain

log λrðℓΔ
��Hr,ℓ, β

�
≈ β0 +

XK
k=0

βS,k   sℓ−k +
XJ

j=1

βH,j   nr,ℓ−j, [5]
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where β= ðβ0, βS, βHÞ′, βS = ðβS,0,..., βS,KÞ′, and βH = ðβH,1,..., βH,JÞ′,
and hence the dependence on the stimulus goes back a period
of KΔ, whereas the dependence on spiking history goes back a
period of JΔ. Exponentiating both sides of Eq. 5 yields

λrðℓΔjHℓ, βÞ≈ exp

(
β0 +

XK
k=0

βS,k   sℓ−k +
XJ

j=1

βH,jnr,ℓ−j

)
. [6]

The first and third terms on the right side of Eq. 6 measure the
intrinsic spiking propensity of the neuron, whereas the second
term measures the effect of the stimulus or signal on the neuron’s
spiking propensity.
The likelihood function for β given the recorded spike train is (5)

Lðn, βÞ= exp

(XR
r=1

"XL
ℓ=1

nr,ℓ log λ
�
ℓΔ
���β,Hr,ℓ

�
Δ

−
XL
ℓ=1

λ
�
ℓΔ
��β,Hr,ℓ

�
Δ

#)
. [7]

Likelihood formulations with between-trial dependence (32) are
also possible but are not considered here.
The maximum likelihood estimate of β can be computed by

maximizing Eq. 7 or, equivalently, by minimizing the residual
deviance defined as

Dev
�
n, β̂

�
=−2

�
logL

�
n, β̂

�
− logLðn, nÞ�, [8]

where n= ðn1, ..., nRÞ and Lðn,nÞ is the saturated model or the
highest possible value of the maximized log likelihood (26). Max-
imizing logLðn, βÞ to compute the maximum likelihood estimate
of β is equivalent to minimizing the deviance, because Lðn, nÞ is a
constant. The deviance is the generalization to the GLM of the
sum of squares from the linear Gaussian model (33).
As in the standard GLM framework, these computations are

carried out efficiently using iteratively reweighted least squares.
In our PP-GLM likelihood analyses, we use Akaike’s Informa-
tion Criterion (AIC) to help choose the order of the discrete
kernels βH and βS (34). We use the time-rescaling theorem and
Kolmogorov−Smirnov (KS) plots (35) along with analyses of
the Gaussian transformed interspike intervals to assess model
goodness of fit (36). We perform the AIC and time-rescaling
goodness-of-fit analyses using cross-validation to fit the model to
half of the trials in the experiments (training data set) and then
evaluating AIC, the KS plots on the second half the trials (test
data set). The model selection and goodness-of-fit assessments
are crucial parts of the SNR analyses. They allow us to evaluate
whether our key assumption is valid, that is, that the conditional
intensity function can be represented as a finite-order Volterra
series whose second-order terms can be neglected. Significant
lack of fit could suggest that this assumption did not hold and
would thereby weaken, if not invalidate, any subsequent inferences
and analyses.

SNR Estimates for a Single Neuron. Applying Eq. S11, we have that
for a single neuron, the SNR estimate for the signal given the
spike history (biophysical properties) with the approximate bias
corrections is

ŜNRS =
Dev

�
n, β̂0, β̂H

�
−Dev

�
n, β̂

�
− dim

�
β̂0
�
− dim

�
β̂H

�
+ dim

�
β̂
�

Dev
�
n, β̂

�
+ dim

�
β̂
� ,

[9]

and that for a single neuron, the SNR estimates of the spiking
propensity given the signal is

ŜNRH =
Dev

�
n, β̂S

�
−Dev

�
n, β̂

�
− dim

�
β̂S
�
+ dim

�
β̂
�

Dev
�
n, β̂

�
+ dim

�
β̂
� , [10]

where dimðβ̂Þ is the dimension or the number of parameters in β̂.
Application of the stimulus activates the biophysical properties
of the neuron. Therefore, to measure the effect of the stimulus,
we fit the GLM with and without the stimulus and use the dif-
ference between the deviances to estimate the ŜNRS (Eq. 9). Sim-
ilarly, to measure the effect of the spiking history, we fit the GLM
with and without the spike history and use the difference between
the deviances to estimate the ŜNRH (Eq. 10).
Expressed in decibels, the SNR estimates become

ŜNRdB
S = 10 log10

�
ŜNRS

�
[11]

ŜNRdB
H = 10 log10

�
ŜNRH

�
. [12]

Applications
Stimulus−Response Neurophysiological Experiments. To illustrate our
method, we analyzed neural spiking activity data from stimulus−
response experiments in four neural systems. The stimulus applied
in each experiment is a standard one for the neural system being
studied. The animal protocols executed in experiments 1–3 were
approved by the Institutional Animal Care and Use Committees at
the University of Michigan for the guinea pig studies, the University
of Pittsburgh for the rat studies, and New York University for
the monkey studies. The human studies in experiment 4 were
approved by the Human Research Committee at Massachusetts
General Hospital.

Fig. 1. Raster plots of neural spiking activity. (A) Forty trials of spiking ac-
tivity recorded from a neuron in the primary auditory cortex of an anes-
thetized guinea pig in response to a 200 μs/phase biphasic electrical pulse
applied in the inferior colliculus at time 0. (B) Fifty trials of spiking activity
from a rat thalamic neuron recorded in response to a 50 mm/s whisker de-
flection repeated eight times per second. (C) Twenty-five trials of spiking
activity from a monkey hippocampal neuron recorded while executing a
location scene association task. (D) Forty trials of spiking activity recorded
from a subthalamic nucleus neuron in a Parkinson’s disease patient before
and after a hand movement in each of four directions (dir.): up (dir. U), right
(dir. R), down (dir. D), and left (dir. L).
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In experiment 1 (Fig. 1A), neural spike trains were recorded
from 12 neurons in the primary auditory cortex of anesthetized
guinea pigs in response to a 200 μs/phase biphasic electrical pulse
at 44.7-μA applied in the inferior colliculus (10). Note that the
neural recordings were generally multi-unit responses recorded
on 12 sites but we refer to them as neurons in this paper. The
stimulus was applied at time 0, and spiking activity was recorded
from 10 ms before the stimulus to 50 ms after the stimulus during
40 trials. In experiment 2, neural spiking activity was recorded in
12 neurons from the ventral posteromedial (VPm) nucleus of the
thalamus (VPm thalamus) in rats in response to whisker stimu-
lation (Fig. 1B) (11). The stimulus was deflection of the whisker
at a velocity of 50 mm/s at a repetition rate of eight deflections
per second. Each deflection was 1 mm in amplitude and began
from the whiskers’ neutral position as the trough of a single sine
wave and ended smoothly at the same neutral position. Neural
spiking activity was recorded for 3,000 ms across 51 trials.
In experiment 3 (Fig. 1C), neural spiking activity was recorded

in 13 neurons in the hippocampus of a monkey executing a lo-
cation scene association task (13). During the experiment, two to
four novel scenes were presented along with two to four well-
learned scenes in an interleaved random order. Each scene was
presented for between 25 and 60 trials. In experiment 4, the data
were recorded from 10 neurons in the subthalamic nucleus of
human Parkinson’s disease patients (Fig. 1D) executing a di-
rected movement task (15). The four movement directions were
up, down, left, and right. The neural spike trains were recorded
in 10 trials per direction beginning 200 ms before the movement
cue and continuing to 200 ms after the cue.
The PP-GLM was fit to the spike trains of each neuron using

likelihood analyses as described above. Examples of the model
goodness of fit for a neuron from each system is shown in Supporting
Information. Examples of the model estimates of the stimulus and
history effects for a neuron from each system are shown in Fig. 2.

SNR of Single Neurons.We found that the ŜNRdB
S estimates (Eq. 11)

of the stimulus controlling for the effect of the biophysical model

properties were (median [minimum, maximum]): −6 dB [−10 dB,
−3 dB] for guinea pig auditory cortex neurons; −9 dB [−18 dB, −7
dB] for rat thalamic neurons; −20 dB [−28 dB, −14 dB] for the
monkey hippocampus; and −23 dB [−29 dB, −20 dB] for human
subthalamic neurons (Fig. 3, black bars). The higher SNRs (from
Eq. 11) in experiments 1 and 2 (Fig. 3 A and B) are consistent with
the fact that the stimuli are explicit, i.e., an electrical current and
mechanical displacement of the whisker, respectively, and that the
recording sites are only two synapses away from the stimulus. It is
also understandable that SNRs are smaller for the hippocampus
and thalamic systems in which the stimuli are implicit, i.e., behav-
ioral tasks (Fig. 3 C and D).
We found that ŜNRdB

H estimates (from Eq. 12) of the bio-
physical properties controlling for the stimulus effect were: 2 dB
[−9 dB, 7 dB] for guinea pig auditory cortex; −13 dB [−22 dB, −8
dB] for rat thalamic neurons; −15 dB [−24 dB, −11 dB] for the
monkey hippocampal neurons; and −12 dB [−16 dB, −5 dB] for
human subthalamic neurons (Fig. 3, gray bars). They were
greater than ŜNRdB

S for the guinea pig auditory cortex (Fig. 3A),
the monkey hippocampus (Fig. 3C), and the human subthalamic
experiments (Fig. 3D), suggesting that the intrinsic spiking pro-
pensities of neurons are often greater than the spiking propensity
induced by applying a putatively relevant stimulus.

A Simulation Study of Single-Neuron SNR Estimation. To analyze the
performance of our SNR estimation paradigm, we studied sim-
ulated spiking responses of monkey hippocampal neurons with
specified stimulus and history dynamics. We assumed four known
SNRs of −8.3 dB, −17.4 dB, −28.7 dB, and –∞ dB corresponding,
respectively, to stimulus effects on spike rates ranges of 500, 60, 10,
and 0 spikes per second (Fig. 4, row 1). For each of the stimulus
SNRs, we assumed spike history dependence (Fig. 4, row 2) to be
similar to that of the neuron in Fig. 1C. For each of four stimulus
effects, we simulated 300 experiments, each consisting of 25 trials
(Fig. 4, row 3). To each of the 300 simulated data sets at each
SNR level, we applied our SNR estimation paradigm: model

Fig. 2. Stimulus and history component estimates from the PP-GLM analy-
ses of the spiking activity in Fig. 1. (A) Guinea pig primary auditory cortex
neuron. (B) Rat thalamic neuron. (C) Monkey hippocampal neuron. (D) Hu-
man subthalamic nucleus neuron. The stimulus component (Upper) is the
estimated stimulus-induced effect on the spike rate in A, C, and D and the
impulse response function of the stimulus in B. The history components
(Lower) show the modulation constant of the spike firing rate.

Fig. 3. KL-based SNR for (A) 12 guinea pig auditory cortex neurons, (B) 12 rat
thalamus neurons, (C) 13 monkey hippocampal neurons, and (D) 10 sub-
thalamic nucleus neurons from a Parkinson’s disease patient. The black dots are
ŜNRdB

S , the SNR estimates due to the stimulus correcting for the spiking history.
The black bars are the 95% bootstrap confidence intervals for SNRdB

S . The gray
dots are ŜNRdB

H , the SNR estimates due to the intrinsic biophysics of the neuron
correcting for the stimulus. The gray bars are the 95% bootstrap confidence
intervals for SNRdB

H . The encircled points are the SNR and 95% confidence in-
tervals for the neural spike train raster plots in Fig. 1.
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fitting, model order selection, goodness-of-fit assessment, and
estimation of ŜNRdB

S (Fig. 4, row 4) and ŜNRdB
H (Fig. 4, row 5).

The bias-corrected SNR estimates show symmetric spread
around their true SNRs, suggesting that the approximate bias
correction performed as postulated (Fig. 4, rows 4 and 5). The
exception is the case in which the true SNR was −∞ and our
paradigm estimates ŜNRdB

S as large negative numbers (Fig. 4D,
row 4). The ŜNRdB

S are of similar magnitude as the SNR estimates
in actual neurons (see SNR = −18.1 dB in the third neuron in Fig.
3C versus −17.4 dB in the simulated neuron (Fig. 4B).

A Simulation Study of SNR Estimation for Single Neurons with No
History Effect. We repeated the simulation study with no spike
history dependence for the true SNR values of −1.5 dB, −16.9 dB,
−27.9 dB, and –∞ dB, with 25 trials per experiment and 300
realizations per experiment (Fig. 5). Removing the history de-
pendence makes the simulated data within and between trials
independent realizations from an inhomogeneous Poisson process.
The spike counts across trials within a 1-ms bin obey a binomial
model with n = 25 and the probability of a spike defined by the
values of the true conditional intensity function times 1 ms. Hence,
it is possible to compute analytically the SNR and the bias in the
estimates. We used our paradigm to compute ŜNRdB

S . For com-
parison, we also computed the variance-based SNR proposed by
Lyamzin et al. (20) Both ŜNRdB

S and the variance-based estimates
were computed from the parameters obtained from the same
GLM fits (see Eq. S16). For each simulation in Fig. 5, the true
SNR value based on our paradigm is shown (vertical lines).
The histograms of ŜNRdB

S (Fig. 5, row 3) are spread symmetri-
cally about the true expected SNR. The variance-based SNR esti-
mate overestimates the true SNR in Fig. 5A and underestimates the
true SNR in Fig. 5 B and C. These simulations illustrate that the
variance-based SNR is a less refined measure of uncertainty, as it is
based on only the first two moments of the spiking data, whereas
our estimate is based on the likelihood that uses information from
all of the moments. At best, the variance-based SNR estimate can

provide a lower bound for the information content in the non-
Gaussian systems (16). Variance-based SNR estimators can be
improved by using information from higher-order moments (37),
which is, effectively, what our likelihood-based SNR estimators do.

Discussion
Measuring the SNR of Single Neurons. Characterizing the reliability
with which neurons represent and transmit information is an
important question in computational neuroscience. Using the
PP-GLM framework, we have developed a paradigm for esti-
mating the SNR of single neurons recorded in stimulus response
experiments. To formulate the GLM, we expanded the log of the
conditional intensity function in a Volterra series (Eq. 4) to
represent, simultaneously, background spiking activity, the stimu-
lus or signal effect, and the intrinsic dynamics of the neuron. In the
application of the methods to four neural systems, we found that
the SNRs of neuronal responses (Eq. 11) to putative stimuli—
signals—ranged from −29 dB to −3 dB (Fig. 1). In addition, we
showed that the SNR of the intrinsic dynamics of the neuron (Eq.
12) was frequently higher than the SNR of the stimulus (Eq. 11).
These results are consistent with the well-known observation that,
in general, neurons respond weakly to putative stimuli (16, 20).
Our approach derives a definition of the SNR appropriate for
neural spiking activity modeled as a point process. Therefore, it
offers important improvements over previous work in which the
SNR estimates have been defined as upper bounds derived from
Gaussian approximations or using Fano factors and coefficients
of variation applied to spike counts. Our SNR estimates are
straightforward to compute using the PP-GLM framework (5) and
public domain software that is readily available (38). Therefore,
they can be computed as part of standard PP-GLM analyses.
The simulation study (Fig. 5) showed that our SNR methods

provide a more accurate SNR estimate than recently reported
variance-based SNR estimate derived from a local Bernoulli model
(20). In making the comparison between the two SNR estimates, we
derived the exact prediction error ratios analytically, and we used
the same GLM fit to the simulated data to construct the SNR
estimates. As a consequence, the differences are only due to
differences in the definitions of the SNR. The more accurate

Fig. 4. KL-based SNR of simulated neurons with stimulus and history com-
ponents. The stimulus components were set at four different SNRs: (A) −8.3 dB,
(B) −17.4 dB, (C) −28.7 dB, and (D) –∞ dB, where the same spike history com-
ponent was used in each simulation. For each SNR level, 300 25-trial simulations
were performed. Shown are (row 1) the true signal; (row 2) the true spike history
component; (row 3) a raster plot of a representative simulated experiment; (row
4) histogram of the 300 ŜNRdB

S , the SNR estimates due to the stimulus correcting
for the spiking history; and (row 5) histogram of the 300 ŜNRdB

H , the SNR esti-
mates due to the intrinsic biophysics of the neuron correcting for the stimulus.
The vertical lines in rows 4 and 5 are the true SNRs.

Fig. 5. A comparison of SNR estimation in simulated neurons. The stimulus
components were set at four different SNRs: (A) −1.5 dB, (B) −16.9 dB, and
(C) −27.9 dB with no history component. For each SNR level, 300 25-trial
simulations were performed. Shown are (row 1) the true signal; (row 2) a raster
plot of a representative simulated experiment; (row 3) histogram of the
300 KL-based SNR estimates, ŜNRdB

S ; and (row 4) histogram of the 300 squared
error-based SNR estimates, ŜNRdB

SE (20). The vertical lines in rows 3 and 4 are the
true SNRs.
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performance of our SNR estimate is attributable to the fact that
it is based on the likelihood, whereas the variance-based SNR es-
timate uses only the first two sample moments of the data. This
improvement is no surprise, as it is well known that likelihood-based
estimates offer the best information summary in a sample given an
accurate or approximately statistical model (34). We showed that
for each of the four neural systems, the PP-GLM accurately de-
scribed the spike train data in terms of goodness-of-fit assessments.

A General Paradigm for SNR Estimation. Our SNR estimation par-
adigm generalizes the approach commonly used to analyze SNRs
in linear Gaussian systems. We derived the generalization by
showing that the commonly computed SNR statistic estimates a
ratio of EPEs (Supporting Information): the expected prediction
of the error of the signal representing the data corrected for the
nonsignal covariates relative to the EPE of the system noise.
With this insight, we used the work of ref. 26 to extend the SNR
definition to systems that can be modeled using the GLM frame-
work in which the signal and relevant covariates can be expressed
as separate components of the likelihood function. The linear
Gaussian model is a special case of a GLM. In the GLM paradigm,
the sum of squares from the standard linear Gaussian model is
replaced by the residual deviance (Eq. S10). The residual deviance
may be viewed as an estimated KL divergence between data and
model (26). To improve the accuracy of our SNR estimator, par-
ticularly given the low SNRs of single neurons, we devised an ap-
proximate bias correction, which adjusts separately the numerator
and the denominator (Eqs. 9 and 10). The bias-corrected estimator
performed well in the limited simulation study we reported (Figs. 4
and 5). In future work, we will replace the separate bias corrections

for the numerator and denominator with a single bias correction for
the ratio, and extend our paradigm to characterize the SNR of
neuronal ensembles and those of other non-Gaussian systems.
In Supporting Information, we describe the relationship between

our SNR estimate and several commonly used quantities in sta-
tistics, namely the R2, coefficient of determination, the F statistic,
the likelihood ratio (LR) test statistic and f 2, Cohen’s effect size.
Our SNR analysis offers an interpretation of the F statistic that is
not, to our knowledge, commonly stated. The F statistic may be
viewed as a scaled estimate of the SNR for the linear Gaussian
model, where the scale factor is the ratio of the degrees of freedom
(Eq. S21). The numerator of our GLM SNR estimate (Eq. S9) is a
LR test statistics for assessing the strength of the association be-
tween data Y and covariates X2. The generalized SNR estimator
can be seen as generalized effect size. This observation is especially
important because it can be further developed for planning neu-
rophysiological experiments, and thus may offer a way to enhance
experimental reproducibility in systems neuroscience research (39).
In summary, our analysis provides a straightforward way of

assessing the SNR of single neurons. By generalizing the stan-
dard SNR metric, we make explicit the well-known fact that in-
dividual neurons are noisy transmitters of information.
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