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In its simplest form the magnetoelastic buckling instability refers
to the sudden bending transition of an elastic rod experiencing a
uniform induction field applied at a normal angle with respect to
its long axis. This fundamental physics phenomenon was initially
documented in 1968, and, surprisingly, despite many refinements,
a gap has always remained between the observations and the
theoretical expectations. Here, we first renew the theory with a
simple model based on the assumption that the magnetization
follows the rod axis as soon as it bends. We demonstrate that the
magnetoelastic buckling corresponds to a classical Landau second-
order transition. Our model yields a solution for the critical field as
well as the shape of the deformed rods which we compare with
experiments on flexible ferromagnetic nickel rods at the centime-
ter scale. We also report this instability at the micrometer scale
with specially designed rods made of nanoparticles. We character-
ized our samples by determining all of the relevant parameters
(radius, length, Young modulus, magnetic susceptibility) and, using
these values, we found that the theory fits extremely well the
experimental results for both systems without any adjustable
parameter. The superparamagnetic feature of the microrods also
highlights the fact that ferromagnetic systems break the symme-
try before the buckling. We propose a magnetic “stick–slip” model
to explain this peculiar feature, which was visible in past reports
but never detailed.
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In the past decade there has been an emerging field of research
on new magnetic and elastic soft materials whose shape can be

remotely controlled by application of an external magnetic field
(1–3). Indeed, at many scales and in various domains, magnetic
filaments (4, 5), gels (6), and so on (7) show great promise in
numerous domains of application (8). With the progress in the
design of these materials, their magnetic susceptibility increases,
and brings them closer to the behavior of the more conventional
magnetic alloys. Thus, they can benefit a more ancient domain of
research that described their magnetoelastic properties. Mag-
netoelasticity generally describes various phenomena that couple
magnetization and mechanical deformation of solid-state objects
(9). Excluding magnetostriction, the domain splits into two cate-
gories depending on whether the system is driven by free macro-
scopic currents or only by bound currents. In this latter case, the
system may be studied only for its equilibrium configuration, or for
its dynamic behavior (10). The complexity of the solution of the
magnetic field in the general case justifies that a comprehensive
description of the phenomenon is restricted to some trivial ge-
ometries such as rods of large aspect ratios (11). The main con-
tribution to the field was made in 1968 with an elegant work (12)
that paved the way both for experiments and theory but whose
measures showed a critical field twice lower than expected. Fur-
ther studies (13, 14) reduced the gap down to 15% by considering
the edge effect on the magnetic field. This effect could be avoided
in the cylindrical geometry, which was experimentally tested only
once (15). Another approach consisted of minimizing an energy

functional (16, 17) and yielded similar values for the buckling
threshold.
In many aspects, we bring original contributions to the field:

theoretically, we show the most commonly used model was
only suitable for rods of weak magnetic susceptibility. We al-
ternatively propose the “axial model” to describe rods of
higher susceptibility and we show for the first time, to our
knowledge, that both models display a Landau second-order
transition. We also report experiments, first, with pure nickel
rods more flexible than the specimens used previously and
suitable to analyze their bent shape: they proved the axial
model to be excellent. Second, we report the magnetoelastic
buckling of recently designed microrods made out of nano-
particles (18) for which the shapes and the threshold values
also matched our theoretical expectations. The transition of
this paramagnetic system happens when the rod is strictly or-
thogonal to the field in contrast with ferromagnetic rods which
can buckle after an initial deflection. We interpret this ob-
servation with a “magnetic stick–slip” model whose simula-
tions reconcile our theory with past and present experiments
on ferromagnetic systems.

Theory
We consider a cylindrical rod with length L and radius r � L
(Fig. 1), straight at rest. We suppose it is a Hookean solid,
homogeneous, with Young’s modulus E and bending modulus
C= ðπ=4Þr4E. The magnetic susceptibility of the material (not
supposed to be linear) is defined by χðHÞ=M=Hð →

H→0
χ0Þ. The
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cylindrical geometry brings two advantages: the Poisson ratio
is not involved in the bending modulus (19) and the absence
of edge avoids any magnetic point effects. Except for those
induced by the field, we neglect any external force such as
gravity which did not interfere in the experiments (Material
and Methods). We are not considering twist in the problem,
which therefore reduces to two dimensions, the third being
omitted in the forthcoming. The shape of the rod is parame-
trized by the coordinates ðxðlÞ, yðlÞÞ in the coordinate system
ðO,~i,~jÞ, where~j is the unitary vector oriented with the uniform
induction field B0

�!
= μ0 H0

�!
and l is the curvilinear abscissa. We

define θðlÞ= ðd~i, dl!Þ. For the sake of simplicity we will only
consider the cantilevered rod clamped at l= 0 and free at l=L.
We note θ0 = θðl= 0Þ [and B0 = 0 for the heuristic model de-
scribed below] and θL = θðl=LÞ. δ is the distance between the
tip of the deformed rod and its projection on the undeformed
rod. The symbols k and ⊥ applied to any vector (~M, B0

�!
. . .),

respectively, designate their axial and orthogonal projections
on the rod local tangent.
The physics principles which determine the bending shape of a

magnetoelastic rod are rather simple: locally the magnetic torque
due to the angle between the internal magnetization and the
external field must balance the mechanical torque associated
with the bending. Considerations on the magnetization of a large
aspect ratio ellipsoid (SI Text, section 1A and Fig. S1A), for
which the infinite cylinder appears to be a limit, enlighten the
buckling mechanism: for an isotropic and paramagnetic material
of such a shape, the magnetization is uniform and the strong
demagnetizing field in the transverse direction tends to orient
the magnetization in the axial direction (SI Text, section 1B and
Fig. S1B). So, for a rod, the magnetization ð~MÞ is transverse only
when the field is strictly orthogonal to it. Therefore, a cantile-
vered rod submitted to a strictly orthogonal field remains un-
deformed as long as the energy cost of bending dominates the
magnetic energy term. But, once the field ð B0

�!Þ reaches a critical
value the balance is in favor of the magnetic term ð∝ − ~M. B0

�!Þ:
while bending, the magnetization becomes mostly axial and in-
creases suddenly. In a first approach, this mechanism ensures
that the paramagnetic feature of the model presented below will
describe the experiments correctly even if they are performed
with ferromagnetic materials. These latter are primarily demag-
netized and, because the deformations during an increase of the
external field yield a monotonic increase of the magnetization,
this latter follows a first magnetization curve, thus mimicking
a paramagnetic material.
The determination of the magnetic field requires solving the

Maxwell equations with the appropriate boundary conditions,
which clearly prevents an analytic treatment for the case of the
bent cylinder. The first historical way around this problem (12)
consisted of establishing the expression for the field in an
infinite straight slab to which the bending modes were added as

perturbations. Alternatively, a so-called “energy method” (17)
(renamed here the “independent model” for reasons explained
below) yielded the same critical threshold in the limit of low
susceptibility and large aspect ratio geometry.

The Independent Versus the Axial Model. It is common to write the
energy functional of magnetic rods (5, 16, 17) as F =

R L
0 ½gbðlÞdl+

πr2gmðlÞ�dl, where gbðlÞ=C=2ðdθðlÞ=dlÞ2 is the local bending en-
ergy per unit length (19) and gm = g0ðTÞ−

R~B0

0
~M. dB′

0

��!
is the free

magnetic enthalpy per unit volume at abscissa l along the rod
(20). In SI Text, section 1C, we show that even if the material
is magnetically nonlinear, differentiation of the functional
leads to the local torque balance equation: Cðd2θ=dl2Þ+ πr2
ðΔχB2

0=2μ0Þsinð2θÞ= 0 for 0< l<L, and the boundary condition
at the free extremity: dθ=dljL = 0 [we define Δχ =Mk=H0k −
ðM⊥=H0⊥Þ (SI Text, section 1); for χ � 1, Δχ ’ χk =Mk=H0k
because 0< χ⊥ =M⊥=H0⊥ < 2]. The value of θ0 fixes the other
boundary condition. However, this result implicitly supposes that
the local magnetization depends only on the local orientation of
the rod with respect to the external field (according to equations
of SI Text, section 1A), disregarding the magnetization in the rest
of the rod: in fact, this model consists of approximating the rod by
a series of independent ellipsoids (Fig. 1). But, are they truly
magnetically independent from each other? We checked this ap-
proximation by estimating Hind, the field in a small section of the
rod induced by the magnetization everywhere else in the sample.
The result (SI Text, section 1C and Fig. S1C) is that for an exci-
tation along the rod axis, Hind = χH0=2. This is to be compared
with H0, the field in the local section if it were not under influence
of other parts. For materials with χ � 1, the independent model is
therefore inaccurate.
Thus, considering the magnetization is mostly axial in an infinite

cylinder (SI Text, section 1B and Fig. S1B), and using a “mean-
field” approximation, we propose the axial model based on the
following two assumptions: (i) the magnetization mostly orients
along the rod axis (if not strictly orthogonal to the field) and its
longitudinal component is constant, and (ii) the magnetization is
determined by its maximum value, i.e., by the part of the rod which
most aligns with the external field (the free tip for the cantilever
rod). The shape of a bent rod is indeed almost entirely determined
by the axial magnetization: the transverse magnetization is not only
weak, it also induces a very small torque ~M⊥∧ B0

�!
when θðlÞ � 1.

Finally, the magnetization Mk may arise from the external field
(condition ii) or from a permanent moment. The free magnetic
enthalpy per unit length of the rod is now fgm = eg0ðTÞ− Mk

�!
. B0
�!

and the new torque balance is Cðd2θðlÞ=dl2Þ+ πr2MkB0 cos θ= 0
for 0< l<L. Both models may be solved by the same method:
introducing the characteristic length scales λi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0C=ðπr2ΔχB2

0Þ
q

for the independent model and λa1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ð2πr2MkB0Þ

q
for the

axial model, and integrating the torque balance equations
yields the Euler equations: λ2i ðdθ=dlÞ2 = sin2ðθLÞ− sin2ðθÞ
and λ2a1ð∂θ=∂lÞ2 = sinθL − sinθ, respectively. Interestingly, when
θ0 = 0, θðlÞ= 0 ∀l is a valid solution in both cases. The Euler
equations yield the respective rod shapes (and thus the deflection
δ at l=L): xiðlÞ= λi½arcsin ðsin θ=sin θLÞ− arcsinðsin θ0=sin θLÞ�
and yiðlÞ= λi½arccoshðcos θ0=cos θLÞ− arccoshðcos θ=cos θLÞ�;
xaðlÞ= 2λa1½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðθLÞ− sinðθ0Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðθLÞ−sinðθðlÞÞ

p � and yaðlÞ=
λa1

R θðlÞ
θ0

sinðθÞdθ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðθLÞ−sinðθÞ

p
.

In each configuration the solutions require θL, implicitly
provided by L= λi

R θL
θ0

dθ′=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2θL − sin2θ′

p
for the independent

model. In the axial model, we need to transcript assumption
(ii) to specify Mk = χðH0kLÞH0kL, with H0kL =H0 sin θL. Thus, de-

fining ultimately λa2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0C=ð2πr2χðH0kLÞB2

0Þ
q

, the solution for θL
now depends on L= λa2=

ffiffiffiffiffiffiffiffiffiffiffiffi
sin θL

p R θL
θ0

dθ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðθLÞ− sinðθÞp

. In

Fig. 1. Diagram and notations. Schema for a magnetized bent rod modeled
by a chain of ellipsoids. (Inset) Schema for the heuristic model.
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both cases, these equations always admit a solution when
θ0 ≠ 0. It means that no instability exists when the field is not
strictly perpendicular to the straight rod. On the contrary, for
θ0 = 0, a solution for θL requires L> πλi=2 for the independent
model and L≥ 2λa2 for the axial model. These conditions yield
the buckling fields for each model: Bi

c = 1=2rL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πμ0C=Δχ

p
and

Ba
c = 1=rL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2μ0CÞ=πχðH0kLÞ
p

, about 10% lower than Bi
c. These

theoretical results are plotted in Fig. S2 and in comparison
with the experiments (Figs. 2 and 3).

The Heuristic Model.A basic qualitative description of the buckling
may be obtained by modeling the flexible rod by an infinitely
rigid one of the same size anchored at l= 0 and subject to a re-
storing torque −ðC=LÞðθL − θ0Þ (Fig. 1A, Inset). The correspond-
ing torque balance equation for this system is C=LðθL − θ0Þ=

πr2LðB2
0=2μ0ÞΔχsinð2θLÞ. Considering solely the longitudinal

magnetization such as in the axial model yields the same equa-
tion where Δχ is replaced by χðHkÞ. The numerical solution
shows that the system indeed behaves qualitatively like the axial
and independent models (Fig. S2). In particular for θ0 = 0 only, a
critical transition is observed for Bh

c = 1=rL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0C=πΔχ

p
= Ba

c=
ffiffiffi
2

p
.

An energy equation of the system is obtained by integrating the
torque: E =

B0→Bh
c

B2
0=4+ ½ðBh

c Þ2 −B2
0�θ′2=2+ ðBh

c Þ4θ′4=6. It corre-

sponds to a classical second-order Landau development, thus
predicting the usual critical exponents, also obtained in the
independent and axial models (SI Text, section 3 and Fig. S3). This
simplistic model still contains the relevant physics of the buckling.
It was used to demonstrate that the magnetic nonlinearity has no
impact on Bh

c and to investigate how ferromagnetic permanent
moments influence the paramagnetic models (Discussion and
Analysis and SI Text, section 6).

Experimental Results
Nickel Rods: Magnetic Susceptibility Derived from Shape Analysis.
Before running the magnetization experiments on nickel rods
(see Material and Methods and Fig. S4 for the setup), we mea-
sured all their relevant parameters [r = 46 ± 3 μm, L = 20–
80 mm, C=(5.1± 0.5)10−8 Jm; Material and Methods]. To
measure the magnetic susceptibility χðHÞ, we performed vibrat-
ing sample magnetometry (VSM) on a bundle of ∼ 10 rods. We
then compared the experimental shape of the magnetized rods
with the theoretical models, for various incidences of the field
ðθ0Þ [λi,a and θL were derived from the deflections of the rod
measured at the tip ðδÞ. It yielded yðlÞ and xðlÞ for any l] (Fig. 2A).
For all tested shapes ðN ≥ 20Þ, the difference with the axial
model was below 2.5%, whereas the independent model under-
estimates the axial magnetization and the curvature of the rod at
the vicinity of its anchor (differencesJ 10%). The axial model
does not depend on the origin of the magnetization, and ac-
cordingly, the excellent accuracy between experiments and the
theory did not depend on whether the rod was demagnetized or
not. The axial model was therefore used to derive the magnetic
susceptibility from measures of the tip deflections [λi,a and θL
yield Mk and H0k =H0 sin θL, and then χðH0kÞ=Mk=H0k]. To ob-
tain the magnetization curve on a large range of values, we
performed, after demagnetization, measures of the deflections of
the tip for various fields from 0 to 44 mT for three different rods
(L= 46, 55, and 63 mm) exposed at various angles to the induc-
tion field B0

�!
(θ0 ranging from 1 to 80°). We found that a Langevin

law ðχðHÞ= ð3χ0LðaHÞÞ=aHÞ fitted well the first-magnetization
data, which yielded a value for χ0 = 132± 6 for the three rods in
agreement with the VSM data ð138± 38Þ (Fig. S4D). Consistent
with the measure of the magnetic susceptibility, when taking its
variation into account, Fig. 2C shows that the axial model
provides almost always the correct value for the rod deflection
δ at any incidence of the field without adjustable parameters
because only the measured values of the parameters (L, r, C,
χ) were used [the dependence of χ with H was taken into ac-
count by writing λa2 = λ0a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaH0 sin θLÞ=3LðaH0 sin θLÞ
p

, where

λ0a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ð2πr2χ0μ0H2

0 Þ
q

, L is the Langevin function (SI Text, section
1), and χ0 are derived from the fit of the magnetization curve (Fig.
S4D)]. As discussed below, the model also matches the minimum
observed buckling threshold when θ0 = 0. However, it describes
neither the initial deflection at this incidence, nor the surpris-
ing transition which occurs at nonorthogonal incidence as de-
scribed below.

Nickel Rods: Buckling Experiments. Experimental study of the buck-
ling threshold was performed over 20 different nickel rods pre-
pared as described in Material and Methods. A typical deflection
experiment consisted of running an automatic sequence of 80–150

A B

DC

Fig. 2. Experiments with nickel rods. (A) Montage of 10 superposed pictures
of the same 60.7-mm rod with increasing values of B0 from 0 to 39.6 mT by
increment of 4.4 mT (θ0 = 1°). The bar represents 1 cm. On the 26.6-mT rod
are superposed the theoretical curve from the independent model (blue,
mean difference with the experimental shape = 15%) and the axial model
(red, mean difference: 2.4% < 165 μm). Analysis for this rod yields θL = 35.8°,
λ1 = 36.4 mm, μ0Mk = 464 mT, B0k = 21.6 mT, χ = 29.8. Angle of ~M with the rod
axis at the free end = 1.32°, at l = 0 μ0M⊥= 5.33 mT (max value). (B) Repeated
magnetization cycles (field increased: green arrow, decreased: blue arrow)
showing the absolute value of rod tip deflections. For θ0 = 0, L = 44.1 mm
(10 out of 15 paths occurred in the field direction). For θ0 = 1.45° and θ0 = 3.3°,
L = 39 mm, the y axis does not apply. (C) Theoretical (axial model) and mea-
sures of rod tip deflections ðδÞ for a 38.1-mm rod at various incidences θ0
and as a function of B0. The inset and the main figures correspond to the
same graph split in two for clarity. Dots: experimental measures. Solid lines:
axial model using the measured parameters of the rod [Bc adjusted at 18.9 mT
while the theoretical value was Bc = (19.2  ±1.7) mT] and taking into ac-
count the variation of χ with H. Dashed lines are simple links between dots
to highlight the transition. For θ0 = 0 the two cycles correspond to the
lowest (black) and largest (red) threshold out of a distribution of 15 cycles.
The two arrows point at the most striking divergence between the theory
and the experiments. (D) Buckling threshold of 14 rods for various lengths
at θ0 = 0. (Inset) Example of histogram of measures of Bc for 1 rod. We an-
alyzed 7 to 20 repeated cycles (mean = 14) for each rod. Main figure: mini-
mum value (red dots, precision: ± 0.11 mT) and max value (blue cross) of Bc

for 14 rods made out of 8 different pieces of wire (some are recut) as a
function of L. The error bars for theoretical values of Bc [derived from the
uncertainty on C (10%), Δχ (6.3%), and L (0.6%)] are shown only for the axial
model (lozenges) but also apply to the independent model (squares). All
minimum measured thresholds [except for two rods originating from the
same wire (red and white dots)] differ by less than this uncertainty from the
axial model (from −4% to 6.5%, mean = 0.7%). The red curve is a power fit
of the minimum transition showing an exponent of −1.
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measures during which the field was incremented from 0 to 44 mT
and then decreased again back to 0 (Movie S1). Still pictures of
the equilibrium were taken typically 2 s after each new value of the
external field. A first initial run consisted of increasing the field by
steps of 0.9 mT to obtain an estimation of the buckling transition.
All subsequent runs were designed to approach more specifically
this zone at the best precision allowed by the generator (0.22 mT).
After this “precision zone” of typically 5–15 mT, the step was set
back to 0.9 mT for the rest of the ascent and the descent. Before
each run, we demagnetized the sample (Material and Methods). At
0 mT the rods recovered their straight shape, showing that no
plastic deformation had occurred. Each equilibrium image was
analyzed by our software to obtain the shape of the rod, which also
provided the deflection of the tip as a function of the field in-
tensity (Fig. 2B). Most importantly, we always observed a first
initial deflection that increased linearly with the field (typically δ∼
1 mm for a 44-mm rod) and during which small vibrations could be
seen. This initial deflection and the subsequent jump occurred
either toward the field direction or opposite to it. The initial
symmetry breaking was very surprising and, suspecting a mis-
alignment, we varied the field incidences. But, we observed
instabilities up to an angle of θ0 ’ 2.75° (Fig. 2 B and C and
Movie S2), always in the direction of the tilt. At any incidence,
the greater the value of the threshold, the larger the gap of the
transition. We interpreted this as a simple consequence of the
increase of the postbuckling deflection with the field intensity.
After the maximum value of the external field was reached,
the portion of the curve corresponding to the decrease of the
field followed a different path reflecting magnetic hysteresis.
If a subsequent run was performed without demagnetiza-
tion, the deflection followed up the same downward part of
the curve.
Another striking feature of these experiments is the non-

reproducibility of the threshold (Fig. 2B). For all of the rods we
tested, although we took great care in reproducing exactly the
same procedure (same demagnetization, same repositioning of
the rod, same automatic magnetization) we found the value of
the threshold varies from one run to another, without correlation

with the sequence order. The absolute dispersion was on average
7.5% of the mean value of the threshold (range 3.7% for the
largest rods to 12.9% for the smallest). We suspected a cause of
this discrepancy was that our measures were done out of equilib-
rium. So, we performed various experiments to test this hypothesis
(increasing the waiting time, slightly vibrating the sample, etc.) but
in fact, the only sensitive step was the demagnetizing procedure:
when submitted to a demagnetizing field parallel to its axis, al-
most one out of two rods did not buckle, whereas this happened
only very sparsely ð∼ 1=20Þ when the demagnetization was trans-
verse. After a buckling transition, the deflection paths resumed a
very reproducible trajectory whatever the position of the threshold
(Fig. 2B).
Fig. 2D shows comparison between theoretical and experi-

mental values of the threshold for various rod sizes as permit-
ted by the size of our inducting coils and the power of the
generator. For each rod analyzed we compared the minimum,
the mean, and the maximum value of the threshold distribution
with the theoretical values. We also took into account the de-
pendence of χ with H by measuring θL on the last configuration
before buckling, from which we deduced B0k and χk =Mk=Hk.
We also estimated that the transverse field always remained
below 1 mT, yielding 1.96≤ χ⊥ ≤ 2 � 30≤ χk ≤ 132. We finally
found that the maximum measured values of the threshold
were on average 17% higher than those derived from the in-
dependent model, and 30% higher than the values from the
axial model. By contrast, 12 out of the 14 values of the mini-
mum threshold of each distribution were found to differ by less
than the uncertainty from the value yielded by the axial model,
with a mean difference of 0.8% (magnetostriction accounts for
a mean increase of Bi

c by 0.1%). The power fit yields the
expected slope of −1 for the dependence with the length. By
contrast, only four minimum measures are compatible with the
independent model.

Microrods. Experiments analogous to those on nickel rods were
also performed with micrometer-sized (L∼ 50 μm, r∼150–
200 nm) superparamagnetic (χ ∼1–10), soft (E∼1–100 GPa)

A C D

B

Fig. 3. Experiments with microrods. (A) Montage of six superposed micrographs (back-scattered light) of a microrod [L = (42.3 ± 0.05)μm, r = (0.3± 0.01)μm,
C = (30.3 ± 5.7)10−21 Jm, χ0 = 1.35 ± 0.2] deformed by a magnetic field B0 applied at θ0 = 0 and varying from 10 to 20 mT with a regular increment of 2 mT. On
the 20-mT rod, the theoretical shape from the axial model is superposed in red (mean difference 0.16μm, max 0.5μm, whereas the max divergence of the
undeformed rod from a straight line is 0.13μm. The pictures for 0–10 mT are indistinguishable. White bar = 5μm. The mark (*) indicates the coverslip onto
which the rod sticks as sketched on B. (C) Deflection of the tip of seven rods while the orthogonal magnetic field is increased. (Inset) An entire cycle of field
increase and decrease is shown for rod one, and shows a weak hysteresis (due to plastic deformation). (D) Comparison between the theoretical critical field
from the axial model (black lozenges), the independent model (blue lozenges), and the measured buckling field (red dots) referring to the left y axis. The
error bars on the theoretical values originate from the uncertainty on the measured properties of the rod (L, r, C, and χ) and the errors on the measured field
are on the order of the size of the dots. All observed buckling fields are compatible with the axial model (average difference: 3%, range −20–20%). Rod
length (L) and the susceptibility ðχ0Þ are written under the rod number (same color as on graph C), whereas their bending modulus (C) is plotted (green
squares) with the log scale on the right axis.
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rods made of iron oxide nanoparticles (ø∼10–16 nm, volume
fraction ∼ 5–20%) complexed with opposite charge polymers
(Material and Methods and Fig. S5). Here also, we measured
all relevant parameters to calculate the buckling threshold. In
particular, C∼ (10−19–10−21) Jm was measured from the analysis
of the thermal fluctuations (details will be published elsewhere),
and χ was obtained through magnetic bending experiments for
θ0= 35° similarly to the measure of χ for nickel rods. [These
measures show that magnetostriction does not impact signifi-
cantly the measures presented here.]
The making process yields broad distributions for these pa-

rameters and about 200 trials were done before 7 rods presented
the suitable combination of values to observe a buckling transi-
tion (Fig. 3 and Movie S3) with a critical field below the maxi-
mum intensity delivered by our apparatus (30 mT). A further
difficulty was that these rods undergo plastic deformation when
deformed. Although this did not prevent us from observing the
buckling transition, large deflections permanently deformed the
rod and, except for two rods, the transition could be observed
only once. Observations were done in a quasistatic equilibrium
after a waiting time (∼ 500 ms) large before the elastic time scale
(ηL4=C∼ 1–100 ms, where η is the water viscosity) but during
which some plastic deformations occurred. Several features
contrasted with the experiments on nickel rods: first, the
transition occurred only when the field was strictly orthogonal
to the rod, otherwise only a continuous bending occurred.
Second, in two examples (as permitted by little plastic de-
formation) the deflection path during the decrease of the field
exhibited small hysteresis (Fig. 3C), reflecting the absence of
ferromagnetism. Third, when possible, the repeated observa-
tions of the buckling yielded a reproducible value. Like for
nickel rods, comparison with the axial model proved the
theoretical bending shape to be accurate (Fig. 3A) at any angle of
the field, and, using the measured parameters, the expected
values of the threshold were found equal to those observed (Fig.
3D). By contrast, only two measures were compatible with the
independent model.

Discussion and Analysis
The main idea of this paper is that the magnetization of a bent
rod with χJ 1 experiencing a uniform induction field is con-
stant and essentially follows its main axis. Indeed, this simple
assumption yields the correct shape of the rods (the difference
with the experiments being of the order of the rod radius), and
the correct value of the threshold when the system is para-
magnetic. Better calibrated rods (the radius must be measured
with a precision below 0.25%) will be required for challenging
this model again. Using recently designed superparamagnetic
microrods, we demonstrate the possibility to realize a buckling
instability at low fields (2–25 mT), whereas foregoing experi-
ments on alloys were done at hundreds of mT or so. Most
importantly, they show that a paramagnetic system behaves
consistently with the axial model. By contrast, it highlights the
divergences observed with ferromagnetic rods: (i) these latter
bend before the transition; (ii) surprisingly, the theory matches
(within 0.8% on average) the observed threshold with the lowest––
not largest––value observed among a broad distribution. In fact,
most previous works (12–15) contain plots of deflection which
show a bending anterior to the buckling. In general the highest
value of the transition was retained (21) and the question of how a
transition may occur once the symmetry is broken has almost (22)
never been raised. We first excluded the role of the nonconstant
susceptibility χðHÞ in this matter (SI Text, section 6). Instead, we
propose to explain this feature by considering a microscopic fer-
romagnetic aspect of the material. The first clue for our in-
terpretation is that the initial bending must be the consequence of
some (nontransverse) permanent moments. [This is supported by
our measure of the initial bend to be δ∝B0, whereas an error on

the field incidence ðθ0Þ would yield δ∝B2
0 (from the heuristic

model; SI Text, section 6).] Our working hypothesis was that after
demagnetization, some Weiss domains remain stuck in fixed di-
rections and induce randomly distributed permanent moments in
the rod. The Barkhausen effect accounts for these domains
which perturb the first magnetization curve which is para-
magnetic on average but exhibits some hysteresis in the detail.
These “stuck” domains must follow a “rotational stick–slip” mech-
anism: they comply with the external field excitation and merge with
the internal paramagnetic field when this latter gets too high. Be-
fore this happens, a small but finite contribution of the permanent
moment may bend the rod even if the field is orthogonal to its
axis. This interpretation is supported by our numerical simula-
tions based on the heuristic model complemented by a distri-
bution of permanent moments (SI Text, section 6). The results
(Fig. 4 and Movies S4–S6) reproduce all qualitative features of
the observed ferromagnetic transitions (Fig. 2B), and show that
the bending depends strongly on how the permanent moments are
initially distributed. After a transverse demagnetization, they are
expected to be on average orthogonal to the rod ð< θis > = 90°Þ, but
with a small angular dispersion ðσθisÞ. The simulations show that
the initial randomization of their directions along the same
distribution ðσθis = 20°Þ accounts for a variety of deflections as
observed in the experiments. The quickest buckling occurs for
the most initially deflected rods in which most stuck domains
“slip” during this initial bending: at the threshold, the entire
rod is paramagnetic and the experiment matches the theory.
On the opposite, the most delayed transition happens when
σθis ’ 0°. In this case, there is almost no initial deflection, no
domain slips before the buckling, and less available parametric
material contributes to the transition which requires a greater
field to happen. From the width of the experimental threshold
dispersion, we may estimate the proportion of stuck domains to
be ∼ 20%. In any case, all domains ultimately slip when the in-
ternal field has increased sufficiently (close to saturation) and all
deflections converge to the same path, as in the experiments.

Fig. 4. Stick–slip simulations of progressively magnetized ferromagnetic
rods. Simulation of deflections ðδÞ of increasingly magnetized ferromagnetic
rods at orthogonal incidence of the field (θ0 = 0), using the stick–slip heuristic
model (SI Text, section 6). If no domain is stuck (the system is entirely
paramagnetic) the transition occurs at the critical field (black solid line).
For all other curves, 20% of the potential maximum (saturated) magne-
tization is initially (i.e., at B0 = 0) assigned to permanent moments
pointing in random directions θis (with respect to the rod main axis). The
latter are randomly drawn along a Gaussian distribution whose moments
ðhθisi, σ2θisÞ are displayed for each curve. For the strict condition (hθisi= 90°
and σθis= 0°) the buckling occurs at the max value (black dashed line).
When hθisi∼ 90° and σθis ∼ 20°, a variety of deflected paths is observed
before the transition is reached (colored solid lines). Transitions are rarer
when hθisi→ 0 (red and blue dashed lines).
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Simulations also indicate that a transition is possible for
θ0 ≠ 0: in this case, the stuck domains hinder the bending and,
at the transition, all of the stuck domains suddenly slip when
the paramagnetic magnetization has increased sufficiently
(Movie S6).

Conclusion
This magnetic stick–slip model provides a global understanding
of the magnetoelastic buckling transition in ferromagnetic ma-
terials. It explains why a transition may occur after an initial bend
and highlights the match of the axial theory with the lowest value
of the threshold distribution. It suggests that, in ferromagnetic
rods, the prebuckling equilibrium is stabilized by ferromagnetic
permanent moments. Altogether, this work encompasses a renewed
theory consistent with new detailed experiments at two length scales
on the magnetoelastic buckling instability. Little work will be re-
quired to adapt the theory to other boundary conditions and the
experiments to other materials. Our model should also yield new
insights on magnetoelastic dynamics. We hope that this work will
trigger a global interest in this magnetic instability which may
serve in many applications.

Material and Methods
Nickel Rods. Nickel rod samples (20–80 mm long) were prepared by melting,
under tension, a piece of pure nickel wire (ø = 50 μm, Weber). Their bending
modulus was measured by analyzing their deflection under their own weight.
We found repeatedly C = (5.1  ± 0.5)10−8 Jm for eight samples. The wire di-
ameter was checked by conventional optical microscopy after their prepara-
tion and was found to be 46± 3 μm, corresponding to a Young’s modulus
of E = 230 ±70 GPa. Before each magnetic measurement the rods were
demagnetized in the axial and/or orthogonal direction with a 50-Hz alterna-
tive field first increased to saturation and then slowly decreased to zero. To
study their deformation upon magnetization, the rods were laid horizontally
at the center of induction coils in the Helmholtz configuration (ø = 70 cm,
L = 7 mH, R = 0.2Ω; SI Text, section 4). To prevent vertical bending under
their own weight, rods were eventually coated with a thin layer of vegetable
oil so they would float on a water-filled dish installed between the coils. The
sample holder could be rotated horizontally to allow various field in-
cidences. The solenoids were powered by a 3-kW dc generator (SM30-

100D, Delta Electronika). The magnetic field was initially calibrated using a
Hall effect Gaussmeter (LakeShore 410, Cryotronics) and the field gradient
was less than 10−4 T/m over 10 cm in both axes at the center. A CCD camera
(PLA623C PixelLink) was fixed between the two coils to monitor the
sample from above. The precision on the rod shape wasK50 μm, yielding a
precision of 5 × 10−3 rad on its angle relative to the field. At this resolu-
tion, the samples were found to be perfectly linear. Both generator and
camera were controlled by a home-made plugin for ImageJ. We developed
another plugin to automatically recognize the shape of the rods with the
same precision.

Microrods.Microrods consisted of iron oxide nanoparticles (ø = 10–16 nm) slowly
complexed with opposite-charged polymer [poly(diallyldimethylammonium
chloride) MW < 100,000, Sigma-Aldrich] while being submitted to a mag-
netic field (50–250 mT) (18). Nanoparticles, synthesized by the Massart
procedure (23), were kindly provided by Olivier Sandre, Laboratoire de
Chimie des Polymères Organiques, Université de Bordeaux, Bordeaux,
France. After preparation, rods (length distribution 1–100 μm) were diluted
100× before being flowed into a home-made flow cell in which we
arranged a hang-over by using coverslips of various thicknesses. We used a
magnet to force the rods to sediment on the hang-over edge and orient
perpendicularly to it, so that a part would stick on the glass and sufficient
length remained free of solid contact (Fig. 2B). The sample was sealed using
a UV-cured polymer solution. The back-scattered image of the rods was
observed with a DMIRB inverted Leica microscope equipped with an apo-
plan 100× N.A. 1.3 objective and a Photometrics fx-Coolsnap camera. We
developed a magnetic setup to apply a magnetic field (SI5) which varied by
less than 0.25% over the size of a rod (∼ 100 μm) in the plane of the rod
deformation. In the other direction, the vertical gradient (0.6 T/m) was
sufficiently weak to prevent the rod from bending but was the principal
source of uncertainty on the field intensity ðK2%Þ due to the uncertainty
on the rod vertical position ± 10 μm. As for nickel rod experiments, we
developed ImageJ plugins to control the setup and recognize the rod shapes at
a precision below 10nm.
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