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P granules and other RNA/protein bodies are membrane-less organ-
elles that may assemble by intracellular phase separation, similar to
the condensation of water vapor into droplets. However, the molec-
ular driving forces and the nature of the condensed phases remain
poorly understood. Here, we show that the Caenorhabditis elegans
protein LAF-1, a DDX3 RNA helicase found in P granules, phase
separates into P granule-like droplets in vitro. We adapt a micro-
rheology technique to precisely measure the viscoelasticity of mi-
crometer-sized LAF-1 droplets, revealing purely viscous properties
highly tunable by salt and RNA concentration. RNA decreases vis-
cosity and increases molecular dynamics within the droplet. Single
molecule FRET assays suggest that this RNA fluidization results
from highly dynamic RNA–protein interactions that emerge close
to the droplet phase boundary. We demonstrate than an N-termi-
nal, arginine/glycine rich, intrinsically disordered protein (IDP) do-
main of LAF-1 is necessary and sufficient for both phase separation
and RNA–protein interactions. In vivo, RNAi knockdown of LAF-1
results in the dissolution of P granules in the early embryo, with an
apparent submicromolar phase boundary comparable to that mea-
sured in vitro. Together, these findings demonstrate that LAF-1 is
important for promoting P granule assembly and provide insight
into the mechanism by which IDP-driven molecular interactions
give rise to liquid phase organelles with tunable properties.
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Intracellular RNA/protein (RNP) assemblies, including germ
granules, processing bodies, stress granules, and nucleoli, are

key players in the regulation of gene expression (1). RNP bodies,
also referred to as RNA granules, function in diverse modes of
RNA processing, including splicing, degradation, and translational
repression of mRNA. These ubiquitous structures lack a mem-
brane boundary but nonetheless represent a coherent organelle
composed of thousands of molecules, manifesting as microscopi-
cally visible puncta in both the cytoplasm and the nucleus.
Recent studies have demonstrated the apparent liquid-like

behavior of various RNP bodies (2–5) including wetting, drip-
ping, and relaxation to spherical structures upon fusion or
shearing. The assembly and disassembly of liquid-like organelles
appears to be governed by a phase separation process, demon-
strated by a concentration-dependent condensation/dissolution
of P granules (2, 6) and the assembly and size scaling of the nu-
cleolus (7) in the Caenorhabditis elegans embryo. Liquid phase
separation has also been suggested to play a role in stress granule
assembly (4) and in multivalent signaling proteins (8). These studies
lend increasing support to the hypothesis that liquid phases play a
central role in intracellular organization. However, the specific
molecular interactions that drive phase separation and the mech-
anisms by which liquid properties impart cellular function remain
largely unclear.

P granules are implicated in germ cell lineage maintenance in
C. elegans and may serve similar functions as polar granules or
nuage, which regulate germ cell biology across animal cells (9). In the
newly fertilized C. elegans embryo, P granules segregate to the em-
bryo posterior, which upon cytokinesis, defines the first germ-line
precursor cell. This P granule segregation process is controlled by the
preferential dissolution of anterior P granules and their stabilization
and condensation in the posterior. The spatial control of P granule
phase behavior arises from the anterior–posterior axis of the embryo
spanning a liquid–liquid demixing phase boundary (2, 10).
Despite our understanding of the overall features of P granule

segregation, the molecular interactions controlling P granule as-
sembly and their liquid-like biophysical properties remain poorly
understood. Like other RNP bodies, P granules are enriched in
RNA-binding proteins, including PGL-1,-3 and the RNA helicases
CGH-1, GLH-1–4, LAF-1, and VBH-1 (11). Members of the
highly conserved DDX3 subfamily of DEAD-box RNA helicases,
including human DDX3X, yeast Ded1p, and Drosophila Belle,
have demonstrated roles in the assembly and remodeling of RNPs
(12–14). Interestingly, many of these RNA helicases are predicted
to be partially disordered, consistent with bioinformatic analysis,
suggesting disordered motifs are common in RNP bodies (15).
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Intrinsically disordered protein (IDP) motifs typically have a
strong bias in their amino acid sequences. These proteins and
other proteins that are highly enriched in a small number of
amino acids are referred to as low complexity sequences (LCSs).
LCSs in proteins, such as that in the protein FUS, have emerged
as potentially important motifs in driving phase transitions un-
derlying RNP body assembly (16–18). However, LCS domains
have been reported to undergo phase transitions into solid gels,
which contrasts with the liquid-like behavior of intracellular RNP
bodies. Because solid-like gel phases are expected to slow or
inhibit molecular dynamics, while liquid-like droplet phases should

facilitate molecular dynamics, these studies raise important
questions about the viscoelastic properties of LCS/IDP phases.
However, measuring these rheological properties represents a
formidable challenge, due to the small size and transient nature
of RNP bodies. Elucidating the precise nature of these material
properties is nonetheless an essential step toward understanding
their impact on biological function (19).
Here we show that the DDX3 family RNA helicase LAF-1

plays a key role in promoting C. elegans P granule formation by
driving liquid–liquid phase separation. We find that LAF-1 can
phase separate in vitro into liquid droplets resembling P granules,
as well as impact P granule assembly in the early embryo. To
measure the material properties of these micrometer-sized drop-
lets, we adapt a microrheology technique that uses Brownian
motion of probe particles to extract their viscoelastic properties.
Together with fluorescence recovery after photobleaching (FRAP)
and single molecule experiments, our experiments reveal a role for
the disordered arginine/glycine-rich (RGG) domain of LAF-1 in
driving phase separation and promoting dynamic protein–RNA
interactions. We show that electrostatic interactions give rise to
droplets with tunable physical properties and protein dynamics. We
further demonstrate that RNA can modulate droplet viscosity and
dynamics, suggesting that the viscosity of P granules and other RNP
bodies may be modulated to achieve diverse biological functions.

Results
LAF-1 Phase Separates into Condensed Liquid Droplets in Vitro. Pre-
vious work has shown that the C. elegans protein LAF-1 is essen-
tial for germ-line development, with a potential role in regulating
sex determination (20). To quantify LAF-1 localization within
C. elegans embryos, we developed an antibody that specifically
recognizes LAF-1 (Fig. S1). Consistent with a previous report using
a GFP-tagged LAF-1 construct (21), we find that endogenous
LAF-1 exhibits a high degree of colocalization with PGL-1, the
founding P granule protein (Fig. 1A).
To study LAF-1 using a bottom-up biochemical approach, we

sought to purify recombinant LAF-1. During the course of these
studies, we found that upon lowering the salt (NaCl) concen-
tration of solutions of purified LAF-1, the solution became
cloudy. On further inspection under the microscope, we find that
this solution turbidity is the result of condensed, highly spherical
droplets of LAF-1 (Fig. 1B). By direct microscopic imaging, we
mapped the protein and salt concentrations at which LAF-1
condenses out of solution (Fig. 1C). To rule out the possibility
that residual RNA may be bound to LAF-1 and responsible for
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Fig. 1. LAF-1 colocalizes to P granules in vivo and phase separates into
droplets in vitro. (A) Confocal images of two-cell embryo posterior immu-
nostained for LAF-1 (Upper Left) and PGL-1 (Upper Right). In the dividing P1
cell, LAF-1 localizes to PGL-1–marked P granules; DAPI-stained nucleus is
included in the merged image. (B) DIC image of phase separated LAF-1
droplets. (C) Protein/NaCl concentrations scoring positive (green circles) or
negative (red squares) for optically resolvable droplets are plotted, resulting
in a phase boundary (line drawn to guide the eye). (D) The protein con-
centration in the dilute phase (●) is plotted for varying total protein con-
centrations (○) at three different salt concentrations. For all conditions, the
concentration of the dilute phase falls directly onto the LAF-1 phase boundary
from C (solid line).
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Fig. 2. LAF-1 droplets are homogeneous fluids with
salt-dependent viscosity. (A) Confocal image sequence
showing LAF-1 droplet fusion. (B) Fusion events
are well fit by an exponential decay, which is used
to determine fusion timescale τ. (C ) Decay time vs.
length scale for LAF-1 droplets prepared in 125 mM
NaCl. The linear slope represents the inverse capil-
lary velocity, η=γ ≈  0.12 s/μm. (D) Confocal image of
red fluorescent beads embedded inside a large LAF-1
droplet. (E ) Probability distribution of bead dis-
placement for three different lag times. Distributions
are well fit to a Gaussian (solid lines) indicating a
homogenous environment. (F) Mean squared dis-
placement vs. lag time. MSD data for individual
beads from a single droplet are plotted. Black solid
line, slope of 1; black dash, the noisefloor is ≈ 2 ×
10−4 μm. (Inset) Representative 2D particle track.
(G) Increasing concentrations of NaCl result in increased
MSD of particles and decreased viscosity (Inset).
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the observed salt-dependent phase behavior, we included a hep-
arin affinity column in our protein purification (SI Text) to effec-
tively compete for nucleotide binding. At 125 mM NaCl, LAF-1
begins condensing at a critical protein concentration of roughly
800 nM. Interestingly, this is the same order of magnitude as our
estimated in vivo cytoplasmic concentration of LAF-1 (SI Text).
Moreover, the in vitro LAF-1 droplets are reminiscent of the
LAF-1–rich P granules observed in vivo (Fig. 1A), suggesting that
LAF-1 may play a central role in driving P granule assembly.
At protein concentrations above a critical threshold, a system

can separate into two phases: a dilute solution and condensed
phase (22). Theory predicts that at equilibrium, the concentra-
tion in each phase will be fixed, and independent of total protein
concentration, for a given set of conditions (23, 24). To test this
prediction, we directly measured the concentration in the dilute
phase upon removal of the droplets by centrifugation. For a given
NaCl concentration, the concentration of soluble LAF-1 stays
roughly constant, even for increasing total LAF-1 concentrations
(Fig. 1D). Moreover, the concentration of the dilute phase lies
directly on the phase boundary, determined from the point at which
droplets are first observed (Fig. 1C). Thus, LAF-1 droplets are in
equilibrium with a saturated protein solution outside of the drop-
lets, consistent with a thermodynamically driven phase separation.

LAF-1 Droplets Are Homogenous Fluids with Tunable Viscosity. The
biophysical properties of RNA/protein bodies are expected to
affect their RNA regulatory function, because these properties
(i.e., viscoelasticity and surface tension) will strongly impact
molecular mobility and reactivity (3, 25). The highly spherical
nature of in vitro LAF-1 droplets suggests they may represent
simple viscous liquids, similar to previous reports describing the
liquid-like nature of P granules (2, 6). Consistent with this, we fre-
quently observe that when two or more LAF-1 droplets contact one
another, they readily fuse and round up into a single larger sphere

(Fig. 2A). Analysis of these dynamics reveals that the shape of co-
alescing droplets (aspect ratio) exhibits an exponential relaxation to
a sphere (Fig. 2B). For simple liquid droplets in a solution of
lower viscosity, the characteristic fusion timescale would be given
by τ≈ lðη=γÞ, where l is the average droplet radius, η is the vis-
cosity of the droplet, γ is the surface tension, and the ratio η=γ is
known as the inverse capillary velocity. Plotting τ vs. l for droplets
at 125 mM NaCl shows a strong linear relationship, which yields
η=γ ≈ 0.12 s/μm (Fig. 2C); this is comparable to but somewhat
faster than previous estimates of the inverse capillary velocity of
native P granules (2, 6).
This fusion timescale analysis only allows us to estimate the ratio

of viscosity to surface tension. To directly measure viscosity, we
adapted a microrheology technique that was developed for probing
the viscoelastic properties of small soft samples (5, 26). Poly-
ethylene glycol (PEG)-passivated probe particles of radius a =
0.5 μm are incorporated into LAF-1 droplets, and their motion is
tracked over time (Fig. 2D). We find that probe particles within the
droplets exhibit random Brownian fluctuations, which are Gaussian
distributed, consistent with a homogenous fluid at thermal equi-
librium (Fig. 2E). For an equilibrium viscoelastic fluid, the mean-
squared displacement (MSD) can grow as a power law in time:
hΔR2i∼ tα, where α is the diffusive exponent; for pure viscous fluids,
α = 1, whereas more complex viscoelastic properties give rise to so-
called subdiffusive behavior, with α< 1. We find that, away from
the noise floor, the MSD of probe particles in LAF-1 droplets grows
linearly with time (α = 1), consistent with pure viscous properties on
these timescales. Fitting the data to hΔR2i= 4Dt (Fig. S2), we ob-
tain a diffusion coefficient, D, which can then be used to precisely
determine the droplet viscosity, η, through the Stokes–Einstein re-
lation: D= kBT=6πηa, where kBT is the thermal energy scale. At
physiological salt (125 mM NaCl), LAF-1 droplets have a vis-
cosity of η = 34 ± 5 Pa·s, which is similar to that of honey.
The strong dependence of the LAF-1 phase boundary on salt

concentration (Fig. 1) suggests that electric charge plays an im-
portant role in the intermolecular LAF-1 interactions underlying
droplet assembly. To test whether salt can also modulate the
material properties of LAF-1 droplets, we assembled droplets at
different salt concentrations and used microrheology to measure
droplet viscosity. We find that with increasing salt concentration,
the particle motion inside LAF-1 droplets increases, seen by a
shift up in the MSD plot (Fig. 2G). The resulting droplet vis-
cosity decreases to η≈ 14 and η≈ 8 Pa·s for 250 and 400 mM
NaCl, respectively. Because the viscosity of a fluid reflects the
effective strength of intermolecular interactions (27, 28), this
viscosity decrease is consistent with the destabilizing effect of salt
on droplet assembly (Fig. 1).

RNA Increases Fluidity and Dynamics Within LAF-1 Droplets. RNA is
likely a major component of P granules in vivo and is a negatively
charged polymer, which therefore might also influence LAF-1
droplet properties. Using a single-stranded poly-uridine model
RNA (polyU 50), we find that LAF-1 binds RNA with high
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affinity (KD ≈ 10 nM), measured by a single molecule FRET
binding assay (Fig. S3). Interestingly, although RNA partitions
into the condensed phase, we do not observe a significant shift in
the phase diagram upon RNA inclusion (Fig. S4). To test the
impact of this charged high-affinity binding partner on droplet
properties, we added polyU50 RNA to the phase-separating
LAF-1 solution. We find that addition of 5 μMRNA into in vitro
LAF-1 droplets (at 125 mM NaCl) results in a threefold decrease
in the viscosity, with η = 12.8 ± 0.8 Pa·s (Fig. 3A); this is con-
sistent with rough estimates previously made to determine the
apparent viscosity of in vivo P granules (2, 6). Together with the
measured inverse capillary velocity, η=γ ≈ 0.12 s/um, this yields
a droplet surface tension of γ ≈ 100 μN/m, consistent with low
values typical of macromolecular liquids (29).
To determine whether RNA-induced fluidization of droplets

is associated with increased protein diffusivity, we used FRAP
to quantify molecular dynamics within LAF-1 droplets. We
bleached a small spot (R = 1.5 μm) inside droplets containing ≤
1% LAF-1 labeled with DyLight 488 (Fig. 3B). In the absence of
RNA, LAF-1 recovers on a timescale of ∼233 s, with an apparent
diffusion coefficient of D≈ 0.010 μm2/s. On addition of 5 μΜ
unlabeled RNA, the recovery timescale of LAF-1 decreases more
than twofold to ≈ 94 s, with an increase in the apparent diffusion
coefficient to 0.024 μm2/s (Fig. 3B, Inset). Repeating the experi-
ment with low levels of fluorescently labeled RNA (250 nM),
we find that mobility of RNA also increases, about ≈ 1.5-fold, upon
addition of 5 μΜ unlabeled RNA (Fig. S5). Thus, the fluidization of
LAF-1 droplets by RNA is accompanied by a corresponding
increase in diffusive dynamics of both RNA and protein.

Dynamics of LAF-1–RNA Interactions Are Correlated with LAF-1 Phase
Boundary. To obtain molecular-level insight into the mechanism
by which RNA interacts with and fluidizes LAF-1 droplets, we
used single molecule FRET. We prepared a partially duplexed
RNA, consisting of an 18-bp RNA duplex with a 50-nt polyU
overhang. The FRET dye pair (Cy3 and Cy5) was situated at both
extremities of the single-stranded RNA (ssRNA) to estimate the
time-dependent distance changes between the two ends of the

ssRNA strand induced by LAF-1 binding (Fig. 4A). At 20 nM
LAF-1 (above the KD), we observe a high FRET peak, with a
stable, nonfluctuating FRET signal indicative of static wrapping
or compaction of RNA by LAF-1 (30) (dotted line at FRET
values of ≈ 0.8; Fig. 4B). Interestingly, as the concentration of LAF-1
increases and approaches the phase boundary (≈ 0.8 μM), an ad-
ditional broad FRET peak emerges, suggesting altered interactions
between LAF-1 and the RNA substrate. The single molecule FRET
traces reveal that the FRET changes arise from increased dynamics
between LAF-1 and RNA, as evidenced by FRET fluctuations on
increasing protein concentration. We note that the FRET fluctua-
tions do not reflect successive binding and unbinding, as we do not
observe fluctuations to the unbound RNA state (Fig. S6). We see a
similar pattern when we use a fixed LAF-1 concentration, but ap-
proach the phase boundary by changing the salt concentration [NaCl]
(Fig. 4C). Thus, interactions between LAF-1 and RNA become
highly dynamic at protein and salt concentrations that favor droplet
formation. This intermolecular dynamic behavior likely contributes to
the fluidization of LAF-1 droplets by RNA (Fig. 3A).

The Disordered N-Terminal RGG Domain of LAF-1 Is Necessary and
Sufficient for Phase Separation. We next sought to elucidate the
molecular motifs that drive LAF-1 phase separation. Both the
N and C termini of LAF-1 are predicted to be highly disordered,
using the predictor of naturally disordered regions (PONDR)
algorithm (31) (Fig. 5A). The N terminus of LAF-1 contains an
arginine (R)/glycine (G)-rich domain with low sequence com-
plexity, similar to the RGG domain known to bind RNA, whereas
the shorter C terminus contains an R/G/Q-rich domain. We find
that the C terminus is not required for phase separation, because
LAF-1 with a deleted C terminus (ΔC) still forms droplets in vitro
(Fig. 5C), exhibiting a phase diagram similar to full-length (FL)
LAF-1 (Fig. S7). In contrast, deletion of the RGG-rich N terminus
(ΔRGG) results in no observable droplets, even up to con-
centrations as high as 250 μM, revealing the N-terminal RGG
domain as essential for phase separation. Moreover, the isolated N-
terminal RGG domain was alone sufficient for forming droplets (Fig.
5C). To test the disorder prediction of this important domain, we
performed circular dichroism (CD) measurements, which demon-
strate a random coil signature (32) for the isolated RGG domain
compared with the predominantly alpha-helical secondary structure
of the FL and terminal deletions (Fig. 5B). Thus, the N-terminal
RGG motif is intrinsically disordered and is responsible for driving
LAF-1 phase separation into liquid-like droplets.
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Fig. 6. LAF-1 depletion disrupts P granule organization. (A) The percentage of
hatched embryos laid by singled hermaphrodites (n = 42) is strongly decreased
in laf-1(RNAi) mothers. (B) Estimation of LAF-1 concentration in the germplasm
as a function of laf-1(RNAi) exposure. (C–E) Epifluorescent images of four-cell
embryos immunostained for LAF-1 (C), PGL-1 (D), and PIE-1 (E) at ≈ 30 h of
RNAi feeding. (Scale bars, 10 μm.)
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Disordered domains often display dynamic binding behavior
due to their conformational flexibility (33). Because the RGG
domain is sufficient for RNA binding (Fig. S8), we asked whether
the disordered RGG domain could be responsible for the ob-
served dynamic binding to RNA. Applying our FRET assay to the
truncation mutants, we find that both ΔC and the RGG domain
alone exhibit highly dynamic FRET traces, similar to that seen in
the full-length construct (Fig. 5D). However, ΔRGG gives rise to a
static, tightly wrapped conformation of bound RNA, similar to
that observed in non–droplet-forming conditions (Fig. 4 B and C).
Thus, in addition to its role in driving phase separation, the dis-
ordered N-terminal RGG domain recapitulates the dynamic
binding mode of the full-length protein.

RNAi Depletion of LAF-1 Disrupts P Granule Organization in the Early
Embryo. Our finding that LAF-1 drives a liquid–liquid phase
separation in vitro suggests that it may also drive assembly in
vivo. Consistent with the embryonic lethality phenotype of laf-1
mutants (20), we see a sharp decrease in the percentage of viable
embryos on laf-1(RNAi) knockdown (Fig. 6A). Using mean
fluorescence intensity analysis, we estimate the concentration of
dilute LAF-1 in the untreated embryo cytoplasm to be ≈ 300 nM
(SI Text), suggesting the total embryonic concentration is even
higher. The concentration of embryonic LAF-1 drops by roughly
10-fold in the first 24 h of laf-1(RNAi) treatment (Fig. 6B).
We observe that this strong decrease in LAF-1 concentration leads
to a drastic decrease in PGL-1–positive granules in the progenitor
germ cell, along with an increased cytoplasmic background con-
centration throughout the embryo (Fig. 6D). laf-1(RNAi) has no
significant effect on the asymmetric segregation of PIE-1, indicating
that polarity-dependent processes are not generally affected by loss
of LAF-1 (Fig. 6E). The dissolution of PGL-1–positive granules on
lowering of the LAF-1 concentration suggests that LAF-1 also
promotes a liquid–liquid phase separation in vivo.

Discussion
An increasing body of work suggests that P granules and other
RNP bodies assemble by a type of intracellular phase transition
(2, 4, 7, 19). However, molecular-level insight into the compo-
nents necessary to drive phase separation and maintain liquid-
like properties is severely lacking. Here we showed that a single
P granule protein, LAF-1, can drive phase separation in vitro,
resulting in P granule-like liquid droplets. These data provide
strong support for a role for LAF-1 in driving P granule assembly
in vivo, by promoting cytoplasmic liquid–liquid phase separation.
The contribution of LAF-1 to P granule assembly may be linked
to the critical role played by LAF-1 in germ-line maintenance and

embryogenesis, underscored by the lethal and feminizing phe-
notype of LAF-1 mutants (20).
P granules are implicated in germ-line establishment and

maintenance, but their precise function remains largely unknown.
A recent study has shown that segregation of P granules to pro-
genitor germ cells is only necessary for germ-line specification
under certain conditions, suggesting a potential role for P granules
in protection from stress (34); consistent with this, recent work has
implicated LAF-1 and its close homolog VBH-1 in the stress re-
sponse of C. elegans (35). P granules likely function in cytoplasmic
RNA regulation, including storage and release of mRNA tran-
scripts (36, 37). The liquid-like properties of P granules could
facilitate their function as intracellular RNA microreactors, con-
centrating and colocalizing specific molecules, which nonetheless
remain mobile within the droplet (25, 38). Our finding that LAF-1
droplet viscosity, and the dynamics of droplet components, can be
tuned by both salt and RNA (Fig. 2) suggests the potential for
functional feedback. In particular, the rate at which P granule
components are stored, processed, and/or released should depend
on viscosity and transport within P granules, which in turn can
depend on the concentration of these same components. Such
functional feedback could potentially be tuned throughout de-
velopment, in parallel with altered germ-line RNA expression.
Our work demonstrates a key role for the N-terminal RGG

domain of LAF-1. This region of LAF-1 is intrinsically disor-
dered and is necessary and sufficient for phase separation (Fig.
4). Moreover, the RGG domain is also necessary and sufficient
for the surprising RNA binding dynamics that coincide with the
protein phase boundary. IDPs have remained largely mysterious
and poorly understood, because they are outside of the tradi-
tional paradigm of stereospecific molecular interactions medi-
ated by compact, well-folded 3D protein structure. However, it is
estimated that as many as 30% (39) of proteins in the human
genome have regions of intrinsic disorder, and IDPs appear to be
involved in a range of biological functions, owing to their flexible
conformations and binding promiscuity. Our findings are con-
sistent with the emerging role of LCS/IDPs in promoting the
assembly of RNP bodies (15, 16, 40–42).
The disordered N terminus is rich in arginines (R) and glycines

(G) and is similar to the well-known RGG/RG motif RNA-
binding domain (43). Several other P granule proteins, including
PGL-1 and -3 and VBH-1 contain RGG-rich sequences similar
to that of LAF-1, which are also predicted to be disordered.
Intermolecular IDP interactions between LAF-1 and various P
granule proteins could thus underlie maintenance of a dynamic but
coherent P granule structure (Fig. 7). This picture is consistent with
recent work suggesting a role in P granule assembly for two pre-
dicted IDP-containing proteins: MEG-1 and MEG-3 (41). The
interactions between these proteins is controlled by phosphorylation,
reflecting a balance between activity of the kinase MBK-2/DYRK
and the phosphatase PPTR-1/2; this manifests in altered propensity
for assembly of P granules. Such posttranslational modifications are
likely to tune intermolecular interactions by regulating the charge
state of IDPs (42), consistent with our findings on the salt and RNA
dependence of LAF-1 droplet assembly and properties.
Our work shows that RNA does not shift the LAF-1 phase

diagram (Fig. S4), despite contributing to a decrease in droplet
viscosity. Thus the molecular interactions that give rise to the
material properties within droplets are not necessarily equivalent
to the interactions that govern droplet assembly. Droplet prop-
erties could also be affected by the predicted ATPase activity of
the DEAD box helicase domain within LAF-1. Indeed, prior
work on nucleoli suggests that the viscosity of RNP bodies may
be ATP dependent (3). However, the experiments we performed
here were done in the absence of ATP, and thus both assembly
and RNA-mediated fluidization are independent of ATPase ac-
tivity. Nonetheless, ATP could also play an important role in
regulating P granule droplet properties and dynamics in vivo.

 RNA-

high viscosity

low viscosity

 RNA

LAF-1 Other 
Proteins

RNADisordered 
Motifs
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Fig. 7. Schematic illustrating the role of LAF-1 IDP motifs and RNA in droplet
assembly and properties. IDP motifs (red) in LAF-1 (green) and likely other P
granule proteins (blue) are important for driving phase separation into dynamic
but coherent liquid droplets. These droplets are a liquid phase but with rela-
tively high viscosity. RNA gives rise to dynamic interactions with LAF-1 (and
likely other) IDP domains, modulating IDP–IDP interactions and leading to de-
creased droplet viscosity and increased molecular dynamics within the droplet.
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IDPs are closely related to LCS proteins, which have been
suggested to promote RNP body formation by assembling into gel-
like states (16, 17). However, our work here, performed using near-
physiological buffer conditions, demonstrates that a P granule IDP
assembles into purely viscous liquid droplets. These results are
consistent with the idea that RNP assemblies lie on a viscoelastic
spectrum, where solid-like states may be more typical of patho-
logical extremes (19). The cell’s ability to tune the properties of
RNP bodies is likely to have important consequences for the bi-
ological function of these liquid phase organelles, underscored by
the strong link we identified between droplet material properties
and internal molecular dynamics. Elucidating the functional in-
tracellular consequences of altered droplet properties remains
an exciting and key future challenge.

Methods
Protein Purification. LAF-1 constructs with a C-terminal 6×-His tag were pu-
rified on Ni-NTA agarose resin (Qiagen) followed by a HiTrap Heparin col-
umn (GE) and flash frozen in high salt buffer (see SI Text for details).

Microrheology. Microrheology was performed as previously described (5).
PEGylated fluorescent microspheres were added to low salt buffer before
being mixed with a small volume of concentrated protein in high salt solution.
Bead diffusion was tracked on a spinning disk confocal microscope for 500 s
using 500-ms intervals. MSD data were fit (Fig. S2A) to the form MSDðτÞ  =
4Dτα +NF where α is the diffusive exponent, D is the diffusion coefficient, and
NF is a constant representing the noise floor (see SI Text for details).

See SI Text for FRAP, single molecule FRET, and CD spectroscopy methods
in detail.
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