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Natural enzymes are incredibly proficient catalysts, but engineer-
ing them to have new or improved functions is challenging due to
the complexity of how an enzyme’s sequence relates to its bio-
chemical properties. Here, we present an ultrahigh-throughput
method for mapping enzyme sequence–function relationships that
combines droplet microfluidic screening with next-generation
DNA sequencing. We apply our method to map the activity of mil-
lions of glycosidase sequence variants. Microfluidic-based deep
mutational scanning provides a comprehensive and unbiased view
of the enzyme function landscape. The mapping displays expected
patterns of mutational tolerance and a strong correspondence
to sequence variation within the enzyme family, but also re-
veals previously unreported sites that are crucial for glycosidase
function. We modified the screening protocol to include a high-
temperature incubation step, and the resulting thermotolerance
landscape allowed the discovery of mutations that enhance en-
zyme thermostability. Droplet microfluidics provides a general
platform for enzyme screening that, when combined with DNA-
sequencing technologies, enables high-throughput mapping of
enzyme sequence space.

protein engineering | droplet-based microfluidics | high-throughput DNA
sequencing

Enzymes are powerful biological catalysts capable of remark-
ably accelerating the rates of chemical transformations (1).

The molecular bases of these rate accelerations are often complex,
using multiple steps, multiple catalytic mechanisms, and relying on
numerous molecular interactions, in addition to those provided by
the main catalytic groups. This complexity imposes a significant
barrier to understanding how an enzyme’s sequence impacts its
function and, thus, on our ability to rationally design biocatalysts
with new or enhanced functions (2–4).
Comprehensive mappings of sequence–function relationships

can be used to dissect the molecular basis of protein function in
an unbiased manner (5). Growth selections or in vitro binding
screens can be combined with next-generation DNA sequencing
to generate detailed mappings between a protein’s sequence and
its biochemical properties, such as binding affinity, enzymatic
activity, and stability (6–9). This deep mutational scanning ap-
proach has been used to study the structure of the protein fitness
landscape, discover new functional sites, improve molecular en-
ergy functions, and identify beneficial combinations of muta-
tions for protein engineering. However, these methods rely on
functional assays coupled to cell growth or protein binding, se-
verely limiting the types of proteins that can be analyzed. For
example, most enzymes of biological or industrial relevance
cannot be analyzed using existing methods because they do not
catalyze a reaction that can be directly coupled to cell growth.
Experimental advances are needed to broaden the applicability of
deep mutational scanning to the diverse palette of functions per-
formed by enzymes.
In this paper, we present a general method for mapping protein

sequence–function relationships that greatly expands the scope of
biochemical functions that can be analyzed. Ultrahigh-throughput
droplet-based microfluidic screening enables us to characterize
the chemical activities of millions of enzyme variants. By sorting

the variants based on chemical activity and performing next-
generation DNA sequencing of sorted and unsorted libraries,
we obtain a detailed mapping of how changes to enzyme se-
quence impact chemical function. We demonstrate this method
using a glycosidase enzyme important in the deconstruction of
biomass into fermentable sugars for biofuel production. Through
comprehensive mutagenesis and functional characterization of this
enzyme, we were able, with minimal bias, to discover residues
crucial to function and identify mutations that enhance its activity
at elevated temperatures. This approach can be applied to any
enzyme whose chemical activity can be measured with a fluo-
rogenic assay in microfluidic droplets (10–13). Our method ex-
tends the applicability of deep mutational scanning to a wide
range of protein functions and reaction conditions not accessible
by other high-throughput methods.

Results
High-Throughput Sequence–Function Mapping. Protein sequence
space is vast and an enzyme’s functional properties may depend
on hundreds to thousands of molecular interactions, most of which
will have never been characterized. Systematically exploring this
space thus necessitates methods capable of characterizing massive
numbers of sequence variants. We have developed a general
method for performing millions of sequence–function measure-
ments on an enzyme (Fig. 1A). A library of enzyme variants is
expressed in Escherichia coli, and single cells are encapsulated in
microfluidic droplets containing lysis reagents and a fluorogenic
enzyme substrate (Fig. S1A). Upon lysis, the expressed enzyme
variant is released into the droplet, allowing it to interact with the
substrate. The surrounding oil acts as a barrier that keeps reagents
contained within the droplets, preventing product molecules
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generated by one variant from mixing with those of another in a
different droplet. Droplets that contain efficient variants thus
rapidly accumulate fluorescent product, whereas those with in-
active variants remain dim. The DNA sequences of the active
variants are then recovered using a high-throughput microfluidic
sorter to recover the bright droplets (14). The sorter can ana-
lyze more than 100 enzyme variants per second, reaching 1 million
in just a few hours. The sorted and unsorted gene libraries are
then processed using next-generation DNA sequencing and
statistical analysis.
As a demonstration of the generality and power of our

sequence–function mapping method, we used it to analyze Bgl3,
a β-glucosidase enzyme from Streptomyces sp. We chose Bgl3
because it catalyzes an important step in the deconstruction of
biomass into fermentable sugars, it is a remarkably proficient
catalyst (kcat/kuncat ∼ 1016), its structure has been solved to high
resolution, and it has a simple fluorogenic assay. To enable ac-
curate sorting of active from inactive variants, we developed an
emulsion-based β-glucosidase assay that showed excellent dis-
crimination between wild-type (WT) Bgl3 and an inactive mutant
(Fig. S1 B–D). We used error-prone PCR to generate a Bgl3
mutant library with an average of 3.8 amino acid substitutions
per gene. We screened this library for a total of 23 h (four separate
runs), analyzing over 10 million variants, 3.4 million of which
contained measurable enzymatic activity and were recovered via
microfluidic sorting (Fig. S1E). To confirm enrichment of func-
tional sequences within the sorted population, we tested a random
sampling of mutants in a plate assay before and after sorting
(Fig. 1B). Before sorting, ∼35% of variants were found to be
functional, the remainder inactive due, presumably, to deleterious
point mutations. After sorting, the fraction of functional se-
quences increased to 98%. The sorted sequences had an average
of 2.0 amino acid substitutions per gene, approximately one-half
that of the unsorted library.
We processed the unsorted and sorted gene libraries using the

Nextera XT sequencing library prep kit, sequenced using an
Illumina MiSeq, version 3, 2 × 300 run, and mapped the sequence
reads to the bgl3 gene using Bowtie2. The DNA sequencing
showed good coverage across the entire bgl3 gene for both the
unsorted and sorted libraries (Fig. S2A). The Bgl3 construct has
500 amino acid positions and therefore a total of 10,000 (500 × 20)
possible amino acid substitutions including nonsense mutations.
After applying sequencing quality filters, there were sufficient
statistics to quantify the frequency of 3,083 (31%) of these amino
acid substitutions. The remaining 6,917 substitutions were difficult

to access because they require two or three nucleotide mutations
within a single codon, which is a rare occurrence in libraries
generated via error-prone PCR (Fig. S2B).
The effect of an amino acid substitution can be estimated

by how much its frequency changes in response to functional
screening. A majority of mutations decreased in frequency in the
sorted library, suggesting they are deleterious to the enzyme’s
function (Fig. 1C). This observation is consistent with other studies
analyzing the effects of random mutations on protein function
(15–18). To further evaluate the method, we tested the repro-
ducibility of the mapping by comparing amino acid frequencies
from two independent sorting experiments (Fig. 1D). These
datasets show excellent agreement (r = 0.97) across all 3,083
point mutations. Our microfluidic sequence–function mapping
method was further validated on a panel of Bgl3 variants with
known enzyme activities (Fig. S3).

Site-Specific Mutational Tolerance. Data from millions of func-
tional sequence variants can be used to identify residues im-
portant for enzyme function. Residues that cannot be mutated to
other amino acids are likely to play a specific role required for
enzyme activity. The degree to which a site can tolerate amino
acid change is thus an indicator of its functional importance. The
relative entropy (RE) can be used to score a residue’s mutational
tolerance, because it quantifies how much the amino acid prob-
ability distribution changes between the unsorted and sorted
libraries (Fig. 2A). A site whose distribution shifts significantly
from random has high relative entropy, implying that a specific
amino acid must reside at that position for the enzyme to re-
main functional.
The mutational tolerance of a site should be related to its

position in the protein’s 3D structure, because this determines
the other residues with which it interacts. To investigate the
relationship between enzyme structure and mutational tolerance,
we mapped the relative entropy of each position onto the Bgl3
crystal structure (Fig. 2B). As expected, the catalytic nucleophile
(E383) and general acid/base (E178) are both highly intolerant
to mutation, falling at the 99th and 95th percentiles, respectively.
We also expect core residues to be less tolerant to mutation than
surface residues because the protein core tends to be well packed,
forming many interresidue interactions. To support this, the
α-helices that compose the TIM-barrel wall display an alternating
pattern, where the interior helix face is less tolerant to mutation
than the exterior face (Fig. 2B). Overall, buried residues are less
tolerant to mutation than solvent-exposed residues (Fig. 2C).

Fig. 1. High-throughput sequence–function map-
ping. (A) A conceptual overview of the sequence–
function mapping protocol. Individual members
of a randomized gene library are assayed in aque-
ous microdroplets, and microfluidic screening is
used to sort out the active variants. The unsorted
and sorted variant pools are then analyzed using
high-throughput DNA sequencing. The resulting
sequence–function dataset is used to understand
the functional impact of mutations. (B) Droplet-
based microfluidic screening recovers functional
sequences from the initial random mutagenesis li-
brary. Individual clones from the unsorted and sor-
ted libraries were tested in a plate-based assay and
were considered functional if their end-point ac-
tivity was greater than 50% of Bgl3’s. Initially, only
35% of the library was functional, but after screen-
ing the fraction of functional sequences increased
to 98%. Error bars represent the 90% binomial pro-
portion confidence interval. (C ) The frequency of
3,083 amino acid substitutions in the unsorted and
sorted libraries. A large fraction of mutations decrease in frequency after sorting, suggesting they are deleterious to Bgl3 function. (D) Reproducibility
of the sequence–function mapping protocol. Two independent experimental replicates show very good agreement in amino acid frequencies.
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The analysis of mutational tolerance reveals sites that play an
important functional role, several of which have never been de-
scribed in the literature. For example, lysine 461 has the highest
relative entropy of any residue (100th percentile), although, oddly,
it is far from the active site (Fig. 2B). Targeted mutagenesis
shows no other amino acid can be accepted at this location, vali-
dating the mutational tolerance findings (Fig. S4C). In the crystal
structure, K461 is involved in networked salt bridges with two
aspartic acid residues (Fig. 2D). The short distance of these in-
teractions indicates they are strong and suggests that K461 may
be important for the structural stability of the enzyme. Indeed,
substitutions at this position significantly decrease the enzyme’s
soluble expression (Fig. S4C).
Asparagine 307 is another residue with high relative entropy

(99th percentile) that, again, has not been described previously.
N307 is located in the enzyme’s active site and appears to be
hydrogen bonding with the general acid/base E178 in the crystal
structure (Fig. 2E). Targeted mutagenesis at this position also
shows no other amino acid is tolerated, again validating the re-
sults of the mutational tolerance map obtained with our ap-
proach (Fig. S4B). Unlike K461, substitutions at N307 demolish
enzyme activity but have minimal influence on soluble expres-
sion, suggesting N307’s role in the enzyme’s catalytic mechanism.
We hypothesize that N307 may act to shift the pKa of the general
acid/base, which is crucial for the pKa-cycling mechanism of most
retaining glycosidases (19). These results demonstrate the power
of comprehensive and unbiased sequence–function mapping for
investigating enzyme function and identifying important residues.

Comparison with the Natural Sequence Record. Bgl3 is a member of
glycoside hydrolase family 1 (GH1), a large enzyme family
accepting a broad range of glycosylated substrates (20, 21).
The sequences within the GH1 family typically differ by hundreds
of mutations, providing a diverse sampling of the sequence space
explored by natural evolution. By contrast, our experimental
sequence–function mapping densely samples the local space of
sequences within a few mutations of Bgl3. Comparing the global
versus local view of sequence space may provide insight into the
evolutionary constraints imposed on members of the GH1 family.
To investigate how our results compare with the natural se-

quence record, we used a large GH1 multiple sequence alignment
to calculate a relative entropy sequence conservation score (22,
23). Bgl3’s mutational tolerance shows a strong correspondence
with the observed GH1 sequence conservation. Gene-scale pat-
terns can be visualized by taking a moving average (five-site win-
dow) of the relative entropy and sequence conservation scores
across sequence positions (Fig. 3A). The experimental mutational
tolerance and GH1 conservation are strikingly similar, and their
patterns tend to correspond with secondary structure elements.
Overall, the experimental relative entropy and the sequence con-
servation score display a strong, statistically significant correlation
(r = 0.59, P < 1E-45; Fig. 3B), suggesting that most sites important
for Bgl3 function are also important throughout the GH1 family.
There are, however, unexpected and interesting exceptions to

the correspondence between Bgl3’s mutational tolerance and
GH1 sequence conservation. The most extreme is position 288,
which is highly intolerant to mutation in Bgl3 (99th percentile for
RE) but has little conservation in the GH1 alignment (11th

Fig. 2. Analysis of site-specific mutational tolerance. (A) Relative entropy (RE) describes how much the amino acid probability distribution changes in
response to functional screening. The amino acid distribution of mutated codons is shown for a low RE site and a high RE site. Only synonymous sub-
stitutions are shown for the WT amino acid. The low RE site (K419) shows little change between the unsorted and sorted libraries, suggesting this position
can tolerate substitutions to other amino acids. In contrast, the high RE site (K461) shows a strong shift back to the WT residue. (B) Structural patterns of
mutational tolerance. The relative entropy of each site was mapped onto the Bgl3 crystal structure (Protein Data Bank ID code 1GNX). Sites with the
highest relative entropies (≥99th percentile) have a red sphere at their α carbon. As expected, known functional sites, such as the catalytic residues, are
highly intolerant to mutation. The analysis also reveals previously unannotated positions that are intolerant to mutation and may therefore play an
important role in Bgl3 function. Three of these sites (F288, N307, and K461) are labeled in the figure. (C) The mutational tolerance of a position depends
on its solvent exposure. The distribution of relative entropies for all positions is shown in gray. Buried residues [relative surface area (RSA) < 0.2] tend to
have higher relative entropies and are therefore less tolerant to mutations than solvent-exposed residues (RSA ≥ 0.2). (D) Detailed view of K461 in Bgl3
structure. K461 (transparent spheres) forms salt bridges with two nearby aspartic acid residues. The short interatomic distances and their networked
nature, suggests these interactions are strong and may be important for the structural stability of the enzyme. (E ) Detailed view of N307 in Bgl3 structure.
N307 (transparent spheres) is located directly between the enzyme’s nucleophile (E383) and the general acid/base (E178). Based on the distance and
angles of the residues, N307 appears to hydrogen bond with E178, which may be important for perturbing the pKa of that group and, thus, the catalytic
mechanism of the enzyme.
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percentile for sequence conservation). Targeted mutagenesis at
this location again validates the sequence–function mapping
results, confirming that Bgl3 can only tolerate 21% of all amino
acid substitutions at position 288 (Fig. S4A). The fact that other
GH1 members can accept most amino acids at position 288
suggests that Bgl3 evolution may be constrained by mutational
epistasis at this site.
A closer look at GH1 structures reveals that position 288 occurs

within a loop region displaying high diversity in the family (Fig.
3C). In fact, the most outlying positions (high experimental RE
and low sequence conservation) occur in regions with high struc-
tural variation within the GH1 family (Fig. 3B, red points). We
hypothesize that, through the course of natural evolution, Bgl3
may have evolved unique structural motifs that constrain its mu-
tational tolerance relative to the GH1 family. We expect closely
related sequences to also share these motifs and therefore to have
similar residue preferences. Indeed, the phylogenetic tree of GH1
structures shows the few members that do contain F288 are closely
related (Fig. 3D). Similar mutational idiosyncrasies may exist in all
family members, but their conservation patterns become obscured
when observing the entire family alignment.
These results highlight how sequence–function mapping pro-

vides a detailed local view of sequence space, whereas large
multiple-sequence alignments provide a global perspective. A
local sequence space mapping is important for applications such
as protein engineering or the prediction of disease-associated
mutations, because they focus on the mutational properties of
the specific family member under investigation.

High-Temperature Screening Enriches for Stabilizing Mutations. Pre-
vious work in enzyme sequence–function mapping has used in
vivo assays that couple an enzyme’s function to cellular growth
(7, 24–26). These in vivo selections are limited not only in
the types of enzyme functions that can be analyzed, but also
by the range of experimental conditions compatible with the

intracellular environment. An advantage of droplet-based micro-
fluidics is the ability to precisely control screening conditions,
such as time, temperature, and concentration. Screening under
altered conditions allows for enrichment of variants with en-
hanced unnatural properties.
To investigate this capability, we modified the microfluidic

screening protocol to include a heat challenge directly after
droplet formation (Fig. S5). We hypothesized that this should
enrich for mutations that increase Bgl3’s thermostability. We
screened a total of 10 million enzyme variants, 2 million (20%)
of which were determined to remain active and recovered via
sorting. In this experiment, the heat challenge inactivated ap-
proximately one-half of the variants active in the original room
temperature screen.
To observe the effects of the heat challenge on the functional

space of enzyme sequences, we plotted the enrichment value for
every observed amino acid substitution along the length of the
enzyme (Fig. 4A). Overall, most mutations (97%) decreased in
frequency (blue), but a small number showed positive enrich-
ment values (red, Fig. 4B). The mutation with the greatest en-
richment was S325C, located in an unresolved loop of the Bgl3
structure. This mutant was constructed and characterized and,
indeed, found to yield a 5.3 °C increase in thermostability (Fig.
4C). We believe S325C is involved in a disulfide bond because
performing the thermostability measurements in the presence
of the reducing agent DTT abolishes the stability enhancement
(Fig. S7). Identifying single mutations with such dramatic stability
improvements is very difficult using other protein engineering
methods. Other substitutions with positive enrichment values also
increase the enzyme’s thermostability (Fig. 4D and Fig. S8). This
simple protocol allows the identification of thermostabilizing
mutations and can be adapted to enrich for a variety of additional
properties by screening under different conditions.

Fig. 3. Comparison with natural sequence variation. (A) Large-scale patterns of Bgl3’s mutational tolerance and the observed GH1 sequence conservation. A moving
average (five-site window) of the experimental relative entropy and sequence conservation scores is plotted over sequence positions. Percentile ranks are used to plot
the two scores on the same axis. The overall patterns of Bgl3 mutational tolerance and GH1 conservation are very similar and tend to correspond with secondary
structure elements (displayed across the top). (B) The relationship between a site’s mutational tolerance and sequence conservation. A scatter plot of the experimental
relative entropy and sequence conservation scores displays a strong correlation (r = 0.59; P < 1E-45), indicating that sites important for Bgl3 function are also important
throughout the GH1 family. Outlying sites, such as F288, can be explained by structural diversity within the enzyme family. Structural diversity (mean Cα displacement)
was quantified by aligning all related structures to Bgl3, calculating each structure’s Cα displacement from Bgl3 at each position, and averaging over all structures.
Positions with a high experimental relative entropy, but low sequence conservation score (top, left corner) tend to come from regions with more structural diversity
(red points). (C) Structural diversity may explain outlying sites. Position 288 is highly intolerant to mutation in Bgl3 (99th percentile for RE) but has little conservation in
the GH1 alignment (11th percentile for sequence conservation score). An alignment of GH1 structures reveals that position 288 occurs in a structurally diverse loop.We
hypothesize that F288 is important for Bgl3 function, but its interactions are not conserved throughout the GH1 family. (D) Sequence–function mapping provides a
local view of sequence space. A phylogenetic tree of GH1 structures shows the few sequences that do contain F288 are closely related.
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Discussion
Deep mutational scanning is a powerful tool for exploring the
molecular basis of protein function (7, 15, 25, 26). However,
restrictions on functional assays have limited its general appli-
cability, particularly for enzymes. We have presented a method
for characterizing millions of enzyme variants by compartmen-
talizing reactions in aqueous microdroplets. The assays use an
optical readout and can therefore be readily adapted to the nu-
merous classes of enzymes with fluorescence-based activity assays.
Our experimental protocol enabled the analysis of over 1 million

Bgl3 variants, and we used the resulting sequence–function map to
evaluate the enzyme’s tolerance to mutation. This unbiased anal-
ysis discovered sites within the enzyme that cannot tolerate muta-
tions and are therefore likely to play an important role in Bgl3
function. Alternately, sites with a high tolerance to mutation are
important for protein evolution and engineering because they can
accept diversification while still maintaining catalytic function; this
provides the protein engineer with flexibility in enhancing certain
properties while maintaining others. The sequence–function map-
ping approach provides a local view of protein sequence space that
can identify important interactions overlooked by large alignments
of homologous sequences.
Droplet-based microfluidic screening provides a flexible plat-

form for assaying enzyme activity over a broad range of reaction
conditions (10–13). We adapted our screening protocol to include
a heat challenge and enriched for mutations that increase the
enzyme’s thermostability. An alternative approach for identifying
stabilizing mutations from high-throughput sequence–function data
was recently developed that involved scoring a residue’s ability to
rescue the deleterious effects of other mutations (27). How-
ever, the droplet-based screening approach is extremely ver-
satile and could theoretically be used to identify variants with
enhanced properties including increased kcat (reduced reaction
time), decreased Km (reduced substrate concentration), increased
tolerance to biomass pretreatments (increased ionic liquid con-
centration), and reduced product inhibition (increased glucose
concentration). Systematically mapping multiple enzyme properties
will allow us to evaluate the trade-offs between properties and
enable multiobjective protein engineering.

Experimentally mapping protein sequence space requires high-
throughput library synthesis, screening, and sequencing, any of
which could be a bottleneck. From this work, we found library
construction and sequencing to be more limiting than microfluidic
screening. Our random mutagenesis library contained 6 million
unique variants (colony-forming units), and the transformation
efficiency limited the size of this library. The microfluidic sorter
analyzed over 10 million enzyme variants in 23 h, and the
throughput of more recent sorter designs is more than an order of
magnitude faster (28)—enabling the screening of libraries beyond
108 variants. Although Illumina DNA sequencers can provide a
large number of sequencing reads, read length is currently limited
to ∼600 bp, about one-third of the bgl3 gene. A number of new
methods to generate longer read lengths have recently been de-
veloped (29, 30) and would allow a pairwise analysis by correlating
the effects of mutations at distant sequence positions.
Our method relies on a microfluidic droplet sorter that requires

specialized instrumentation not typically found in a biochemistry
laboratory. However, an alternative to screening enzyme variants in
water-in-oil droplets is to screen using water-in-oil-in-water double
emulsions (31). Double-emulsion droplets also provide micro-
compartments with which to test individual enzyme variants but can
be generated using commercially available microfluidic systems
(Dolomite Microfluidics) and sorted using standard cell sorters
(32). This should provide an easily adoptable and widely available
solution for implementing our sequence–function mapping method.
Our method could potentially be applied to a large number of

different enzyme classes. In addition to glycosidases, emulsion-based
methods have been used to screen DNA/RNA polymerases,
oxidoreductases, sulfatases, peroxidases, esterases, proteases,
and even ribozymes (10, 11, 33–37). The greatest challenge with
emulsion-based screening is finding a fluorescent assay for one’s
particular enzyme of interest. It is important to note that some
small-molecule dyes readily exchange between emulsion droplets
and limit the ability to resolve functional differences (38).
The ability to rationally engineer enzymes will have a far-

reaching impact on areas that range from medicine and agricul-
ture to environmental protection and industrial chemistry. How-
ever, enzyme function involves an extraordinarily complex balance
of numerous physical interactions, which has limited the design of

Fig. 4. Identification of stabilizing point mutations.
(A) High-temperature screening enriches for stabi-
lizing mutations. The enrichment value of 2,956
amino acid substitutions plotted over sequence po-
sitions. Amino acids that were not observed are
colored as white and the WT residue is colored gray
with a box around it. (B) The overall distribution of
enrichment values. Only 3% of substitutions have a
positive enrichment value. (C) Thermal inactivation
curves for WT Bgl3 and the mutant with the highest
enrichment value. S325C increases the T50 of the
enzyme by 5.3 °C. (D) Enriched mutations confer
enhanced thermostability. A panel of five mutations
was chosen based on their enrichment value and
its reproducibility over experimental replicates. The
enriched mutations were experimentally character-
ized, and all showed moderate-to-large increases in
thermostability. The magnitudes of the stability in-
creases depend on the assay conditions and tend to
be lower when tested under conditions different
from the screen (Fig. S6).
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tailor-made enzymes. Large sequence–function datasets will pro-
vide an increasingly detailed view of the determinants of enzyme
function. When combined with methods from statistics and ma-
chine learning, protein design rules can be extracted and applied
in an automated manner (39). Given the rapid pace of advances in
high-throughput experimentation, data-driven protein engineering
may be able to outpace more traditional physics-based methods.

Materials and Methods
All microfluidic devices were fabricated in-house using standard soft lithog-
raphy techniques (Fig. S9). Photomasks were used to pattern layers of pho-
toresist (SU-8 3025) on a silicon wafer, and uncured polydimethylsiloxane
(PDMS) (11:1 polymer–to–cross-linker ratio) was poured over the mold. The
PDMS was cured at 80 °C for 1 h, extracted from the mold with a scalpel, and
access holes were punched using a 0.75-mm biopsy core. The devices were
then bonded to glass slides after a plasma surface treatment. The device

channels were made hydrophobic by flushing with Aquapel (Pittsburgh
Glass Works) and then baking for an additional 10 min at 80 °C. Micro-
fluidic fluorescence measurements were performed using a custom-built
fluorimeter (Fig. S10).
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